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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Master of Science

TRIGONOMETRICALLY-FITTED EXPLICIT
RUNGE-KUTTA-NYSTRÖM METHODS FOR SOLVING SPECIAL

SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS WITH
PERIODIC SOLUTIONS

By

MUSA AHMED DEMBA

June 2016

Chairman : Associate Professor Norazak Senu, PhD
Faculty : Science

In this study, a trigonometrically-fitted explicit Runge-Kutta-Nystrom (RKN) methods
are proposed for the integration of initial-value problems (IVPs) of special second-
order ordinary differential equations (ODEs) with periodic behavior. The derivation
of fourth and fifth-order trigonometrically-fitted explicit RKN methods using constant
step length and an embedded trigonometrically-fitted explicit 4(3) and 5(4) pairs of
RKN methods for variable step length have been developed.

The numerical results obtained show that the new trigonometrically-fitted explicit RKN
methods developed for constant and variable step length are more accurate and efficient
than several existing methods in the literature.

Meanwhile, a symplectic trigonometrically-fitted explicit RKN methods for solving
Hamiltonian system with periodic solutions were derived. However, it is well known
that the local error of a non-symplectic method is smaller than that of the symplectic
method, the error produce during the integration process is slower for the symplectic
method. Thus, for a large interval of integration of Hamiltonian systems the sym-
plectic method will be more efficient than the non-symplectic method. The numerical
results obtained show that the symplectic methods incorporated with trigonometric fit-
ting technique are more efficient than the non-symplectic methods when solving IVPs
with periodic character.

In conclusion, a trigonometrically-fitted explicit RKN methods were derived for solving
special second-order ODEs with periodic solutions. The local truncation error (LTE)
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of each method derived was computed, the absolute stability interval of the methods
derived were discussed. Numerical experiment performed show the accuracy and effi-
ciency in terms of function evaluation per step of the new methods in comparison with
other existing methods.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

KAEDAH RUNGE-KUTTA-NYSTROM TAK TERSIRAT SUAI SECARA
TRIGONOMETRI UNTUK MENYELESAIKAN PERSAMAAN

PEMBEZAAN BIASA PERINGKAT DUA BERKALA

Oleh

MUSA AHMED DEMBA

Jun 2016

Pengerusi :Prof. Madya Norazak Senu, PhD
Fakulti : Sains

Dalam kajian ini, kaedah Runge-Kutta-Nystrom (RKN) tak tersirat suai secara
trigonometri dicadangkan untuk mengkamir masalah nilai awal (MNA) bagi persamaan
pembezaan biasa (PPB) berperingkat dua dengan kelakuan berkala. Penerbitan kaedah
RKN tak tersirat suai secara trigonometri peringkat empat dan lima untuk saiz langkah
tetap dan kaedah benaman tak tersirat suai secara trigonometri untuk pasangan 4(3) dan
5(4) RKN untuk saiz langkah boleh ubah telah diterbitkan.

Keputusan berangka diperolehi menunjukkan kaedah baharu suai secara trigonometri
RKN yang diterbitkan untuk saiz langkah tetap dan boleh ubah adalah lebih jitu dan
cekap berbanding kaedah sedia ada dalam literatur.

Sementara itu, kaedah RKN simplektik tak tersirat suai secara trigonometri untuk
menyelesaikan sistem Hamiltonian dengan penyelesaian berkala diterbitkan. Walau
bagaimanapun, telah diketahui bahawa ralat setempat bagi kaedah tak simplektik adalah
lebih kecil berbanding kaedah simplektik, ralat dihasilkan semasa proses pengamiran
adalah perlahan bagi kaedah simplektik. Oleh itu, bagi selang kamiran yang besar un-
tuk sistem Hamiltonian kaedah simplektik adalah lebih cekap berbanding kaedah tak
simplektik. Keputusan berangka diperolehi bagi kaedah simplektik bersama dengan
teknik suai secara trigonometri adalah lebih cekap berbanding kaedah tak simplektik
apabila menyelesaikan MNA dengan kelakuan berkala.

