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The L1 lipase derived from Bacillus stearothermophilus is one of the most applied 

enzymes that shows thermostability at 333-338K and pH 8-10. It has a tetrahedral zinc-

binding site, which consists of Asp61, Asp238 from the core domain and His81, His87 

from the extra domain of enzyme. L1 lipase is widely used as flavouring agent and 

aroma constituent in food industry due to its high substrate solubility and increased rate 

of reactions in the hydrolysis of fats and oils.  

Major works from X-ray crystallography and nuclear magnetic resonance (NMR) 

experiments have successfully deciphered the structures of known enzymes, however 

their dynamics and flexibility foundations are still unclear. The use of pressure can 

monitor protein structure and its functionality in slower kinetics, compared to 

temperature. Most importantly, pressure is used in food processing industries to retain 

vitamin and nutritional contents, and reduce the viability of microorganisms.  

Molecular dynamics (MD) simulations provide complementary data and valuable 

information to study the behaviour of macromolecules which are mostly inaccessible to 

experiments. From a comprehensive literature review, there is a lack of understanding 

on how thermoalkalophilic enzymes can unfold at high pressure, therefore 1 µs MD 

simulations were carried out at room temperature, to investigate the effects of 10,000 

bar pressure on the structure, dynamics, and flexibility of L1 lipase. Quantum 

mechanics calculations were also performed by using ONIOM layer optimization to 

estimate the effect of high pressure on the zinc-binding site. 

Based on the root-mean-square deviation (RMSD) variance at 10,000 bar, small 

structural changes were detected. An “unfolding-up-on-squeezing” phenomenon was 

clearly found as the radius of gyration (Rg) was increasing gradually despite the high 

compression. Our solvent accessible surface area (SASA) results also illustrated the 

weakening of hydrophobic forces as the pressure increased. The exposure of apolar 

residues to water molecules allowed the greater distribution of hydrogen bonds 
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between lipase and water molecules. In addition, the high desolvation energy correlated 

well with the changes in SASA values.  

Root-mean-square fluctuation (RMSF) analysis showed that residues 75-93, 129-145 

and 283-313 were highly mobile under high pressure. The flexibility at residues 75-93 

was linked to the loss of tetrahedral coordination at the zinc-binding site where His81 

and His87 were involved. In terms of the secondary structures, many helix-turn 

transitions were observed after 400 ns of simulation. Random coil was dominant at 

residues 265-320. There was also an indication of beta-aggregation as the beta sheets 

were affected by high pressure in a lesser extent, compared to helices.  

Based on QM analysis, interaction at the zinc-binding site of L1 lipase was 

unfavourable at 10,000 bar. A lower entropy and higher enthalpy of the model system 

were detected. The orbital occupancy of 2pz orbital of N in His81 was decreased after 

bound to Zn
2+

 ion at high pressure. The dipole moments were also weaker for Asp61, 

His81 and His87.  

Overall, a complete unfolding of L1 lipase was not observed at 10,000 bar at 1 µs, but 

the obtained results revealed the formation of molten globule. This structure is possibly 

the universal folding intermediate because it is loosely packed and its structural 

features slightly resemble the native state of a folded protein. Therefore, it is very 

important in folding/unfolding pathway of enzyme.  
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Lipase L1 yang berasal dari Bacillus stearothermophilus menunjukkan kestabilan yang 

tinggi pada 333-338K dan pH 8-10. Enzim ini mempunyai sebuah tapak pengikat zink 

yang berbentuk tetrahedron, meliputi Asp61, Asp 238 daripada teras utama dan His81, 

His87 daripada tambahan enzim yang utama. Disebabkan oleh kelarutan substrat yang 

baik and kadar tindak balasnya yang tinggi dalam proses hidrolisis lemak dan minyak, 

lipase L1 banyak digunakan sebagai bahan perisa dan aroma dalam industri pemakanan.  

Hasil daripada sinar-X kristalografi dan resonans magnet nukleus (NMR) telah berjaya 

menafsirkan struktur-struktur enzim, namun pengetahuan asas mengenai dinamik dan 

fleksibiliti protein masih tidak jelas. Penggunaan tekanan boleh mengawasi struktur 

protein dan fungsinya menyebabkan tenaga kinetik menjadi perlahan. Di samping 

mengurangkan kebolehidupan mikroorganisma, industri pemprosesan makanan banyak 

menggunakan tekanan tinggi untuk mengekalkan kandungan vitamin dan nutrien. 

