UNIVERSITI PUTRA MALAYSIA

In Vivo EFFECTS OF COPPER ON FISH TOXICITY AND CHOLINESTERASE OF Oreochromis mossambicus (W. K. H. PETERS, 1852) (BLACK TILAPIA)

AIN AQILAH BINTI BASIRUN

FBSB 2018 17
In Vivo EFFECTS OF COPPER ON FISH TOXICITY AND
CHOLINESTERASE OF Oreochromis mossambicus (W. K. H. PETERS, 1852)
(BLACK TILAPIA)

By

AIN AQILAH BINTI BASIRUN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

December 2017
COPYRIGHT

All materials contained within the thesis including without limitation text, logos, icons, photographs and all other artworks are copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from copyright holder. Commercial use of materials may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to my beloved family.
Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Master of Science

In Vivo EFFECTS OF COPPER ON FISH TOXICITY AND CHOLINESTERASE OF Oreochromis mossambicus (W. K. H. PETERS, 1852) (BLACK TILAPIA)

By

AIN AQLILAH BINTI BASIRUN

December 2017

Chairman: Siti Aqlima Binti Ahmad, PhD
Faculty : Biotechnology and Biomolecular Sciences

Heavy metals including copper (Cu) has recently become an overwhelming pollutant towards the environment especially aquatic system. Many current researchers are focusing on cholinesterase (ChE) for biomarker and biosensor development as preliminary screening to prove the existence of xenobiotic in the aquatic system. In this study, an inhibitive assay for Cu was developed using the partially purified fraction of ChE from Oreochromis mossambicus. In addition, the biochemical, morphology and histopathology changes of O. mossambicus were observed as the biomarker for Cu exposure in vivo method. Five selected organs namely brain, blood, gills, liver and muscle depicted the alterations upon 96 h sub-acute exposure of CuSO₄. Common anomalies observed include the karyohexis and keryolysis in brain cell strutures, gills hyperplasia, melano macrophage centre (MMC) and hemosiderin formation in liver, blood cell alterations, massive formation of macrophagic cell in blood system and degeneration of muscle bundle in muscle. CuSO₄ has also inhibited ChE in in vivo analysis. ChE from five selected organs was inhibited starting from the concentration of 5 mg/L CuSO₄. Liver ChE showed the fluctuation of ChE inhibition. In vitro analysis took place where ChE of untreated O. mossambicus was partially purified through affinity chromatography using Procaïnamide-Sephacryl 6B as ligand. The folds of purification of ChE from brain, blood, gill, liver and muscle ChE were 5.8, 4.9, 3.6, 7.2, and 3.5, respectively. The optimisation of all ChEs were studied. Substrate specificity has specified ChE extracted from all five organs, which are brain (ATC 3.0 mM), blood (PTC 3.0 mM), gill (ATC 2.0 mM), liver (BTC 2.0 mM) and muscle (PTC 2.5 mM). The optimum pH and temperature studies of those organs recorded brain (pH 9, 20°C), blood (pH 9, 40°C), gill (pH 8, 30°C), liver (pH 9, 30°C), and muscle (pH 9, 30°C). In this case, the optimisation of ChEs from five O. mossambicus organs was not much different with each organ. Half maximal inhibitory concentration (IC₅₀) was studied to determine the Cu potency toward inhibiting O. mossambicus ChEs. IC₅₀ of Cu on brain, blood, gill, liver and muscle were 2.65, 0.297, 0.935, 7.66 and 10.58 mg/L. IC₅₀ categorised the blood PrChE of O. mossambicus as very sensitive and suitable to be used as biosensor for Cu pollution monitoring. Those alterations as well as cholinesterase inhibition of fish upon heavy metal exposure can contribute to
potential biomarker for aquatic pollution monitoring. Development of biomarker will work as preliminary screening of toxicants prior to second validation through high technology instruments followed by water rehabilitation.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

KESAN In Vivo LOGAM KUPRUM KE ATAS KETOKSIKAN IKAN DAN KOLINESTERASE DARI Oreochromis mossambicus (W. K. H. PETERS, 1852) (TILAPIA HITAM)

Oleh

AIN AQILAH BINTI BASIRUN

Disember 2017

Pengerusi : Siti Aqlima Binti Ahmad, PhD
Fakulti : Bioteknologi dan Sains Biomolekul