Kesimpulannya, kaedah RKN tak tersirat suai secara trigonometri diterbitkan untuk
menyelesaikan PPB peringkat dua dengan penyelesaian berkala. Ralat pangkasan tem-
patan (RPT) bagi setiap kaedah diterbitkan telah dikira, analisa kestabilan mutlak bagi
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kaedah dibincangkan. Perlaksanaan eksperimen berangka menunjukkan kejituan dan
kecekapan bagi kaedah baharu berbanding kaedah sedia ada yang lain.
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CHAPTER 1

INTRODUCTION

1.1 The Initial Value Problem

The initial value problem for a system of k special second order ODEs is defined as:

y′′ = f (x,y), y(x0) = δ (1.1)

where y(x) = [y1(x),y2(x),y3(x), ...,yk(x)]T , f (x,y) =
[ f1(x,y), f2(x,y), f3(x,y), ..., fk(x,y)]T ,x ∈ [a,b] and δ = [δ1,δ2,δ3, ...,δk]

T is
the vector of initial conditions.

1.2 Existence and Uniqueness of Solution

Initial value problems describe a problem together with the behaviour of it’s path taken
at some initial points of the independent variable x. The question is how dependable
are they in guessing the nature of the same path? Some of the characteristic of initial
value problems that answer this question, as given by Butcher (2008), are existence of
solution, uniqueness of the solution if it exists and the sensitivity of the solution to a
small perturbation to the initial information. One of the well known conditions that
guarantees these characteristics is the Lipschitz condition.

Definition 1.1 A function f : R×Rd → Rd is said to satisfy Lipschitz condition in its
second variable if there exist a constant L such that for any x ∈ [a,b] and y1,y2 ∈ Rd ,

‖ f (x,y1)− f (x,y2)‖ ≤ L‖y1− y2‖ , (1.2)

where L is called Lipschitz constant.

Theorem 1.1 :(Existence and Uniqueness)

Let f (x,y(x)) be defined and continuous ∀ points (x,y(x)) in a domain D defined by x∈
[a,b],y ∈ (−∞,∞), a and b are finite, and that f (x,y(x)) satisfies Lipschitz condition.
Then for any given number ζ , ∃ a unique solution y(x) of the IVP (1.1), where ∀
(x,y(x)) ∈ D, y(x) is continuous and differentiable.Butcher (2008).

In this thesis, we assume that f (x,y(x)) of the IVP (1.2) satisfies Lipschitz condition so
that a unique solution is guaranteed.

1



© C
OPYRIG

HT U
PM

1.3 The Objectives of the Thesis

The Objective of this thesis is to construct an improved numerical methods based on
explicit RKN method that can accurately and efficiently integrate second order IVPs
of the form (1.2), in which it is known that its solutions are periodic in nature. The
new methods are tested for both constant and variable step length. To achieve this, we
propose the following methods:

• To derive explicit trigonometrically-fitted RKN (ETFRKN) methods for the so-
lution of the IVPs (1.2).

• To derive symplectic explicit trigonometrically-fitted RKN (SETFRKN) methods
for the solution of the IVPs (1.2).

• To derive embedded explicit trigonometrically-fitted RKN (EETFRKN) methods
for the solution of the IVPs (1.2) in variable step size code.

• To compare the numerical results of the derived methods with other existing
methods in the scientific literature.

1.4 Organization of the Thesis

In Chapter 1 of this thesis, introductory background on the development of numerical
solution of ODEs is discussed. Initial value problems and theory of the existence of
their solution is presented. Runge-Kutta-Nyström method is briefly discussed and its
algebraic order conditions. Local truncation error as well as absolute stability analysis
of RKN method is presented. Derivation of a trigonometrically-fitted explicit Runge-
Kutta-Nyström method for solving periodic special second order ordinary differential
equations is presented. In Chapter 2, literature review is given. In Chapter 3, we
derive a three-stage fourth order, a four-stage fourth order and a four-stage fifth order
trigonometrically-fitted explicit Runge-Kutta-Nyström methods. Algebraic order and
local truncation error of each of these methods derived has been analyzed as well as the
absolute stability interval of each of the method. Numerical results are presented and
comparison of their performance is made with the RK and RKN methods given in the
literature such as Butcher (2008), Garcia (2002), Hairer (1993) and Senu et al. (2009)
for solving periodic second order ODEs.

In Chapter 4, we derive a three-stage third order symplectic trigonometrically-fitted ex-
plicit Runge-Kutta-Nyström method and a four-stage fourth order symplectic explicit
trigonometrically-fitted Runge-Kutta-Nyström method. Algebraic order and local trun-
cation error of each of the method derived has been analyzed as well as the absolute
stability analysis of each of the method. numerical results are presented and the efficacy
of the new methods in comparison with other existing symplectic and non-symplectic
methods has been seen.