Penyelidikan protein boleh dijalankan dengan simulasi dinamik molekul (MD) yang 

melengkapi data eksperimen. Sorotan daripada kajian menunjukkan bahawa 

pemahaman terhadap pembukaan lipatan enzim termoalkalofilik dalam keadaan 

tekanan yang tinggi masih tidak mencukupi. Oleh itu, simulasi MD dijalankan selama 1 

µs, untuk menyiasat kesan 10,000 bar terhadap struktur, dinamik dan fleksibiliti lipase 

L1. Pengiraan melalui teori mekanik kuantum turut dijalankan dengan kaedah 

pengoptimuman lapisan ONIOM untuk mengkaji interaksi yang berlaku di tapak 

pengikat zink dalam tekanan tinggi.  

Berdasarkan varians sisihan punca min kuasa dua (RMSD) pada 10,000 bar, enzim 

tidak membuka lipatan secara menyeluruh, namun beberapa ciri-ciri penting boleh 

dikenal pasti. Jejari legaran lipase L1 bertambah secara beransur dan setempat, 

walaupun strukturnya dimampat tekanan yang tinggi. Keluasan permukaan protein 

yang dimasuki oleh pelarut (SASA) menunjukkan daya hidrofobik yang semakin lemah 

apabila tekanan bertambah tinggi. Dedahan residu tidak polar kepada molekul air 

dalam tekanan tinggi juga menggalakkan ikatan hidrogen terjadi lebih banyak antara 
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lipase dan air. Di samping itu, tenaga disolvasi dalam lipase adalah berkaitan dengan 

perubahan nilai SASA dalam simulasi.  

Analisis fluktuasi punca min kuasa dua (RMSF) menunjukkan bahawa residu 75-93, 

129-145 dan 283-313 mempunyai fleksibiliti yang tinggi pada 10,000 bar. Fleksibiliti 

His81 and His87 telah menyebabkan kehilangan koordinasi tetrahedron di tapak 

pengikat zink dalam tekanan tinggi. Dari segi struktur sekunder, banyak heliks 

digantikan oleh lekukan selepas 400 ns. Gegelung rawak juga banyak kelihatan di 

residu 265-320. Indikasi pengagregatan kepingan beta dapat dikesan kerana bilangan 

strukturnya lebih konsisten sepanjang simulasi, berbanding dengan heliks alfa. 

Pengoptimuman menerusi teori mekanika kuantum menunjukkan bahawa interaksi 

yang berlaku di tapak pengikat zink dalam 10,000 bar kurang memuaskan. Sistem 

tersebut melaporkan entropi yang rendah serta entalpi yang tinggi. Penghunian elektron 

dalam orbital 2pz oleh N di residue His81 menjadi kurang selepas mengikat dengan 

Zn
2+ 

ion. Momen dwikutub di Asp61, His81 dan His87 turut dikurangkan. 

Secara keseluruhan, pembukaan lipatan lipase L1 tidak ditemui pada 10,000 bar selepas 

1 µs, namun ciri-ciri struktur yang ditunjukkan boleh menyifatkan formasi globul lebur 

yang sangat penting dalam laluan perlipatan/pembukaan lipatan enzim. 
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CHAPTER 1 

INTRODUCTION 

 

Enzyme is a biological catalyst with the ability to increase the rate of chemical 

reactions. Each enzyme possesses a selective binding pocket to complement with a 

specific ligand. Its reactions can vary with temperature, pH and many other factors. For 

example, an enzyme loses its function when it is exposed to high temperature, due to 

the irreversible structural changes induced by heat and the failure of substrate to bind 

the distorted active site (Daniel and Danson, 2013).  

 

There are enzymes which are resistant to extreme heat, known as thermoenzymes. 