Logam berat seperti kuprum (Cu) pada masa kini telah menjadi bahan toksik yang mencemarkan alam sekitar terutama sistem akuatik. Kajian terkini lebih tertumpu kepada kolinesterase (ChE) untuk perkembangan biopenanda dan biosensor sebagai penyaringan awal untuk mengesan kewujudan bendasing dalam sistem akuatik. Dalam kajian ini, ujian perencatan untuk Cu telah dijalankan dengan menggunakan sample hasil daripada separa penulenan ChE dari Oreochromis mossambicus. Di samping itu, perubahan biokimia, morfologi, dan histopatologi pada Oreochromis mossambicus dikaji untuk dijadikan sebagai biopenanda untuk pencemaran Cu dalam kaedah in vivo. Lima organ yang dipilih ialah otak, darah, insang, hati, dan otot ikan menunjukkan perubahan pada pendedahan separa-akut CuSO₄ selama 96 jam. Beberapa perubahan yang terdapat di dalamnya termasuk karyorrhexis dan karyolisis dalam struktur sel otak, hiperplasia, melano macrophage centre (MMC) dan pembentukan hemosiderin dalam sel hati, perubahan sel darah, pembentukan sel makrofaj secara besar-besaran dalam sistem darah dan kerosakan dalam tisu otot. CuSO₄ juga merencat ChE dalam analisis in vivo. ChE daripada lima organ yang dipilih merencat bermula dari kepekatan 5mg/L CuSO₄, ChE daripada hati menunjukkan turun naik perencatan ChE. Analisis in vitro berlaku di mana ChE daripada Oreochromis mossambicus yang tidak terdedah kepada Cu diasing dan disepara tulenkan melalui kromatografi afinasi menggunakan Procainamide-Sephacryl 6B sebagai ligan. Faktor penulenan ChE dari otak, darah, insang, hati, dan otot ChE masing-masing adalah 5.8, 4.9, 3.6, 7.2 dan 3.5. Pengoptimuman semua ChE telah dikaji dan substrat yang spesifik telah menunjukkan ChE yang diekstrak dari semua organ termasuk otak (ATC 3.0 mM), darah (PTC 3.0 mM), insang (ATC 2.0 mM), hati (BTC 2.0 mM), dan otot (PTC 2.5 mM). Kajian pH dan suhu optimum organ-organ tersebut mencatatkan nilai; otak (pH 9, 20°C), darah (pH 9, 40°C), insang (pH 8, 30°C), hati (pH 9, 30°C) dan (pH 9, 30°C). Dalam kes ini, pengoptimuman ChEs daripada organ Oreochromis mossambicus tidak banyak berbeza di antara setiap organ. Kepekaan separa perencatan (IC₅₀) dikaji untuk menentukan potensi Cu ke arah merencat Oreochromis mossambicus ChEs. IC₅₀ pada otak, darah, insang, hati, dan otot masing-masing adalah 2.65, 0.297, 0.935, 7.66, 10.58 mg/L, IC₅₀ mengkategoriikan darah PrChE of Oreochromis mossambicus sangat sensitif sebagai biosensor untuk pemantauan pencemaran Cu. Perubahan serta perencatan terhadap kolinesteres ikan apabila
didedahkan logam berat menyumbang kepada biopenanda yang berpotensi untuk pemantauan pencemaran akuatik. Perkembangan biopenanda akan berfungsi sebagai pemeriksaan awal toksik sebelum pengesahan kedua melalui instrumen teknologi tinggi dan diikuti dengan pemulihan air.
ACKNOWLEDGEMENTS

Bismillahi Rahmanir Rahim.

First and foremost, I am very grateful to the Almighty Allah for His guidance and mercy for me to finish my Master Degree.

I would like to express my deepest gratitude to my supervisor, Dr. Siti Aqlima Ahmad for her intellectual vigour and generous support and patience in guiding me along this wonderful research journey. I would also like to thank to all my co-supervisors, Assoc. Dr. Mohd Yunus Abd Shukor, Dr. Nur Adeela Yasid, Assoc. Prof. Dr. Hassan Daud and Dr. Mohd Khalizan Sabullah. It has been a greatly enriching experience to work under their authoritative guidance.

My warmest thanks goes to my supporting pills, which are my friends, Shakirah Abdul Wahab Sha’arani, Siti Nadzirah Padrilah, Nur Muhammad Syahir Abdul Habib, Motharasan Manogaran, and all members of Bioremediation Lab especially Abubakar Aisami, Ibrahim Allamin, Umar Abubakar, Hafeez Yakasai, Fadhil Rahman for their support and advices throughout this research journey. Special thanks to academics staff and laboratory assistances at the Department of Biochemistry, Institute Biosience and Faculty of Veterinary Medicine for providing a good environment and facilities.

It is my radiant sentiment to wish million appreciations to my beloved parent, Basirun Razak and Norleha Bakar and my siblings, Amirah Asyikin, Anis Hidayah and Muhamad Adib who never desist to inspire and encourage me with their massive words and blessings.