In Chapter 5, we derive a four-stage embedded trigonometrically-fitted explicit Runge-
Kutta-Nyström methods. A four-stage 4(3) and a four-stage 5(4) pairs of an embedded
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trigonometrically-fitted explicit Runge-Kutta-Nyström method are constructed. Alge-
braic order and local truncation error of each of the method derived has been analyzed
as well as the absolute stability interval of each of the method. Numerical experiment
was performed and the efficiency of the new method over some well known method has
been seen. Finally, in Chapter 6 we give the summary of the whole thesis, conclusion
and future work.

1.5 Runge-Kutta-Nyström (RKN) Method

A Runge-Kutta-Nyström method is a Runge-Kutta method designed specifically for
solving special second order ODEs of the form (1.2) by E.J.Nyström in 1925.

RKN methods are generally divided in to two type

• explicit methods

• implicit methods

A Runge–Kutta–Nyström method is said to be explicit if ai j = 0 for i≤ j and implicit
elsewhere. In this study, our focus is on the explicit RKN type.

The general form of an explicit s-stage RKN method is given by:

yn+1 = yn +hy′n +h2
s

∑
i=1

bi f (xn + cih,Yi), (1.3)

y′n+1 = y′n +h
s

∑
i=1

di f (xn + cih,Yi), (1.4)

Yi = yn + cihy′n +h2
i−1

∑
j=1

ai j f (xn + cih,Y j), . (1.5)

or

yn+1 = yn +hy′n +h2
s

∑
i=1

biki, (1.6)

y′n+1 = y′n +h
s

∑
i=1

diki, (1.7)

ki = f (xn + cih,yn + ciy′n +h2
i−1

∑
j=1

ai jk j), . (1.8)

or in Butcher Tableau as :

where A is a matrix [ai j]s×s, c = [c1,c2, ...,cs]
T , b = [b1,b2, ...,bs]

T and d =

[d1,d2, ...,ds]
T . The parameters ai j,ci,bi,and di appearing in the method are assumed
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c A

bT

dT

to be real numbers.

1.6 Algebraic Conditions for RKN Method

The order conditions for the RKN method can be obtained by expanding the local
truncation error (LTE) directly. The RKN method (1.6)−(1.8) can be expressed as:

yn+1 = yn +hΨ(xn,yn,h), (1.9)

y′n+1 = y′n +hΨ
′(xn,yn,h), (1.10)

where the functions Ψ(xn,yn,h) and Ψ′(xn,yn,h) are define as:

Ψ(xn,yn,h) = y′n +h
s

∑
i=1

biki, (1.11)

Ψ
′(xn,yn,h) =

s

∑
i=1

diki. (1.12)

where

ki = f (xn + cih,yn + ciy′n +h2
i−1

∑
j=1

ai jk j)

If Ω represent the Taylor series increment function, the LTE of the actual solution and
that of its derivative can be obtained by substituting the actual solution y(x) of the
equation (1.1) into the RKN increment function as given below:

LT En+1 = h[Ψ−Ω], LT E ′n+1 = [Ψ′−Ω
′]

where

Ω = y′n +
1
2

hyn′′+
1
6

h2y′′′n +
1

24
h3y(iv)n +

1
120

h4y(v)n + ...+
1
p!

hp−1y(p)
n ,

Ω
′ = yn′′+

1
2

hy′′′n +
1
6

h2y(iv)n +
1

24
h3y(v)n +

1
120

h4y(vi)
n + ...+

1
(p−1)!

hp−2y(p)
n

4
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Expressing the above equations in terms of elementary differentials. We first define
some elementary differentials from the total derivative of the function defined in (1.2)
as follows: The total derivative of f (x,y) = F(2)

1 is given by

dF
dx

=
∂

∂x
f +

∂

∂y
f

dy
dx

=
d
dx

(y′′)

= y′′′

= Fx

= F1
(3) (1.13)

Differentiating equation (1.13) with respect to x we have:

d
dx

Fx =
d
dx

fx +
d
x

fyy′

= fxx +2 fxyy′+ fyy(y′)2 + f fy

=
d
dx

(y′′′)

= y(iv)

= Fxx

= F1
(4) (1.14)

Similarly, differentiating equation (1.14) with respect to x we have:

d
dx

Fxx =
d
dx

fxx +2
d
dx

( fxyy′)+
d
dx

( fyy(y′)2)+
d
dx

( f fy)

= fxxx + fxxyy′+2 fxyxy′+2 fxyy(y′)2 +2 fxy f + fyyx(y′)2

+ fyyy(y′)3 +2y′ fyy f + f fyx + f fyyy′+ fy fx +( fy)2y′

=
d
dx

(y(iv))

