CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF
GARCINIA MANGOSTANA L. AND
PIPER BETLE

YEAP SOO FONG

FS 2009 31
CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF GARCINIA MANGOSTANA L. AND PIPER BETLE

YEAP SOO FONG

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2009
CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF
GARCINIA MANGOSTANA L. AND PIPER BETLE

By

YEAP SOO FONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Master of Science

October 2009
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of requirement for the degree of Master in Science

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF GARCINIA MANGOSTANA L. AND PIPER BETLE

By

YEAP SOO FONG

October 2009

Chairman : Mawardi bin Rahmani, PhD

Faculty : Science

Young fruits of *Garcinia mangostana* L. from Guttiferae family and leaves of *Piper betle* from Piperaceae family were phytochemically studied and screened for their biological activities. The young fruits of *Garcinia mangostana* L. were collected from Negeri Sembilan while the leaves of *Piper betle* were collected from Sabah. The phytochemical works involved extraction of the plant materials with organic solvents of different polarity and chromatographic separation of the extracts with several techniques to obtain pure compounds. The structures of the compounds were determined by using spectroscopic techniques such as IR, MS, NMR and UV. The crude extracts from both plants were screened for antimicrobial (against four pathogenic bacteria and 3 pathogenic fungi), cytotoxic activities and antioxidant using disc diffusion method, Tetrazolium Salt (MTT) assays and 1,2-Diphenyl-2-picrylhydrazyl (DPPH) respectively. Three isolated compounds, epicatechin (39), 4-hydroxybenzoic acid (114) (both from *mangostana* L.) and 2-allyl-3,4-dihydroxybenzaldehyde (115) (from *P. betle*) were tested for antioxidant by using DPPH.
Separation of the extracts of young fruits of *Garcinia mangostana* L. afforded seven chemical compounds identified as methylparaben (110), methyl 3,4,5-trihydroxybenzoate (111), parvifoliol A1 (112), methyl 2,3-dihydroxybenzoate (113), 4-hydroxybenzoic acid (114), epicatechin (39) and a xanthone, mangostanin (20) after extensive various chromatographic techniques. Two compounds, methylparaben (110) and methyl 3,4,5-trihydroxybenzoate (111) have not been previously reported to occur in *Garcinia mangostana*. This is the first report on the occurrence of these compounds in *Garcinia mangostana* and the proper technical name for methylparaben (110) is methyl 4-hydroxybenzoate. On isolation and purification of the leaves extracts of *Piper betle* led to the isolation of four compounds chavibetol (77), 2-hydroxychavicol (80), β-sitosterol (47) and 2-allyl-3,4-dihydroxybenzaldehyde (115).

The antimicrobial activity test for both plant extracts was carried out using seven microbes namely, *methicillin resistant Staphylococcus aureus* (MRSA), *Bacillus substili, Salmonella typhimurium, Pseudomonas aeruginosa, Candida albicans, Aspergillus ochraceaus* and *Saccharomyces cerevisiae*. However, no activity was observed in the crude extracts of both *Garcinia mangostana* L. and *Piper betle*. The same results were obtained for the cytotoxic activity using Tetrazolium Salt (MTT) assay. When tested for antioxidant by using 1,2-Diphenyl-2-picrylhydrayl (DPPH), all the crude extracts failed to exhibit any activity. However two of the isolated compounds, epicatechin (39) and 2-allyl-3,4-dihydroxybenzaldehyde (115) showed strong activity with IC$_{50}$ < 7.81 μg/mL in comparison with the standard, ascorbic acid (IC$_{50}$ < 11.70 μg/mL).
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KANDUNGAN KIMIA DAN AKTIVITI BIOLOGI DARIPADA GARCINIA MANGOSTANA L. DAN PIPER BETLE

Oleh

YEAP SOO FONG

Oktober 2009

Pengerusi : Mawardi bin Rahmani, PhD

Fakulti : Sains

Pemisahan berterusan dengan pelbagai teknik kromatografi ke atas ekstrak buah muda *Garcinia mangostana* L. telah menghasilkan tujuh sebatian kimia yang dikenalpasti sebagai metilparaben (110), metil 3,4,5-trihidroksibenzoat (111), parvifoliol A1 (112), metil 2,3-dihidroksibenzoat (113), asid hidroksi benzoik (114), epikatekin (39) dan juga xanthone iaitu mangostanin (20). Dua sebatian, metilparaben (110) dan metil 3,4,5-trihidroksibenzoat (111) belum pernah dilaporkan berlaku dalam *Garcinia mangostana*. Ini merupakan laporan pertama di mana dua sebatian ini dipisahkan daripada *Garcinia mangostana* dan nama teknikal yang betul untuk metilparaben (110) ialah metil 4-hydroxybenzoat. Pemisahan dan penulenan ekstrak daun *Piper betle* telah mendorong kepada pemisahan dan pengenalpastian empat sebatian iaitu kavibetol (77), 2-hidroksikavikol (80), β-sitosterol (47) dan 2-alil-3,4-dihidroksibenzaldehid (115).