All in all, each and every hard work applied, none of it was from us without the blessing from Almighty Allah. Alhamdulillah!

I certify that a Thesis Examination Committee has met on 5 December 2017 to conduct the final examination of Ain Aqilah binti Basirun on her thesis entitled "In Vivo Effects of Copper on Fish Toxicity and Cholinesterase of Oreochromis mossambicus (W. K. H. Peters, 1852) (Black Tilapia)" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Helmi bin Wasoh @ Mohamad Isa, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Nor' Aini binti Abdul Rahman, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Mohd Azmuddin Abdullah, PhD
Associate Professor
Universiti Malaysia Terengganu
Malaysia
(External Examiner)

\[Signature\]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 February 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Siti Aqlima Ahmad, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairperson)

Mohd Yunus Shukor, Ph.D
Associate Professor
Faculty Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Nur Adeela Yasid, PhD
Senior Lecturer
Faculty of Biotechnology
Universiti Putra Malaysia
(Member)

Mohd Khalizan Sabullah, PhD
Senior Lecturer
Faculty of Science and Natural Resources
Universiti Malaysia Sabah
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writing, seminar paper, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________ Date: ____________________

Name and Matric No.: Ain Aqilah binti Basirun, GS43678
Declaration by Members of Supervisory committee

This is to certify that:
• the research conducted and the writing of the thesis was under our supervision
• supervision of responsibilities as slated in rule 41 in rules 2003 (revision 2012 – 2013) were adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee: Dr. Siti Aqlima Ahmad

Signature: ____________________________
Name of Member of Supervisory Committee: Associate Professor Mohd Yunus Abd Shukor

Signature: ____________________________
Name of Member of Supervisory Committee: Dr. Nur Adeela Yasid

Signature: ____________________________
Name of Member of Supervisory Committee: Dr. Mohd Khalizan Sabullah
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xiii
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 4
 2.1 Heavy metals. 5
 2.1.1 Heavy metals contamination status in Malaysian aquatic system. 5
 2.2 Copper. 6
 2.3 Toxicity of Cu towards aquatic system. 8
 2.4 Fish as biomarker for Cu and other recalcitrant in aquatic system. 9
 2.4.1 Histopathological study of fish organs upon Cu exposure. 10
 2.4.2 Biochemical alteration of fish upon Cu exposure. 13
 2.5 Cholinesterase 14
 2.5.1 Cholinesterase as biomarker and biosensor. 16
 2.6 Oreochromis mossambicus (black tilapia) as a model of study. 19

3 MATERIALS AND METHODS 21
 3.1 Materials 21
 3.1.1 Chemical 21
 3.1.2 Equipment 21
 3.1.3 Species of freshwater as a subject. 21
 3.2 Method 22
 3.2.1 Fish acclimatisation and stabilisation. 22
 3.2.2 Acute toxicity exposure of copper sulphate. 23
 3.2.3 Histology study of O. mossambicus exposed by Cu. 23
 3.2.3.1 Histology study by light inverted microscope. 23
 3.2.3.2 Histology study by transmission electron microscope. 24
 3.2.3.3 Histology study by scanning electron microscope. 24
 3.2.4 Cholinesterase extraction from O. mossambicus. 24
 3.2.5 Enzyme activity determination. 25
 3.2.6 Protein content determination. 26
 3.2.7 Purification of O. mossambicus ChE by affinity chromatography. 26
3.2.7 Preparation of procainamide sephacryl-6B resin.

3.2.7.1 Preparation of procainamide sephacryl-6B resin.

3.2.7.2 ChE purification using Procainamide-Sephacryl 6B as resin.

3.2.8 SDS-PAGE.

3.2.9 ChE optimisation study.

3.2.9.1 Substrate specificity.

3.2.9.2 pH profile.

3.2.9.3 Temperature profile.

3.2.10 Half maximal inhibitory concentration (IC\textsubscript{50}) study of Cu on \textit{O. mossambicus}.

3.2.11 Statistical analysis

4 RESULTS AND DISCUSSIONS

4.1 Behavioural and physiological changes of \textit{O. mossambicus} upon Cu exposure.

4.1.1 Behavioural and physiological study.

4.1.2 Fish survival and LC\textsubscript{50} study upon exposure of CuSO\textsubscript{4}.

4.2 Histological changes of \textit{O. mossambicus} upon Cu exposure.

4.2.1 Organ sectional image observation under LM.

4.2.1.1 Brain.

4.2.1.2 Gills.

4.2.1.3 Liver.

4.2.1.4 Muscle.

4.2.2 Organ sectional image observation under SEM.

4.2.2.1 Brain.

4.2.2.2 Blood.

4.2.2.3 Gills.

4.2.2.4 Liver.

4.2.2.5 Muscle.

4.2.3 Organ sectional image observation under TEM.

4.2.3.1 Brain.

4.2.3.2 Blood.

4.2.3.3 Gills.

4.2.3.4 Liver.

4.2.3.5 Muscle.

4.3 Enzyme activity determination.

4.3.1 \textit{In vivo} inhibition study.