= y(v)

= Fxxx

= F1
(5) (1.15)

Following similar pattern, we can derive all the elementary differentials. Expressing Ω
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and Ω′ in terms of elementary differentials, we have:

Ω = y′n +
1
2

hF(2)
1 +

1
6

h2F(3)
1 +

1
24

h3F(4)
1 +

1
120

h4(F(5)
1 +F(5)

2 )+O(h5),

Ω
′ = F(2)

1 +
1
2

hF(3)
1 +

1
6

h2F(4)
1 +

1
24

h3(F(5)
1 +F(5)

2 )+O(h4).

Using the above elementary differentials, the increment function Ψ and Ψ′ can be ex-
press as:

s

∑
i=1

biki =
s

∑
i=1

biF1
(2)+h

s

∑
i=1

biciF1
(3)

+
1
2

h2(
s

∑
i=1

bic2
i F1

(4))+O(h3), (1.16)

s

∑
i=1

diki =
s

∑
i=1

diF1
(2)+h

s

∑
i=1

diciF1
(3)

+
1
2

h2(
s

∑
i=1

dic2
i F1

(4))+O(h3). (1.17)

The LT E of y and that of its derivatives can therefore be express as:

LT En+1 = h2
[( s

∑
i=1

biF1
(2)+h

s

∑
i=1

biciF1
(3)+

1
2

h2
s

∑
i=1

bic2
i F1

(4)+ ...
)

−
(1

2
F1

(2)+
1
6

F1
(3)+

1
24

F1
(4)+ ...

)]
, (1.18)

LT E ′n+1 = h
[( s

∑
i=1

diF1
(2)+h

s

∑
i=1

diciF1
(3)+

1
2

h2
s

∑
i=1

dic2
i F1

(4)+ ...
)

−
(

F1
(2)+

1
2

F1
(3)+

1
6

F1
(4)+ ...

)]
. (1.19)

Simplifying equation (1.18) and (1.19), we have:

LT En+1 = h2
[( s

∑
i=1

bi−
1
2

F1
(2)
)
+
( s

∑
i=1

bici−
1
6

)
hF1

(3)

+
(1

2

s

∑
i=1

bic2
i −

1
24

)
h2F1

(4)+ ...
]
, (1.20)

6



© C
OPYRIG

HT U
PM

LT E ′n+1 = h
[( s

∑
i=1

di−1
)

F1
(2)+

( s

∑
i=1

dici−
1
2

)
hF1

(3)

+
(1

2

s

∑
i=1

dic2
i −

1
6

)
h2F1

(4)+ ...
]
. (1.21)

Using equation (1.20) and (1.21), the order conditions for an s-stage RKN process up
to order six is given below:

For y:

Order 2: ∑bi =
1
2
, (1.22)

Order 3: ∑bici =
1
6
, (1.23)

Order 4:
1
2 ∑bic2

i =
1

24
, (1.24)

Order 5:
1
6 ∑bic3

i =
1

120
, (1.25)

∑biai jc j =
1

120
, (1.26)

Order 6:
1

24 ∑bic4
i =

1
720

, (1.27)

1
4 ∑biciai jc j =

1
720

, (1.28)

1
2 ∑biai jc2

j =
1

720
, (1.29)

7
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For y′:

Order 1: ∑di = 1, (1.30)

Order 2: ∑dici =
1
2
, (1.31)

Order 3:
1
2 ∑dic2

i =
1
6
, (1.32)

Order 4:
1
6 ∑dic3

i =
1

24
, (1.33)

∑diai jc j =
1
24

, (1.34)

Order 5:
1

24 ∑dic4
i =

1
120

, (1.35)

1
4 ∑diciai jc j =

1
120

, (1.36)

1
2 ∑diai jc2

j =
1

120
, (1.37)

Order 6:
1

120 ∑dic5
i =

1
720

, (1.38)

1
20 ∑dic2

i ai jc j =
1

720
, (1.39)

1
10 ∑diciai jc2

j =
1

720
, (1.40)

1
6 ∑diai jc3

j =
1

720
, (1.41)

∑diai ja jkck =
1

720
. (1.42)

All subscripts i, j, k run to s from 1. Most methods needs ci to satisfy the condition
given below:

1
2

c2
i =

s

∑
j=1

ai j, (i = 1,2, ...,s). (1.43)

