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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

EVASION DIFFERENTIAL GAME FROM MANY PURSUERS OF ONE
EVADER WHOSE CONTROL SET IS A SECTOR

By

SHARIFAH ANISAH BINTI SYED MAFDZOT

February 2016

Chairman: Idham Arif bin Alias, PhD
Faculty: Science

From mathematical point of view, game involves a number of players, a set of strate-
gies for each player, and analysis of the game outcome which conclude either vic-
tory or defeat for each player involved. A common type of game is often called the
pursuit-evasion game. Pursuit-evasion game is one of the widely studied game the-
ory where it involves players of two opposite sides, which are pursuer and evader.
The pursuer’s goal is to capture the evader while oppositely, the evader is to avoid
being captured. Strategy to be constructed for players depend on the purpose of the
game. It can be solved as an evasion problem for the evader. In this case, strategy
for evader will be constructed and behavior of the pursuer is assumed to be any. On
the other hand, the game could also be a pursuit problem and thus construction of
the strategy is for the pursuer, with assumption that the evader can move freely.

In this thesis, we study an evasion differential game of many pursuers x1, . . . ,xm
against one evader y in the plane R2. Movements of the players are described by
simple differential equations. Control functions of players are subjected to geometric
constraints where maximum speed of each pursuer is equal to 1, and maximum speed
of the evader is α > 1. Control set of the evader is a sector S with radius α . We say
that evasion is possible if xi(t) 6= y(t) for all t ≥ 0 and i = 1, . . . ,m. In other words,
the evasion problem is solved when it is proved that the position of the evader never
coincides with the position of each pursuer at all time. To achieve the solution,
conditions of evasion that guarantee the evasion from any initial positions of players
are to be found.

We examine game with one pursuer by constructing the evader’s strategy, checking
the admissibility, and estimating distances between the evader and pursuer for the
possibility of evasion. Then we show that evasion game is solvable for the case of k
pursuers.
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The motivation behind the study is to construct a new admissible strategy for the
evasion to be possible in the evasion differential game of one evader versus many
pursuers, which were studied in many works before.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Sarjana Sains

PERMAINAN PENGELAKAN PEMBEZAAN BEBERAPA PEMANGSA
UNTUK SATU MANGSA YANG MANA KAWALAN SETNYA IALAH SATU

SEKTOR

Oleh

SHARIFAH ANISAH BINTI SYED MAFDZOT

Februari 2016

Pengerusi: Idham Arif bin Alias, PhD
Fakulti: Sains

Dari sudut pandangan matematik, permainan melibatkan beberapa pemain, satu
set strategi untuk setiap pemain, dan analisis hasil permainan yang menentukan
samada menang atau kalah bagi setiap pemain yang terlibat. Jenis permainan
umum sering dikenali sebagai permainan mangsa-pemangsa. Permainan mangsa-
pemangsa adalah salah satu teori permainan yang dipelajari dengan meluas di mana
ia melibatkan pemain-pemain dari dua pihak yang bertentangan, iaitu pemangsa dan
mangsa. Strategi yang dirangka untuk pemain-pemain bergantung kepada matlamat
permainan. Ianya boleh diselesaikan sebagai masalah pengelakan untuk mangsa.
Dalam kes ini, strategi untuk mangsa akan dirangka dan kelakuan pemangsa di-
anggap sebagai apa sahaja. Sebaliknya, permainan boleh juga menjadi masalah
penangkapan dan dengan itu perangkaan strategi adalah untuk pemangsa, dengan
anggapan bahawa mangsa bergerak bebas.

Dalam tesis ini, kami mengkaji permainan pengelakan pembezaan bagi beberapa
pemangsa x1, . . . ,xm terhadap satu mangsa y dalam satah R2. Pergerakan pemain
diterangkan oleh persamaan pembezaan mudah. Fungsi kawalan bagi pemain adalah
tertakluk kepada kekangan geometrik di mana kelajuan maksimum setiap pemangsa
adalah sama dengan 1, dan kelajuan maksima mangsa adalah α > 1. Kawalan set
mangsa adalah sektor S dengan jejari α . Pengelakan akan berlaku jika xi(t) 6= y(t)
untuk semua t ≥ 0 dan i = 1, . . . ,m. Dalam erti kata lain, masalah pengelakan se-
lesai jika telah terbukti bahawa kedudukan mangsa tidak pernah bertepatan dengan
kedudukan setiap pemangsa pada setiap masa. Untuk mendapat penyelesaian, syarat
bagi pengelak yang menjamin pengelakan dari mana-mana kedudukan awal pemain
perlu dicari.