4.3.1.1 Brain.

4.3.1.2 Blood.

4.3.1.3 Gills.

4.3.1.4 Liver.

4.3.1.5 Muscle.

4.3.2 \textit{In vitro} analysis

4.3.2.1 Purification of ChE from untreated \textit{O. mossambicus} through affinity chromatography by using Procainamide- Sephacryl 6B as resin

4.3.2.1.1 Brain.

4.3.2.1.2 Blood.

4.3.2.1.3 Gills.

4.3.2.1.4 Liver.
4.3.2.1.5 Muscle. 85
4.3.2.2 ChE optimisation study. 88
4.3.2.2.1 Substrate specificity study 88
4.3.2.2.2 pH profile. 96
4.3.2.2.3 Temperature. 101
4.3.2.2.4 Half maximal inhibitory concentration (IC₅₀) study of Cu on O. mossambicus 106

4.4 Overall summary 112

5 CONCLUSION 116
REFERENCES 117
APPENDICES 133
BIODATA OF STUDENT 139
LIST OF PUBLICATION 140
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Guideline of water usage</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Estimated categorizes of metals ion toxicity in a descending order</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Bioaccumulation of heavy metal in several aquatic organism species caught at Juru River, Penang Malaysia</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Effects on heavy metals exposure on gill, liver, and kidney from various fish species</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>List of ChE from various sources as biomarker candidate for Ecotoxicology monitoring</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Taxonomy of Oreochromis mossambicus</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Solution mixtures for stacking and resolving gels of SDS-PAGE</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Behavioural changes and morphological deformities of O. mossambicus upon exposure of different concentration of CuSO<sub>4</sub></td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison between extraction and purification method of O. mossambicus ChE brain.</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison between extraction and purification method of O. mossambicus ChE blood.</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison between extraction and purification method of O. mossambicus ChE gills.</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison between extraction and purification method of O. mossambicus ChE liver.</td>
<td>83</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison between extraction and purification method of O. mossambicus ChE muscle.</td>
<td>86</td>
</tr>
<tr>
<td>4.7</td>
<td>Maximal velocity, V_{max} and Michaelis-Menten constant, K_m values of three synthetic substrates on partially purified ChE from brain extract of O. mossambicus to study its substrate specificity properties.</td>
<td>90</td>
</tr>
<tr>
<td>4.8</td>
<td>Maximal velocity, V_{max} and Michaelis-Menten constant, K_m values of three synthetic substrates on partially purified ChE from blood extract of O. mossambicus to study its substrate specificity properties.</td>
<td>91</td>
</tr>
<tr>
<td>4.9</td>
<td>Maximal velocity, V_{max} and Michaelis-Menten constant, K_m values of three synthetic substrates on partially purified ChE from gills extract of O. mossambicus to study its substrate specificity properties.</td>
<td>93</td>
</tr>
<tr>
<td>4.10</td>
<td>Maximal velocity, V_{max} and Michaelis-Menten constant, K_m values of three synthetic substrates on partially purified ChE</td>
<td>94</td>
</tr>
</tbody>
</table>
from liver extract of *O. mossambicus* to study its substrate specificity properties.

4.11 Maximal velocity, V_{max} and Michaelis-Menten constant, K_m values of three synthetic substrates on partially purified ChE from muscle extract of *O. mossambicus* to study its substrate specificity properties.

