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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Master of Science 

 
 

DIRECT BLOCK BACKWARD DIFFERENTIATION FORMULAS FOR 

SOLVING SECOND ORDER STIFF BOUNDARY VALUE PROBLEM 

 
 

By 
 
 

CHEW SOON YUEN 

June 2016 

Chairman: Associate Professor Zarina Bibi Ibrahim, PhD 

Faculty: Science 

In this thesis, the direct method of Block Backward Differentiation Formula 
(BBDF) for solving two point boundary value problems (BVPs) directly was 
studied. The shooting technique will be implemented using constant step size. 
In order to overcome the numerical instabilities due to round off or truncation 
errors that occur in solving BVPs, the BBDF method will be adapted with 
multiple shooting techniques. Newton-Raphson method is also considered as a 
procedure for solving the second order BVPs. 
 
 
Existing strategy for solving BVPs, is by reducing them to a system of first 
order ordinary differential equations (ODEs). This approach is well established 
but obviously it will enlarge the problem into a system of first order equations. 
However, the BBDF method in this thesis solves BVPs directly without reducing 
them to their first order differential equations. Besides that, the BBDF method 
can produce two approximate solutions at two points in each step. Furthermore, 
the BBDF method allows the differentiation coefficients to be stored and thus 
reduces the computational cost. 
 
 
Another main focus in this thesis is to solve stiff BVPs, where more 
computational efforts are required to evaluate the Jacobian and solving the 
linear systems. Furthermore, stiff BVPs are difficult to solve due to the 
restriction on the step size of many numerical methods, except those with A-
stability properties. Therefore, the BBDF method in this thesis will be used to 
solve stiff BVPs directly. 
 
 
The source codes are written in C language and executed using MATLAB. 
Some numerical examples are given to illustrate the efficiency of the method. 
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Numerical results showed that the BBDF method manages to give acceptable 
results in terms of maximum error, number of iterations and execution time.  
 
 
In conclusion, the proposed BBDF method in this thesis is suitable for solving 
directly the second order BVPs. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

 
 

BLOK FORMULASI BEZA KE BELAKANG LANGSUNG UNTUK 

MENYELESAIKAN MASALAH NILAI SEMPADAN KAKU PERINGKAT 

KEDUA 

 
Oleh 

 
 

CHEW SOON YUEN 

Jun 2016 

Pengerusi: Profesor Madya Zarina Bibi Ibrahim, PhD 

Fakulti: Sains 

Di dalam tesis ini, kaedah Blok Formulasi Beza Ke Belakang (BFBB) untuk 
menyelesaikan masalah nilai sempadan dua titik (MNS) secara langsung telah 
dikaji. Teknik penembakan akan dilaksanakan dengan menggunakan saiz 
langkah malar. Dalam usaha untuk mengatasi ketidakstabilan berangka 
disebabkan oleh ralat pembundaran atau ralat pangkasan yang berlaku dalam 
menyelesaikan MNS, kaedah BFBB akan disesuaikan dengan teknik 
penembakan berganda. Kaedah Newton Raphson juga telah dipertimbangkan 
sebagai suatu prosedur untuk menyelesaikan MNS peringkat kedua. 
 
 
Strategi yang sedia ada untuk menyelesaikan MNS, adalah dengan 
menurunkan masalah kepada sistem persamaan pembezaan biasa (PPB) 
peringkat pertama. Cara ini adalah mantap tetapi jelasnya ia akan 
membesarkan masalah kepada sistem persamaan peringkat pertama. Walau 
bagaimanapun, kaedah BFBB di dalam tesis ini menyelesaikan MNS secara 
langsung tanpa menurunkan MNS kepada persamaan pembezaan peringkat 
pertama. Selain itu, kaedah BFBB boleh menghasilkan dua penyelesaian 
hampiran pada dua titik dalam setiap langkah. Tambahan pula, kaedah BFBB 
membolehkan pekali pembezaan disimpan dan dengan ini mengurangkan kos 
pengiraan. 
 