For a higher order RKN methods, a simplifying assumption given by Butcher (2008) is
usually used to reduce the number of order conditions as given by the equation below:

bi = di(1− ci), (i = 1,2, ...,s). (1.44)

1.7 Local Truncation Error

Dormand (1996) proposed that having achieved a particular order of accuracy, the best
strategy for practical purposes is to minimize the error norms. The quantities of the
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norms of the local truncation error coefficients are:

∥∥∥τ
(p+1)

∥∥∥
2
=

√√√√(

np+1

∑
j=1

τ
(p+1)
j )2 for yn, (1.45)

and ∥∥∥τ
′(p+1)

∥∥∥
2
=

√√√√(

np+1

∑
j=1

τ
′(p+1)
j )2 for y′n. (1.46)

Given below is the error coefficients up to order six for RKN processes :

For y:

Order 2: τ
(2)
1 = ∑bi−

1
2
, (1.47)

Order 3: τ
(3)
1 = ∑bici−

1
6
, (1.48)

Order 4: τ
(4)
1 =

1
2 ∑bic2

i −
1
24

, (1.49)

Order 5: τ
(5)
1 =

1
6 ∑bic3

i −
1

120
, (1.50)

τ
(5)
2 = ∑biai jc j−

1
120

, (1.51)

Order 6: τ
(6)
1 =

1
24 ∑bic4

i −
1

720
, (1.52)

τ
(6)
2 =

1
4 ∑biciai jc j−

1
720

, (1.53)

τ
(6)
3 =

1
2 ∑biai jc2

j −
1

720
, (1.54)
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For y′:

Order 1: τ
′(1)
1 = ∑di−1, (1.55)

Order 2: τ
′(2)
1 = ∑dici−

1
2
, (1.56)

Order 3: τ
′(3)
1 =

1
2 ∑dic2

i −
1
6
, (1.57)

Order 4: τ
′(4)
1 =

1
6 ∑dic3

i −
1

24
, (1.58)

τ
′(4)
2 = ∑diai jc j−

1
24

, (1.59)

Order 5: τ
′(5)
1 =

1
24 ∑dic4

i −
1

120
, (1.60)

τ
′(5)
2 =

1
4 ∑diciai jc j−

1
120

, (1.61)

τ
′(5)
3 =

1
2 ∑diai jc2

j −
1

120
, (1.62)

Order 6: τ
′(6)
1 =

1
120 ∑dic5

i −
1

720
, (1.63)

τ
′(6)
2 =

1
20 ∑dic2

i ai jc j−
1

720
, (1.64)

τ
′(6)
3 =

1
10 ∑diciai jc2

j −
1

720
, (1.65)

τ
′(6)
4 =

1
6 ∑diai jc3

j −
1

720
, (1.66)

τ
′(6)
5 = ∑diai ja jkck−

1
720

. (1.67)

1.8 Absolute Stability Analysis

The analysis of the absolute stability of RKN method is based on the test equation

y′′ = −w2y, w ∈ R. (1.68)

Substituting f (x,y) = −w2y, f (xn + cih,Yi) = −w2Yi and f (xn + cih,Y j) = −w2Y j in
equations (1.3)–(1.4) and multiply equation (1.4) by h, we have:

yn+1 = yn +hy′n +h2
s

∑
i=1

bi(−w2Yi), (1.69)

hy′n+1 = hy′n +h2
s

∑
i=1

di(−w2Yi), (1.70)

Yi = yn + cihy′n +h2
s

∑
j=1

ai j(−w2Y j). (1.71)
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Now, define Mn+1 =

(
yn+1

hy′n+1

)
, Mn =

(
yn

hy′n

)
, B =

(
1 1

0 1

)
, and

H =−v2, where v = wh. Simplifying equation (1.69) and (1.70), we have

Mn+1 = BMn− v2

(
b1 · · · bs

d1 · · · ds

)
Y1
...

Ys

 (1.72)

where, from equation (1.71), we have


Y1
...

Ys

=

I + v2


a11 · · · a1s

...
. . .

...

as1 · · · ass



−1 1 c1

...
...

1 cs

Mn. (1.73)

Substituting equation (1.73) into equation (1.72), we have

Mn+1 =

(
1− v2bT L−1e v(1− v2bT L−1c)

−vdT L−1e 1− v2dT L−1c

)
Mn (1.74)

where L = I + v2A, A =


a11 · · · a1s

...
. . .