4.12 Summary of behavioural and physiological changes of *O. mossambicus* affected by CuSO$_4$.

4.13 Summary of histopathological alterations and ChE of *O. mossambicus* brain exposed by CuSO$_4$.

4.14 Summary of histopathological alterations and ChE of *O. mossambicus* blood exposed by CuSO$_4$.

4.15 Summary of histopathological alterations and ChE of *O. mossambicus* gills exposed by CuSO$_4$.

4.16 Summary of histopathological and ChE alterations of *O. mossambicus* liver exposed by CuSO$_4$.

4.17 Summary of histopathological and ChE alterations of *O. mossambicus* muscle exposed by CuSO$_4$.

4.18 Summary of *in vitro* study of ChE extracted from *O. mossambicus*.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The entrance of Cu via ingestion or from secretory fluid transported into the liver, followed by excretion via urinary or faeces.</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>The ultrastructure of hepatocyte of Puntius javanicus.</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>The schematic illustration of AChE active site</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Cholinergic synapse</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic diagram of biomarker implementation.</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>O. mossambicus as a model of the study.</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>The effect of CuSO(_4) concentration on the survival percentage (%) of O. mossambicus after 96-hour of sub-acute toxicity.</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>The representative section images of O. mossambicus brain control and exposed to CuSO(_4) at different concentrations under H&E staining.</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>The representative section images of O. mossambicus gills control and exposed to CuSO(_4) at different concentrations under H&E staining.</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>The representative section images of O. mossambicus liver control and exposed by CuSO(_4) with different concentration under H&E staining.</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>The representative section images of O. mossambicus muscle control and exposed by CuSO(_4) with different concentration under H&E staining.</td>
<td>41</td>
</tr>
<tr>
<td>4.6</td>
<td>The representative section images of the surface of O. mossambicus mid brain (mesencephalon) control and exposed by CuSO(_4) with different concentration under visualisation SEM.</td>
<td>43</td>
</tr>
<tr>
<td>4.7</td>
<td>The representative section images of the normal O. mossambicus blood and exposed by CuSO(_4) with different concentration under visualisation SEM.</td>
<td>45</td>
</tr>
<tr>
<td>4.8</td>
<td>The representative section images of O. mossambicus gills control and exposed to CuSO(_4) at different concentrations under visualisation SEM.</td>
<td>47</td>
</tr>
<tr>
<td>4.9</td>
<td>The representative section images of O. mossambicus liver control and exposed by CuSO(_4) with different concentration under visualisation SEM.</td>
<td>49</td>
</tr>
<tr>
<td>4.10</td>
<td>The representative section images of O. mossambicus muscle control and exposed by CuSO(_4) with different concentration under visualisation SEM.</td>
<td>51</td>
</tr>
</tbody>
</table>
4.11 Ultrastructure of *O. mossambicus* brain control and exposed by CuSO_4 with different concentration under TEM visualisation.

4.12 Ultrastructure of normal *O. mossambicus* blood cell and exposed by CuSO_4 with different concentration under TEM visualisation.

4.13 Ultrastructure of *O. mossambicus* gill tissue control and exposed to CuSO_4 at different concentrations under TEM visualisation.

4.14 Ultrastructure of *O. mossambicus* liver tissue control and exposed by CuSO_4 with different concentration under TEM visualisation.

4.15 Ultrastructure of *O. mossambicus* muscle tissue control and exposed by CuSO_4 with different concentration under TEM visualisation.

4.16 Enzyme activity of untreated (control) brain of *O. mossambicus* hydrolysed three substrates, ATC, BTC, and PTC.

4.17 ChE inhibition study of brain of *O. mossambicus* treated by CuSO_4 with concentration of 2.5, 5.0, 10.0 and 20.0 mg/L.

4.18 Enzyme activity of untreated (control) blood of *O. mossambicus* hydrolysed three substrates, ATC, BTC, and PTC.

4.19 ChE inhibition study of blood of *O. mossambicus* treated by CuSO_4 with concentration of 2.5, 5.0, 10.0 and 20.0 mg/L.

4.20 Enzyme activity of untreated (control) gills of *O. mossambicus* hydrolysed three substrates, ATC, BTC, and PTC.

4.21 ChE inhibition study of gills of *O. mossambicus* treated by CuSO_4 with concentration of 2.5, 5.0, 10.0 and 20.0 mg/L.

4.22 Enzyme activity of untreated (control) liver of *O. mossambicus* hydrolysed three substrates, ATC, BTC, and PTC.

4.23 ChE inhibition study of liver of *O. mossambicus* treated by CuSO_4 with concentration of 2.5, 5.0, 10.0 and 20.0 mg/L.

4.24 Enzyme activity of untreated (control) muscle of *O. mossambicus* hydrolysed three substrates, ATC, BTC, and PTC.

4.25 ChE inhibition study of muscle of *O. mossambicus* treated by CuSO_4 with concentration of 2.5, 5.0, 10.0 and 20.0 mg/L.

4.26 Profile of purified ChE from brain extract of *O. mossambicus* on Procainamide–Sephacryl 6B affinity column.

4.27 SDS-PAGE of partially purified ChE from the brain of *O. mossambicus* in a 12% polyacrylamide gel.

4.28 Purified ChE from *O. mossambicus* brain was detected based on broad protein range standard curve at 41.36 kDa.
4.29 Profile of purified ChE from blood extract of *O. mossambicus* on Procainamide–Sephacryl 6B affinity column.