Kami mengkaji permainan dengan satu pemangsa dengan membina strategi untuk
mangsa, memeriksa kesahihan strategi, dan menganggarkan jarak antara mangsa dan
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pemangsa untuk kemungkinan mangsa melepaskan diri. Kemudian kami membuk-
tikan permainan mangsa dapat melepaskan diri bagi kes k pemangsa.

Motivasi di sebalik kajian ini adalah untuk membina strategi baru yang boleh diter-
ima bagi pengelakan untuk berlaku dalam permainan pengelakan pembezaan bagi
satu mangsa melawan beberapa pemangsa, di mana banyak kajian telah dibuat se-
belumnya.
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CHAPTER 1

INTRODUCTION

1.1 Differential Games

1.1.1 A Brief Description

Game Theory is a formal study of decision-making where several players making
choices that potentially affect the interests of the other players. In Differential Games
Theory, movement of players are described by differential equations where state of
players develops or depends continuously in time and therefore, x(t) and the deriva-
tive of x(t) or higher derivatives of x(t) are variables that play parts in the calculation
of the problem.

This area has been increasingly important in the application to many other fields
such as military, economy, management, optimal control, engineering, biology and
others. For example, in warfare technology, strategy is to be constructed for missiles
to move towards any airplane regardless of the movement of the plane. On the other
hand, in a different problem of differential game, strategy is to be formulated for a
military plane to avoid any missiles launched against it.

In economy, the application of differential game theory has covered areas such as
capital accumulation, industrial organization, oligopolies, marketing and environ-
mental economics. An example is that of the similarity of the price-setting of
oligopolies to the Prisoner’s Dilemma. If an oligopoly situation exists, the com-
panies are able to set prices if they choose to cooperate with each other. If they
cooperate, both are able to set higher prices, leading to higher profits. However, if
one company decides to defect by lowering its price, it will get higher sales, and,
consequently, bigger profits than its competitor(s), who will receive lower profits. If
both companies decide to defect, i.e. lower prices, a price war will ensue, in which
case neither company will profit, since it will retain its market share and experience
lower revenues at the same time. Lim (1999) defined oligopoly as a market with few
large firms collectively controlling large market share and aware of interdependence
of their profits and impacts of each firm’s strategic decision on their profits and mar-
ket shares. Game theory also finding its applications in computer science such as
network security, game programming, sensor networks and internet usage. There are
many other examples of the application of differential game theory in several fields.

Differential game was first introduced by Isaacs (1965) in which there are two play-
ers with opposing goals. One of them is called Pursuer and denoted as P, and the
other is called Evader and denoted as E. The pursuer’s goal is simply to capture the
evader while the evader’s goal is certainly, to avoid being captured.

1
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1.1.2 Types of Differential Games

In general, there are two types of differential games which are as follows:

1. Pursuit differential games.

In this game, the strategy for the pursuer will be constructed but there is no
restriction on the movement of the evader.

The game or the pursuit is completed when the positions of P and E coincide
at a finite time τ , that is, x(τ) = y(τ) for some time τ ≥ 0.

2. Evasion differential games.

In this game, the strategy for the evader will be constructed but there is no
restriction on the movement of the pursuer.

The evader is to avoid being captured by the pursuer indefinitely, that is, x(t) 6=
y(t) for all t ≥ 0.

In other words, the position of the pursuer and the evader will not coincide at
all time and we say, the evasion is possible.

1.1.3 Types of Constraints

Movements of players in differential games are described by some differential equa-
tions. We discuss some types of differential games.

i. Differential games with state/phase constraints.

This is a constraint of the position (state) of the players at all time, where
movement of players can only occur within some kind of areas in a given
space. For example, in the Lion and Man game, both players can only move
within a given circle. Here, the state constraint is a circle in R2.

ii. Differential games with integral constraint.