Ujian aktiviti antimikrob ke atas ekstrak mentah kedua-dua tumbuhan dijalankan dengan menggunakan tujuh mikrob iaitu *methicilin resistant Staphylococcus aureus* (MRSA), *Bacillus substili*, *Salmonella typhimurium*, *Pseudomonas aeruginosa*, *Candida albicans*, *Aspergillus ochraceaus* and *Saccharomyces cerevisiae*. Walau bagaimanapun, tiada aktiviti diperhatikan ke atas ekstrak mentah kedua-dua spesies kajian. Keputusan yang sama juga diperoleh untuk ujian aktiviti sitotoksik dengan garam Mikrokultur Tetrazolium (MTT). Apabila diuji aktiviti antioksidan dengan 1,2-difenil-2-pikrilhidrazil (DPPH), didapati semua ekstrak mentah gagal menunjukkan sebarang aktiviti manakala dua sebatian tulen yang diuji, epikatekin (39) dan 2-alil-3,4-dihidroksibenzaldehid (115) menghasilkan aktiviti yang kuat dengan IC₅₀ < 7.81 μg/mL berbanding dengan standard, asid askorbik (IC₅₀ < 11.70 μg/mL).
ACKNOWLEDGEMENTS

I wish to express my sincere, deepest appreciation and gratitude to those involved either direct or indirectly in completing my thesis as well as the challenging research that lies behind. To God, the Lord Almighty where the strength and encouragement were always seek, only by His grace and merciful that kept me going in completing this thesis.

I am indebted to my supervisor, Prof. Dr. Mawardi Rahmani for introducing natural product as well as for his great understanding, advice, and assistance throughout the research and thesis preparation. My sincere and deepest gratitude are also extended to my supervisory committee members Dr. Intan Safinar Ismail and Assoc. Prof. Dr. Radzali Muse. Financial support from Kementerian Pelajaran Malaysia, cooperation and moral support from staffs of SMK Putrajaya Presint 8 (1) are also greatly appreciated.

Thanks also go to instrument officers: En. Johadi (NMR), Pn. Ros (FTIR), En. Zainal (GCMS) and all the staffs of chemistry department. My special and warmest thanks to my labmates: Najihah, Shireen, Parimah, Winda, Rose W., Rufaidah, Maisarah and juniors; friends, Yin Pin, Paw, Ratiah, Mrs Soon, Siew Eng, Wai Ching for their valuable support, understanding and the friendship that will be treasured.

To my beloved husband, Liang Tin Pin and beloved sons (John L.Q.S., Joshua L.Q.Y. and Joseph L.Q.Z), my deepest love for their prayers, understanding, patience, and the hardship that they have to bear with me. Not to forget, my deepest gratitude to my mum, siblings, and Liang’s family members for their moral support and encouragement.
I certify that an Examination Committee has met on 21 October 2009 to conduct the final examination of Yeap Soo Fong on her Master of Science thesis entitled “Chemical Constituents and Biological Activities Of *Garcinia Mangostana* L. and *Piper Betle*” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the Candidate be awarded the relevant degree.

Members of the Examination Committee are as follows:

Gwendoline Ee Cheng Lian, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairperson)

Faujan Bin Hj Ahmad, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mohd Aspollah Sukari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Rafediah Ahmad, PhD
Associate Professor
Faculty of Science
Universiti Teknologi Malaysia
(External Examiner)

__
BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universities Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mawardi Rahmani, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Intan Safinar Ismail, PhD
Faculty of Science
Universiti Putra Malaysia
(Member)

Radzali Muse, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 January 2010
DECLARATION

I declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

YEAP SOO FONG

Date: 1 February 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 General Introduction 1
 1.2 Objectives of Study 3

2 LITERATURE REVIEW
 2.1 Botanical Aspects of The Plants 4
 2.1.1 The Family Guttiferae 4
 2.1.2 Garcinia 4
 2.1.3 Garcinia mangostana L. 5
 2.1.4 The Family Piperaceae 7
 2.1.5 Piper 7
 2.1.6 Piper betle 8
 2.2 Chemical Constituents 9
 2.2.1 Chemical Constituents of Genus Garcinia 9
 2.2.2 Chemical Constituents of Garcinia mangostana L. 14
 2.2.3 Chemical Constituents of Genus Piper 16
 2.2.4 Chemical Constituents of Piper betle 22
 2.3 Biological Activities 24
 2.3.1 Biological Activities of Genus Garcinia 24
 2.3.2 Biological Activities of Garcinia mangostana Linn 26
 2.3.3 Biological Activities of Genus Piper 27
 2.3.4 Biological Activities of Piper betle 29

3 METHODOLOGY
 3.1 Plant Materials 31
 3.2 Instruments 31
 3.2.1 Infrared (IR) 31
 3.2.2 Mass Spectra (MS) 31
 3.2.3 Melting Point 32
 3.2.4 Nuclear Magnetic Resonance (NMR) 32
 3.2.5 Ultraviolet (UV) 32
 3.3 Chromatographic Methods 32
 3.3.1 Column Chromatography 32
3.3.2 Chromatotron
3.3.3 Preparative Layer Chromatography
3.3.4 Thin Layer Chromatography (TLC)