4.30 SDS-PAGE of partially purified ChE from the blood of *O. mossambicus* in a 12% polyacrylamide gel.

4.31 Partially purified ChE from *O. mossambicus* blood were detected based on broad protein range standard curve at 147.44 kDa, 114.14 kDa, and 62.46 kDa.

4.32 Profile of purified ChE from gills extract of *O. mossambicus* on Procainamide–Sephacryl 6B affinity column.

4.33 SDS-PAGE of partially purified ChE from the gills of *O. mossambicus* in a 12% polyacrylamide gel.

4.34 Partially purified ChE from *O. mossambicus* gills were detected based on broad protein range standard curve at 79.55 kDa and 62.46 kDa.

4.35 Profile of purified ChE from liver extract of *O. mossambicus* on Procainamide–Sephacryl 6B affinity column.

4.36 SDS-PAGE of partially purified ChE from the liver of *O. mossambicus* in a 12% polyacrylamide gel.

4.37 Partially purified ChE from *O. mossambicus* liver were detected based on broad protein range standard curve at 140.59 kDa and 93.57 kDa.

4.38 Profile of purified ChE from muscle extract of *O. mossambicus* on Procainamide–Sephacryl 6B affinity column.

4.39 SDS-PAGE of partially purified ChE from the muscle of *O. mossambicus* in a 12% polyacrylamide gel.

4.40 Partially purified ChE from *O. mossambicus* muscle were detected based on broad protein range standard curve at 34.11 kDa, 22.87 kDa and 13.45 kDa.

4.41 Michaelis-Menten plot of *O. mossambicus* ChE brain incubated with different synthetic substrates.

4.42 Michaelis-Menten plot of *O. mossambicus* ChE blood incubated with different synthetic substrates.

4.43 Michaelis-Menten plot of *O. mossambicus* ChE gills incubated with different synthetic substrates.

4.44 Michaelis-Menten plot of *O. mossambicus* ChE liver incubated with different synthetic substrates.

4.45 Michaelis-Menten plot of *O. mossambicus* ChE muscle incubated with different synthetic substrates.

4.46 Optimisation studies of pH for the ChE from *O. mossambicus* brain using three different buffers.
4.47 Optimisation studies of pH for the ChE from *O. mossambicus* blood using three different buffers.