This is a constraint which is exhausted by consumption, and it is in the form
of integral. Examples are energy, fuel, food and finance which are exhausted
over time as they are consumed. A common integral constraint for a player is
energy which is bounded, and written as

∫
∞
0 |u(t)|2dt ≤ ρ2 for some positive

value ρ where |u(t)| is the speed of the player.

iii. Differential games with geometric constraint.

Constraint of the form u(t) ∈ P ⊂ Rn is called geometric constraint where u
is the control paramater and P is a subset of Rn. For example, in the case of
simple motion, the constraint |u| ≤ 1 means u(t) ∈ P⊂ R2 where P is a circle
of radius 1. In other words, the speed of the player is bounded by 1.

The thesis consider problems of simple motion evasion differential game of

2
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• one evader versus one pursuer,

• one evader versus two pursuers,

• one evader versus finitely many pursuers.

All these problems occur in the plane R2 and the control functions of players are
bounded by geometric constraint. In general, movements of players are described by
the following differential equation:

ẋi = ui, xi(0) = xi0, i = 1, . . . ,m,

ẏ = v, y(0) = y0,

where ui and v are the control parameters of Pi and E respectively, xi0 and y0 are the
initial positions of Pi and E respectively with xi0 6= y0.

The important feature in this game is that, the direction of trajectory of the evader
can only be within a sector which will be defined. The control set of the evader is a
sector. However for each pursuer, the control set is a circle and this means, pursuer
can move in any direction.

1.2 Lion and Man Game

We introduce differential game theory by presenting a classical pursuit-evasion game
called Lion and Man game. It was originally posed in 1925 by Rado to find out a
strategy for a pursuer (lion) to catch the evader (man) in a given environment. When
the lion catch the man, it means that the man and the lion coincide after a finite time.
The goal of the lion is to get close to, and possibly catch the man for any trajectory
of the man. In turn, the man tries to avoid being captured. The main question here is
that, can the lion catch the man?

Here we are going to show that evasion is possible in differential game of the Lion
and Man. In this problem, the man constructs strategy to ensure the possibility of not
being captured by the lion indefinitely. We say that evasion is possible in the game.

1.2.1 Description of Differential Game

Both lion and man have same motion capabilities and move with maximum speeds
equal to 1. The positions of the players are always being in a circle for any trajectory,
and must not leave the given circle.

They have perfect information about each other’s position, but have different goals.
The lion wants to decrease his distance to zero distance for some finite time, while
the man wants to avoid being captured by the lion. To show that the lion cannot catch
the man, strategy for the man need to be formulated since this is evasion problem.

3
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Figure 1.1: State of the players

In this game, we consider the lion as the Pursuer (P) and man as the Evader (E). The
diagram in Figure 1.1 show states of the players which are always in a circle.

The movement of the players are governed by the following equations

P : ẋ = u, |u| ≤ 1
E : ẏ = v, |v| ≤ 1

where u and v are the control parameters of the P and E respectively. We assume
that the radius of the circle is R. In this evasion game, |u| ≤ 1 and |v| ≤ 1 are the
geometric constraint on controls of the pursuer and evader respectively.

1.2.2 Strategy for the Evader

There are three cases possible for movement of the players in the lion and man game
as pictured in the following figure:

Figure 1.2: Movement of Lion and Man

In each case, movement of E depend on whether P is on the left or the right side of
straight line OE where O is the origin of the circle. In case (i), E will move to the left
perpendicularly to line OE since P is on the right side of OE. In case (ii), E move to
the right. If P is on the line OE as in case (iii), E can move either to the left or right.
The result of this differential game is the following theorem.

4
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Theorem 1.1 In the game of Lion and Man, evasion is possible.

Proof:

1. Construction of the evader’s (Man) strategy.

First, we assume the evader to move with maximum speed 1. Second, the
strategy of the evader in terms of movement is constructed this way (see Fig-
ure 1.3). Without loss of generality, we assume that E is inside the circle.