 
Fokus utama lain dalam tesis ini adalah untuk menyelesaikan MNS kaku, di 
mana lebih banyak usaha pengiraan dikehendaki untuk menilai Jakobian dan 
menyelesaikan sistem linear. Tambahan pula, MNS kaku sukar untuk 
diselesaikan kerana sekatan ke atas saiz langkah untuk kebanyakan kaedah 
berangka, kecuali kaedah yang mempunyai ciri-ciri kestabilan-A. Oleh itu, 
kaedah BFBB di dalam tesis ini akan digunakan untuk menyelesaikan MNS 
kaku secara langsung.  
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Kod sumber ditulis dalam bahasa C dan dilaksanakan dengan menggunakan 
MATLAB. Beberapa contoh berangka diberikan untuk menggambarkan 
kecekapan kaedah. Hasil berangka menunjukkan bahawa kaedah BFBB 
berjaya memberikan hasil yang boleh diterima dari segi ralat maksimum, 
bilangan lelaran dan masa pelaksanaan. 
 
 
Kesimpulannya, kaedah BFBB yang diusulkan di dalam tesis ini adalah sesuai 
bagi menyelesaikan MNS peringkat kedua secara langsung.  
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction 

Boundary value problems (BVPs) arise in many areas of science and 
engineering including the modelling of chemical reactions, vibration problems 
and space technology. Problems in civil engineering such as deflection of a 
beam can be also formulated in terms of BVPs. For example, let us consider a 
simply supported beam with modulus of elasticity , moment of inertia , a 
uniform load , length of the beam  and end tension . If  denotes the 
deflection at each point  in the beam, then  satisfies the differential 
equation 
 

 
 
with boundary condition . See Burden (1993) for details. 
Because of their importance, many algorithms have been proposed to find the 
solution of the BVPs. 
 
 
There exist a large number of numerical methods to compute the solutions of 
BVPs. Among those methods, there are two main approaches for solving BVPs: 
indirect method and direct method. In indirect method, the higher order BVPs 
are reduced to an equivalent system of first order differential equations and 
then solved with numerical method which is computationally expensive. On the 
other hand, the two point direct multistep method in this thesis will be utilized to 
solve BVPs directly without reducing them to first order differential equations. 
Besides that, the two point direct method produce two approximate solutions at 
two points in each integrate step. Furthermore, the simple shooting method and 
multiple shooting techniques will be implemented to this direct method for 
solving BVPs. 

1.2     Objective of the Thesis 

The aim of this thesis is to propose a method for solving second order BVPs. 
The research objectives are: 
 

1. to implement simple shooting technique in two point Block Backward 
Differentiation Formula (BBDF) developed by Ibrahim (2006) for solving 
second order BVPs directly using constant step size. 
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2. to implement multiple shooting technique in two point BBDF for solving 
second order BVPs directly using constant step size. 
 

3. to develop the algorithm of two point BBDF for solving second order 
BVPs directly using constant step size. 
 

4. to discuss and analyse the numerical solutions obtained by BBDF and 
BDF. 

1.3     Scope of Study 

 
 
This research is carried out to study a second order BVPs of the form as 
follows: 
 

                                                          (1.1) 
 
with Dirichlet boundary condition 
 

                                                                     (1.2) 
 
where   are constants. The scopes of this research are: 

 
i. To study the approach for solving second order BVPs using two point 

direct BBDF method with two type of shooting technique,   simple 
shooting technique and multiple shooting techniques. 
 

ii. To present numerical results of BBDF codes using constant step size 
for solving second order BVPs. 

 
 
1.4     Outline of the Thesis 

 
 
This thesis is primarily divided into five chapters. In Chapter I, the objective of 
the thesis and scope of study have been stated. 
 
 
A brief introduction to BVPs is given at the beginning of Chapter II. Existence 
theory and the definition of stiffness were given. This chapter also includes a 
review of earlier research on BVPs. 
 
 
Chapter III presents a review on the derivation of the two point BBDF. 
Algorithm to solve BVPs using BBDF via simple shooting technique adapted 
with Newton Raphson method was developed. The numerical results and 
comparison with existed method were included. 
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Chapter IV explains the adaption of multiple shooting technique and an 
algorithm to solve BVPs directly using BBDF via multiple shooting technique 
adapted with Newton-Raphson method was developed. Numerical results and 
discussion were included. 
 
 
The conclusions and suggestion for the future research on solving BVPs using 
BBDF were provided in Chapter V. 
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