They are originated from bacterial sources, or thermophiles that survive at approximate 

333K-353K (Constantino et al., 1990; Ozer and Akdemir-Evrendilek, 2014). Compared 

to mesozymes, they have identical catalytic mechanisms and  35-85% sequence 

similarity, however thermoenzymes carry additional salt bridges (Matsumura, 1989; 

Morgan, 2005), hydrogen bond networks, and stronger hydrophobic interactions 

(Vieille and Zeikus, 1996). The hydrophobic cores of thermoenzymes are usually more 

dense to avoid exposure to water molecules. Their loop structures are also less 

abundant and shorter (Thompson and Eisenberg, 1999). These characteristics reduce 

the entropy of unfolding at high temperature. 

 

Thermoalkalophilic enzymes, especially lipases have the ability to adapt alkaline 

environment (pH 8.0–11.0) (George-Okafor and Odibo, 2011). They are also highly 

stable in organic solvents such as propanol, acetone and methanol (Schmidt-Dannert, 

1994). Biocatalysts derived from Achromobacter, Arthrobacter, Bacillus, and 

Pseudomonas (Gupta et al., 2004) do not require cofactors in any biological activities 

(Gupta et al., 2004; Treichel et al., 2010). These enzymes are highly sought after in 

industries nowadays, with widespread applications in detergent, pharmaceuticals and 

biodiesel productions (Balan et al., 2013).   

 

L1 lipase is a thermoalkalophilc enzyme grouped under lipase family I.5 (Kim et al., 

1998; Kim et al., 2000). This lipase is thermoactive at 333-338K and at alkaline pH 9-

10 (Kim et al., 1998).  A thermoactivity test using olive oil emulsion also revealed the 

optimum activity of lipase up to 341K when tested at pH 8, in the absence of detergents 

(Kim et al., 2000).  

 

Industries show a lot of interest in this enzyme due to its resistance to denaturing agents, 

for example, proteases, detergents, and organic solvents (Eijsink et al., 1992). The use 

of L1 lipase in chemical and biochemical reactions increases the hydrolysis rates of fats 

and oils with high contents of saturated fatty acids, for example, palm oil, coconut oil 

and cotton seed oil (Kim et al., 2000). It also shows substrate specificity towards 

tripropionin and p-nitrophenyl caprylate (Kim et al., 1998).  

 

To highlight the importance of thermostability in enzymes, characterization studies on 

tightly folded protein conformations or polypeptide chains are encouraged. Many 

experiments have routine use of denaturants in biochemical laboratory such as heat, 

extreme pH, detergents, urea and guanidinium chloride to induce protein unfolding and 
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alter its solvent environment (Bennion and Daggett, 2003; Konermann, 2012; Jacso et 

al., 2013). 

 

However, folded proteins are marginally stable (Taverna and Goldstein, 2002). Subtle 

changes in the physical and chemical properties of solvent can shift the folding 

equilibrium easily, therefore it is difficult to observe the transitions states for protein 

folding/unfolding. As of today, the pressure-induced unfolding of enzyme is still 

elusive. The role of pressure in protein stability should not be disregarded because it is 

very effective. Vitamins and nutritional contents in food are preserved in specific 

conditions (Oey et al., 2008). Thus, there is a possibility to modify the enzymatic 

nature of protein and increase food digestibility using pressure (Zhang et al., 2011; 

Tokusoglu et al., 2014). Pressure also has the potential to suppress the growth of 

microorganisms and the viability of viral particles in biochemical processes (Jaenicke 

et al., 1981; Sharma et al., 2002; Ishii et al., 2004; Gaspar et al., 2008). Other 

applications in pharmacology and drug design using high pressure have also been 

reported. For example in Alzheimer’s disease, high pressure has the tendency to slow 

down the formation of amyloid-ß-peptide aggregates and modulate the dissolution of 

preformed fibrils (Silva et al., 1993; Dobson et al., 2003) 

 

Functional proteins are large and complex, compared to the oligomeric proteins and 

fast-folding peptides. The pressures of 3,000 bar and above are required to unfold 

globular proteins (Doster and Gebhardt, 2003), while pressures beyond 10,000 bar are 

needed for bacterial proteins, according to Sharma (2002). Since experimental methods 

cover the core of scientific researches, Pandharipande and Makhatadze (2015) used 

pressure perturbation calorimetry to observe the volume changes in ubiquitin, 

acylphosphatase (ACP) and tryptophan zipper (TrpZip) as they became destabilized at 

high pressure. High-pressure spectroscopy and site-directed spin labelling EPR (SDSL-

EPR) were also used to detect structural changes in the different transition states of 

myoglobin at 0-2,400 bar (Lerch et al., 2013).  