Figure 1.3: State of players in a circle

From Figure 1.3, Ei and Pi, for i ∈ {0,1,2, . . . ,n, . . .} denote point of position
of E and P respectively at time ti. In addition, li denote the straight line con-
necting the origin O with Ei. Now, at each time ti, the distance between Ei to
circumference equals r

i+1 . There are three possible cases of movement of E
(see Figure 1.2). Based on Figure 1.3, the position P(ti) of the Pursuer Pi at
time ti is either on the right of li, or on the left of li, or on the line li. If Pi is on
the right of li, then evader moves from Ei to the left of li perpendicularly. If
Pi is on the left of li, then Ei moves to the right of li perpendicularly. Finally,
if Pi is on the line of li, then Ei moves either to the left or to the right of li
perpendicularly. Without loss of generality, we assume that Pi is always on
the right of li or on the line of li, and therefore E choses to move the left of li
perpendicularly.

Specifically at time t0, the distance between E0 to circumference is r. If the
position of P0 is on the right or on the line of l0, then E0 will move to the
left perpendicularly to l0 until the point E1, where the distance between E1 to
circumference is r

2 . At E1, if the position of P1 is on the right or on the line of
l1, then E1 will move to the left perpendicularly to l1 until the point E2, where
the distance between E2 to circumference is r

3 . The strategy will continue in a
similar manner.

5
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2. Admissibility of the strategy

We need to show two parts for the strategy to be admissible. First, according to
the geometric constraint of the evader, evader always move with speed v which
is less than or equal to 1, that is |v| ≤ 1. For this evasion game, we assume
E to move with maximum speed 1. Since 1 ≤ 1, the strategy is admissible in
terms of speed.

Second, the distance Ei with the circumference of the circle is always equal to
r

i+1 , i ∈ {0,1,2, . . .}. Since r
i+1 > 0 for each i, this means E never leave the

circle. Therefore, the strategy is admissible in terms of the state of the evader
at all time.

1.2.3 Evasion is Possible

The proof consists of two parts.

a. First we show that on each section EiEi+1, i = 0,1,2, . . . evasion is possible.

Figure 1.4: Section EiEi+1

Let Ei = E(ti), Pi = P(ti) and the position of Pi is on the right or on the line of
li. We assume Pi is moving with the speed of α(t) where 0 ≤ α(t) ≤ 1. This
is pictured in Figure 1.4.

Now, assume the contrary which is, pursuit is completed at some time τ at
point M. Thus,

P(τ) = E(τ) = M.

On the other hand, E is moving with maximum speed 1 from Ei to Ei+1. Thus,

EiM = 1.(τ− ti) = τ− ti.

Now, distance travelled by P from Pi to M is calculated as follows:

P̃iM =
∫

τ

ti
α(t) dt ≤

∫
τ

ti
1 dt = τ− ti

6
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where P̃iM is length of the curve. Thus,

τ− ti = EiM ≥ P̃iM ≥ PiM ≥ P′i M > EiM.

where PiM and P′i M are segments of straight lines and P′i M is the hypotenus
of the right triangle MP′i Ei.

This is a contradiction and it shows that our assumption P(τ)=E(τ), is wrong.
Thus, on each section EiEi+1 evasion is possible or the evader will not be
captured by the pursuer.

b. Second, we estimate the total time spent by the evader in avoiding pursuer
throughout the game.

Figure 1.5: Triangle of state of players

The time spent by the evader to travel the section EiEi+1 is equal to

Ti =
EiEi+1

1
= EiEi+1 where (see Figure 1.5),

EiEi+1 =

√(
R− r

i+2

)2
−
(

R− r
i+1

)2
≥ r

i+2
.

Thus, for the sections E0E1,E1E2, . . . ,EnEn+1 we obtain

T0 = E0E1 =

√(
R− r

2

)2
− (R− r)2,

T1 = E1E2 =

√(
R− r

3

)2
−
(

R− r
2

)2
,

...