4.48 Optimisation studies of pH for the ChE from *O. mossambicus* gills using three different buffers.

4.49 Optimisation studies of pH for the ChE from *O. mossambicus* liver using three different buffers.

4.50 Optimisation studies of pH for the ChE from *O. mossambicus* muscle using three different buffers.

4.51 Optimisation of temperature for ChE from *O. mossambicus* brain.

4.52 Optimisation of temperature for ChE from *O. mossambicus* blood.

4.53 Optimisation of temperature for ChE from *O. mossambicus* gills.

4.54 Optimization of temperature for ChE from *O. mossambicus* liver.

4.55 Optimization of temperature for ChE from *O. mossambicus* muscle.

4.56 Percentage inhibition of brain ChE by Cu with series of concentrations (1 to 10 mg/L).

4.57 Percentage inhibition of blood ChE by Cu with series of concentrations (1 to 10 mg/L).

4.58 Percentage inhibition of gill ChE by Cu with series of concentrations (1 to 10 mg/L).

4.59 Percentage inhibition of liver ChE by Cu with series of concentrations (1 to 10 mg/L).

4.60 Percentage inhibition of muscle ChE by Cu with series of concentrations (1 to 10 mg/L).
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>μL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>Abs</td>
<td>Absorbance</td>
</tr>
<tr>
<td>Ach</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>AChE</td>
<td>Acetylcholinesterase</td>
</tr>
<tr>
<td>Ag</td>
<td>Silver</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>ALAT</td>
<td>Alanine transferase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>APS</td>
<td>Aluminum persulphate</td>
</tr>
<tr>
<td>ARD</td>
<td>Acid rock drainage</td>
</tr>
<tr>
<td>As</td>
<td>Arsenic</td>
</tr>
<tr>
<td>ASAT</td>
<td>Aspirate amino transferase</td>
</tr>
<tr>
<td>ASP</td>
<td>Aspartate</td>
</tr>
<tr>
<td>ATC</td>
<td>Acetythiocholine iodide</td>
</tr>
<tr>
<td>ATPase</td>
<td>Adenosine Tryphosphatase</td>
</tr>
<tr>
<td>Au</td>
<td>Gold</td>
</tr>
<tr>
<td>Ba</td>
<td>Barium</td>
</tr>
<tr>
<td>BCh</td>
<td>Butyrylcholine</td>
</tr>
<tr>
<td>BChE</td>
<td>Butyrylcholinesterase</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BTC</td>
<td>Butyrythiocholine iodide</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>ChE</td>
<td>Cholinesterase</td>
</tr>
<tr>
<td>Cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>Co</td>
<td>Cobalt</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>Copper ion</td>
</tr>
<tr>
<td>CuO</td>
<td>Copper oxide</td>
</tr>
<tr>
<td>CuO₂</td>
<td>Copper dioxide</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>Copper sulphate</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>dH₂O</td>
<td>Distilled water</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>DTNB</td>
<td>5,5-dithio-bis-2-nitrobenzoate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive X-ray</td>
</tr>
<tr>
<td>et al</td>
<td>and friends</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organisation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GL</td>
<td>Granular layer</td>
</tr>
<tr>
<td>Glu</td>
<td>Glutamine</td>
</tr>
<tr>
<td>GST</td>
<td>Gluthathione S-transferase</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and Eosin</td>
</tr>
<tr>
<td>Hg</td>
<td>Mercury</td>
</tr>
<tr>
<td>HgCl₂</td>
<td>Mercury chloride</td>
</tr>
<tr>
<td>His</td>
<td>Histidine</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>Half maximal inhibitory concentration</td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>kb</td>
<td>Kilo base</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>LC₅₀</td>
<td>Half maximal lethal concentration</td>
</tr>
<tr>
<td>Li</td>
<td>Lithium</td>
</tr>
<tr>
<td>LM</td>
<td>Light inverted microscope</td>
</tr>
<tr>
<td>LOEC</td>
<td>Low observed effects of concentration</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MB</td>
<td>Muscle bundle</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Mililitre</td>
</tr>
<tr>
<td>MMC</td>
<td>Melano-macrophage centre</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>MT</td>
<td>Metallothionine</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OP</td>
<td>Organophosphate</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>PL</td>
<td>Primary lamella</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheral nervous system</td>
</tr>
<tr>
<td>PrCh</td>
<td>Propionylcholine</td>
</tr>
<tr>
<td>PrChE</td>
<td>Propionylcholinesterase</td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>PTC</td>
<td>Propionylthiocholine iodide</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>Rₚ</td>
<td>Retention factor</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribosomal nucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RPM</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>Ser</td>
<td>Serine</td>
</tr>
<tr>
<td>SH-</td>
<td>Sulfhydryl</td>
</tr>
<tr>
<td>SL</td>
<td>Secondary lamella</td>
</tr>
<tr>
<td>Sn</td>
<td>Selenium</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>Sr</td>
<td>Srontium</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscope</td>
</tr>
<tr>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>U</td>
<td>Enzyme unit</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>Vmax</td>
<td>Maximum velocity</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

The vital environmental pollutants are those that can accumulate and are persistent due to the chemical stability and poor biodegradability (Yousafzai et al., 2017). Heavy metals effluences have become a great concern due to their multifunction, toxicity and resistance to degradation as well as their potential of bioaccumulation (Naji et al., 2014). The transformation of heavy metals into persistent metallic composites can cause bioaccumulation in an organism’s body, disrupt the biological food chain and eventually give several adverse effects to the ultimate consumer, which is humankind that utilises aquatic sources to live (El-Moselhy et al., 2014; Zhou et al., 2008).

Previous studies reporting several freshwater systems in Malaysia including Klang River, Langat basin, and also Mamut River in East Malaysia, Sabah, have raised a concern on their level of contamination by heavy metals such as copper, cadmium, zinc and lead (Abalaka, 2015; Ali et al., 2014; Naji et al., 2014).

The occurrence of heavy metals spillage is due to misappropriate and inconsiderate disposal of metal-rich wastes from human activities such as rapid industrial development and urbanisation, abandoned mining site and mining activities as well as agricultural and deforestation (Ibemenuga, 2016). Heavy metals accumulation in aquatic systems can affect the sustainability and productivity of aquatic organisms (Javed and Usmani, 2016; Sabullah et al., 2015a). In general, the accumulation of heavy metals in organism’s tissues can enhance the production of reactive oxygen species (ROS) and eventually cause the biochemical, molecular and morphological alterations (ElGazzar et al., 2014). Heavy metals such as copper (Cu), zinc (Zn) and cadmium (Cd) are the vast metal ions those were excessively accumulate in water.

Copper is among the heavy metals that can be naturally found in several forms like copper ion (Cu²⁺) and copper sulphate pentahydrate (CuSO₄·5H₂O) or known as “bluestone” (Yanong, 2009). Copper plays crucial role in several integral parts of enzymes regarding respiration, collagen synthesis and to reduce free radicals (Acosta et al., 2016). Organisms require small amount of Cu to regulate body metabolism. According to Mashifane and Moyo (2014), several Cu compounds were effectively utilised in water treatment as they preserve the discolouration of water and monitor or eliminate algae development and fish parasites in freshwater and marine systems.