...

as1 · · · ass

 , b =
[
b1 · · ·bs

]T
,

d = [d1 · · ·ds]
T , e = [1 · · ·1]T and c = [c1 · · ·cs]

T .
The stability function associated with this method is given by

P(λ ,v2) = det[λ I−M]

where

M =

(
M11(v2) M12(v2)

M21(v2) M22(v2)

)

=

(
1− v2bT L−1e v(1− v2bT L−1c)

−vdT L−1e 1− v2dT L−1c

)
. (1.75)

It is assumed that M(v2) has complex conjugate eigenvalues for sufficiently small val-
ues of v as stated by Van der Houwen and Sommeijer (1989). With this assumption, an
oscillatory numerical solution is derived, whose behavior depends on the eigenvalues
of M(v2), which is called the stability matrix. The characteristic equation of M(v2) is
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λ
2− trace(M(v2))λ +det(M(v2)) = 0 (1.76)

In order to analyse the absolute stability of RKN method (1.3)–(1.5), we adopt the
following definitions. Let λ1,2 denotes the eigenvalues of M(v2).

Definition 1.2 An interval (−v2
b,0) is called the interval of absolute stability of the

method if, ∀−v2 ∈ (−v2
b,0), |λ1,2| < 1, where λ1,2 are the roots of the polynomial

(1.76)

Definition 1.3 The interval (−v2
b,0),v

2
b > 0, where ∀−v2 ∈ (−v2

b,0) such that the con-
ditions

| trace(M(v2)) |< det(M(v2))+1 and det(M(v2))< 1

are satisfied, is called the interval of absolute stability for RKN method.

From definitions (1.2) and (1.3), if −v2
b = ∞ then the method is said to be R-stable.

In computing the interval of absolute stability, we adopt the approach introduced by
Paternoster and Cafaro (1998). The stability region is the region enclosed by the set of
points for which | λ1,2 |= 1. Substituting λ = eiθ into (1.76) for values of θ ∈ [0,2π]
and solve for H, then the boundary of the stability region can be mapped out by using
MAPLE Package.

1.9 A Trigonometrically-Fitting Explicit Runge–Kutta–Nyström Method Tech-
nique

In this section, we will discuss a trigonometrically-fitted explicit RKN method tech-
nique.

Definition 1.4 A Runge-Kutta-Nyström method (1.3)–(1.5) is said to be
trigonometrically-fitted if it integrates exactly the function eiwx and e−iwx or
equivalently sin(wx) and cos(wx) with w > 0 the principal frequency of the problem
when applied to the test equation y′′ = −w2y; leading to a system of equations as
derived as follows:
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When an explicit Runge-Kutta-Nyström method (1.3) − (1.5) is applied to the test
equation y′′=−w2y, the method become:

yn+1 = yn +hy′n +h2
s

∑
i=1

bi f (xn + cih,Yi), (1.77)

y′n+1 = y′n +h
s

∑
i=1

di f (xn + cih,Yi), (1.78)

with

Y1 = yn + c1hy′n, (1.79)

Y2 = yn + c2hy′n−h2a21w2Y1, (1.80)

Y3 = yn + c3hy′n +h2(−a31w2Y1−a32w2Y2), (1.81)

Y4 = yn + c4hy′n +h2(−a41w2Y1−a42w2Y2−a43w2Y3), (1.82)
...

Yi = yn + cihy′n +h2
s

∑
j=1

ai j(−w2Y j), (1.83)

which results in

yn+1 = yn +hy′n +h2
s

∑
i=1

bi(−w2Yi), (1.84)

and

y′n+1 = y′n +h
s

∑
i=1

di(−w2Yi). (1.85)

Now, let yn = eIwxn . Evaluating for yn+1, y′n and y′n+1 and substituting in the equations
(1.79) – (1.85). Next, by using eIv = cos(v) + I sin(v) and comparing the real and
imaginary part, we obtain the following system of equations:

cos(v) = 1− v2
s

∑
i=1

bi(1− v2
i−1

∑
j=1

ai jY je−Iwxn), (1.86)

sin(v) = v− v2
s

∑
i=1

biciv, (1.87)

sin(v) = v
s

∑
i=1

di(1− v2
i−1

∑
j=1

ai jY je−Iwxn), (1.88)

cos(v) = 1− v2
s

∑
i=1

dici. (1.89)
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1.10 Scope of Study

The main aim of this research is to solve second order ordinary differential equations;
whose first derivative does not appear explicitly of the form (1.2). In which it is known
that their solutions are periodic in nature. In this work, our focus is to solve (1.2) by
the use of a trigonometrically-fitted explicit RKN methods.
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