Tn = EnEn+1 =

√(
R− r

n+2

)2
−
(

R− r
n+1

)2
. (1.1)

7
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Now, Tn ≥ r
n+2 as shown below:

T 2
n =

(
R− r

n+2

)2
−
(

R− r
n+1

)2

=

((
R− r

n+2

)
−
(

R− r
n+1

))((
R− r

n+2

)
+

(
R− r

n+1

))
=

(
r

n+1
− r

n+2

)(
2R− r

n+2
− r

n+1

)
≥

(
r (n+2)− r (n+1)
(n+1)(n+2)

)(
2r (n+2)(n+1)− r (n+1)− r (n+2)

(n+1)(n+2)

)
=

(
r

(n+1)(n+2)

)(
2rn2 +6rn+4r− rn− r− rn−2r

(n+1)(n+2)

)
=

r2 (2n2 +4n+1
)

(n+1)2 (n+2)2

≥ r2 (n+1)2

(n+1)2 (n+2)2

=
r2

(n+2)2 .

Hence,

Tn =
EnEn+1

1
≥ r

n+2
.

Calculating the sum of times spent up to point En we have,

n

∑
i=0

Ti ≥
n

∑
i=0

r
i+2

= r
n

∑
i=0

1
i+2

But for n→ ∞, ∑
n
i=0

1
i+2 → ∞, that is the series ∑

∞
i=0

1
i+2 is divergent.

Therefore the total time spent by the evader is infinity which means he will not
be captured at all. The proof is completed. �

1.3 Research Problem

We consider a simple motion evasion differential game of many pursuers x1, . . . ,xm
versus one evader y with geometric contraints as the control functions of players on
a plane. The game is described by following differential equations

ẋi = ui, xi(0) = xi0, |ui| ≤ 1, i = 1, . . . ,m,

ẏ = v, y(0) = y0, v ∈ S,
(1.2)

8
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xi,ui,xi0,y,v,y0 ∈ R2 where S is a sector.

We say that evasion is possible in this game if the position of the evader never coin-
cides with that of any pursuer, that is xi(t) 6= y(t) for all t ≥ 0, and i = 1, . . . ,m.

1.4 Research Objectives

The objectives of this thesis are as follows:

• to construct an evasion strategy which guarantees possibility of evasion along
any strip of positive width in the game of one pursuer and one evader.

• to obtain sufficient conditions of evasion from any initial positions of pursuers.

• to construct an evasion strategy in the game of many pursuers.

1.5 Thesis Organization

The thesis is divided into eight chapters as follows:

Chapter 1 includes a brief introduction to differential games and present a classic
example of differential games which is lion and man game.

Chapter 2 is a discussion about related past results through literature review. This
chapter reviews the method for solving evasion differential games with geometric
constraints as the control function of players.

Chapter 3 is an exploration of a simple pursuit differential game using Parallel Strat-
egy. This is a fundamental knowledge in differential game theory.

Chapter 4 is a study of a differential game of evasion from one pursuer posted by
Chernous’ko (1976) and a discussion of the strategy for the case of many pursuers
constructed by Chernous’ko (1976). The present evasion problem is described by
the same differential equation as Chernous’ko (1976) but with different control set
for the evader. We introduce new approach and strategy for the evader which is
compatible with the control set. As in any evasion differential game, we solve the
problem by the following steps:

1. construct strategy for the evader

2. show the admissibility of the strategy

3. prove that evasion is possible.

Chapter 5 is a description of a simple motion evasion differential game for the case
of one pursuer against one evader in the plane R2. We prove the main theorem by

9
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construction of the strategies, checking the admissibility of the strategies and esti-
mating distances between the evader and pursuer at any time to show the possibility
of the evasion.

Chapter 6 is a study of a simple motion evasion differential game for the case of two
pursuers against one evader in the plane R2. In this chapter, the concept of fictitious
evader is introduced. We prove the main theorem by construction of the strategies of
evader and fictitious evader and estimating distances between the evader and pursuers
at any time to show the possibility of the evasion.

Chapter 7 is the main component of the thesis of which we study an evasion differ-
ential game described by simple motion differential equations in the plane R2, for
the case of many pursuers against one evader. It is shown that evasion is possible for
the case of k pursuers, by construction of the evader’s strategy which is admissible,
and by estimating distance at any time between the evader and each pursuer.

Chapter 8 consist of conclusion and future work of this thesis.

10
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