 

However, the details that underlie the pressure-induced unfolding process of protein are 

still unclear from experimental procedures. Time-dependent events such as the 

secondary structure transitions, residue interactions, and changes in structural 

compactness may be neglected (Pfeil and Privalov, 1976; Makhatadze and Privalov, 

1992; Myers and Oas, 2002; Lin et al., 2011). In addition, denaturing agents can 

associate irreversibly with the unfolded states of protein to form aggregates and 

undergo proteolysis, which will hinder the characterization of enzyme (Paliwal et al., 

2004). Experimental measurements are difficult to be carried out in biological 

environments as scientists need to overcome practical limitations like spatial and 

temporal resolutions to access the orbital energies, occupancies and bonding 

information (Gerstman and Prem, 2009; Xu et al., 2013), unless ultrafast electron 

diffraction crystallography and microscopy methods are applied (Thomas and Zewail, 

2008; Shorokhov and Zewail, 2008).  

 

In recent decades, computational methods are introduced profoundly to help rationalize 

problems arised from various disciplines, including chemistry, physics, mathematics 

and biology (Lipkowitz and Boyd, 1998; He, 2000; Zoete and Meuwly, 2006; 

Benamou et al., 2014). The increasing accuracy and the high-speed calculations of 

complex systems using computers have attracted many scientists to combine in silico 

methods and wet lab experiments (Pulay, 2011). Data obtained from lab-based studies 

can be validated theoretically to explain the geometry and the physical properties of the 
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target molecules (Tysoe, 2013; Nasica-Labouze et al., 2015). Atomic details which are 

inaccessible to experiments can be found by computational calculations (Ng, 2015) 

such as Monte Carlo (MC), molecular dynamics (MD), molecular docking and 

quantum mechanics calculations.  

For example, Frappier and Najmanovich (2014) demonstrated the effects of mutation 

on thermostability using the normal mode analysis of an elastic network atomic model. 

Additonally, Zhou and Grigoryan (2015) utilized the Protein Data Bank library to study 

specific tertiary structural elements which could contribute towards alterations in 

protein structures.  

 

The use of molecular dynamics (MD) simulation allows scientists to understand how 

particles move in a given space as a function of time (Karplus and Kuriyan, 2005). 

From the Newton’s second law of motion, the force applied to any system is equivalent 

to the mass and the acceleration of moving particles, thus the trajectory produced will 

contain information related to the positions, the velocities and the accelerations of 

particles in the system under study (Vikramraja JS, 2008). MD allows researchers to 

map non-equilibrium events during the denaturation of protein (Beck and Daggett, 

2004), in all-atom or united atom internal representations (Zheng and Glenn, 2015). It 

assesses the transitions of macromolecules from their native forms towards the 

intermediates and unfolded states (Huynh et al., 2002).  

 

High temperature is commonly used in MD simulation to induce the folding/unfolding 

of protein structures (Karplus and Sali, 1995; Day et al., 2002; Settani and Fersht, 2007; 

Rocco et al., 2008), however the risk of irreversible aggregation is high for thermally-

denatured proteins (Heremans and Smeller, 1998).  

 

The application of pressure in MD related studies can help us understand the change in 

intrinsic compressibility and the volumetric properties of a protein (Paci and Marchi, 

1996), which is also a good indication of protein unfolding. Proteins under 

compression may have slower folding/unfolding processes, but pressure can destabilize 

hydrophobic contacts in proteins (Grigera and McCarthy 2010). water penetration 

models have been suggested to improve their kinetics (Weber and Drickamer, 1983; 

Hummer et al., 1998; Imai and Sugita, 2010; Sarupria et al., 2010).  

 

 

1.1 Objectives 

 

The main objective of this research was to investigate the stability and the unfolding 

pathway of L1 lipase under extreme pressure using MD simulations and quantum 

mechanics calculations. Therefore, these specific objectives were explored: 

 

 To model L1 lipase unfolding at high pressure. 

 To determine the dynamics and the flexibility of L1 lipase at high pressure. 

 To identify the structural changes of L1 lipase at high pressure during unfolding. 

 To estimate the stability of enzyme at 10,000 bar by focussing on protein zinc-

binding site. 
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