However, massive usage of Cu can lead to Cu pollution that would give several negative influences to the aquatic living systems. One of the causes of Cu exposure into stream systems is the abandoned copper mining site. For instance, extreme accumulation of Cu in Malaysia has become alarming especially in Mamut River near Ranau, Sabah. Copper pollution has occurred in the headwater of Mamut River due to an open pit Cu mine operated since 1975 and ceased its operation in 1999. Beyond this time range, this mine became a source of heavy metals accompanied by the increase in number of environmental problems beyond Ranau areas. The main source of heavy
metals was originated from the runoff of mine site, in addition to the floatation process used in preparing Cu concentrates (Ali et al., 2014).

Copper is tremendously toxic to aquatic life (Ezeonyejiaku et al., 2011). Cu exposure can generally disrupt the neural processes, protein function and chemosensory abilities (Dew et al., 2012). Consequences of Cu poisoning include several organ defects to organisms. As such, Cu can encourage larval mortality that will endanger the productivity of aquatic living systems, movement limitation of organisms in their habitat and cells degeneration (Gandhewar et al., 2012; Sabullah et al., 2015a). Meanwhile, exposure and accumulation of Cu toward aquatic organisms especially fish would give substantial effects. Physiological and histopathological alterations of fish upon exposure would aid in clarifying the health status of the fish as the food sources to humans. Aquatic environment makes up the major part of the human resources and is said to be interrelated to human (Ballesteros et al., 2017). Hence, fish has become a sentinel species to be included as a tool of biomonitoring for preliminary assessment of the toxicant in the aquatic systems. It is a potential biomarker for monitoring the heavy metals including Cu in aquatic living system. Fish can be a good biomarker by referring several parts such as liver, gill, muscle and brain that change due to exposure. Gills are the primary organ exposed to toxicant exposure (Sabullah et al., 2014a). Fish biomarkers are necessary to track environmentally induced alterations in accessing the effects of xenobiotics especially Cu on fish (Authman, 2015).

Biomarkers are deliberated to be one of the most capable tools for ecotoxicological applications as they could offer an early recognition of noxious waste exposure and a primary indication of possible effects at advanced levels of biological organisation such as population and ecosystem effects (Quintaneiro et al., 2015). Biomarkers have been considered as the reliable tool to screen alterations in biological responses toward environmental threat ranging from molecular through cellular and physiological response to behavioural changes, which are correlated to the exposure of xenobiotic and highly toxic compounds (Kaviraj et al., 2014; Sabullah et al., 2015a). Apart from the morphology of organism, biochemical alterations can also present as pollution biomarker. Cholinesterase (ChE), a ubiquitous enzyme was selected as the best biomarker for heavy metal detection as the response of inhibition towards vast range of inhibitors was closely accompanied by a rise in mortality and survival of aquatic organism, which was impaired due to inhibition (Nunes, 2011).

In this study, O. mossambicus was chosen as a test subject as the previous study mentioned about the capability of this species as an alternative biomarker for detecting of selective heavy metals known as Cu using the behavioural and histological alterations as well as inhibitive assay of ChE activity (Sabullah et al., 2015a). Therefore, this study can be perhaps referred to as another basis for future application of this species, whether in aquaculture management and production or in environmental monitoring.

In response to that, the sublethal concentration of copper sulphate (CuSO₄) acute exposure in various concentrations and the behavioural response and physiological changes of the exposed Oreochromis mossambicus was done in this study as the most
sensitive indication of potential toxic effects. The use of local Oreochromis sp. is expected to increase the potential of this fish to become a sentinel species that permits the recognition of lower contamination level of heavy metals especially Cu. Therefore, the objectives of this study are:

1. To determine the physical, behavioural, and morphological changes of O. mossambicus inhibited by Cu using in vivo method.
2. To purify and characterise ChE activity from different organs of untreated O. mossambicus.
3. To examine half maximal inhibitory concentration (IC$_{50}$) of Cu that would give inhibit ChE extracted from different organs of untreated O. mossambicus through in vitro analysis.
REFERENCES

(Oncorhynchus mykiss) at low pH: physiology and metal accumulation. *Aquatic Toxicology, 174*, 188–198.

David, M., & Kartheek, R. M. (2016). In vivo studies on hepato-renal impairments in freshwater fish *Cyprinus carpio* following exposure to sublethal

using *Lates calcarifer* (Asian Seabass) brain for detection of heavy metals. *Journal of Chemical and Pharmaceutical Sciences, 8*(2), 376–381.

olivaceus and turbot Scophthalmus maximus. Fish & Shellfish Immunology, 58, 125–135.