3.4 Extraction and Isolation of Compounds from *Garcinia mangostana* L.
 3.4.1 Extraction of The Young Fruits
 3.4.2 Fractionation of the Chloroform Extract (CC 1)
 3.4.3 Fractionation of the Ethyl acetate Extract (CC 2)

3.5 Extraction and Isolation of Compounds of *Piper betle*
 3.5.1 Extraction of the Leaves
 3.5.2 Fractionation of Chloroform Extract (CC 3)
 3.5.3 Fractionation of Methanol Extract (CC 4)

3.6 Biological Activities
 3.6.1 Microorganisms
 3.6.2 Antimicrobial Activity Assay
 3.6.3 Cytotoxic Assay
 3.6.4 DPPH Free Radical Scavenging Activity

4 RESULTS AND DISCUSSION
4.1 Isolation of Chemical Constituents from *Garcinia mangostana* L. and *Piper betle*
4.2 Chemical Constituents from *Garcinia mangostana* L.
 4.2.1 Characterization of Methylparaben (110)
 4.2.2 Characterization of Methyl 3,4,5-trihydroxybenzoate (111)
 4.2.3 Characterization of Mangostanin (20)
 4.2.4 Characterization of Parvifoliol A1 (112)
 4.2.5 Characterization of Epicatechin (39)
 4.2.6 Characterization of Methyl 3,4-dihydroxybenzoate (113)
4.2.7 Characterization of 4-Hydroxybenzoic acid (114)
4.3 Chemical Constituents from *Piper betle*
 4.3.1 Characterization of Chavibetol (77)
 4.3.2 Characterization of β-Sitosterol (47)
 4.3.3 Characterization of 2-Hydroxychavicol (80)
 4.3.4 Characterization of 2-allyl-3,4-dihydroxybenzaldehyde (115)
4.4 Bioassay Results
 4.4.1 Antimicrobial Assay
 4.4.2 Cytotoxic Assay
 4.4.3 DPPH Free Radical Scavenging Activity

5 CONCLUSIONS

BIBLIOGRAPHY
APPENDIX
BIODATA OF STUDENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phytochemical from eleven Piper species</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Compounds isolated from Garcinia mangostana L. and Piper betle</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>NMR spectral data of methylparaben (110)</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>NMR spectral data of methyl 3, 4, 5-trihydroxybenzoate (111)</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>NMR spectral data of mangostanin (20)</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>NMR spectral data of parvifoliol A1 (112)</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>NMR spectral data of epicatechin (39)</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>NMR spectral data of methyl 3,4-dihydroxybenzoate (113)</td>
<td>104</td>
</tr>
<tr>
<td>9</td>
<td>NMR spectral data of 4-hydroxybenzoic acid (114)</td>
<td>112</td>
</tr>
<tr>
<td>10</td>
<td>NMR spectral data of chavibetol (77)</td>
<td>121</td>
</tr>
<tr>
<td>11</td>
<td>NMR spectral data of β-sitosterol (47)</td>
<td>130</td>
</tr>
<tr>
<td>12</td>
<td>NMR spectral data of 2-hydroxychavicol (80)</td>
<td>136</td>
</tr>
<tr>
<td>13</td>
<td>NMR spectral data of 2-allyl-3,4-dihydroxybenzaldehyde (115)</td>
<td>146</td>
</tr>
<tr>
<td>14</td>
<td>The diameter of inhibition zone (mm) of pathogenic bacteria</td>
<td>153</td>
</tr>
<tr>
<td>15</td>
<td>The diameter of inhibition zone (mm) of pathogenic fungi</td>
<td>154</td>
</tr>
<tr>
<td>16</td>
<td>Cytotoxicity of crude extracts towards HL-60 (human promyelocytic leukemia cells)</td>
<td>155</td>
</tr>
<tr>
<td>17</td>
<td>The IC<sub>50</sub> value of crude extracts of Garcinia mangostana L. and Piper betle towards DPPH free radical</td>
<td>156</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IR spectrum of methylparaben (110)</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>EI mass spectrum of methylparaben (110)</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>1H-NMR spectrum of methylparaben (110)</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>13C-NMR spectrum of methylparaben (110)</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>DEPT spectra of methylparaben (110)</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>COSY spectrum of methylparaben (110)</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>HMQC spectrum of methylparaben (110)</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>HMBC spectrum of methylparaben (110)</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>IR spectrum of methyl 3, 4, 5-trihydroxybenzoate (111)</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>EI mass spectrum of methyl 3, 4, 5-trihydroxybenzoate (111)</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>1H-NMR spectrum of methyl 3, 4, 5-trihydroxybenzoate (111)</td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>13C-NMR spectrum of methyl 3, 4, 5-trihydroxybenzoate (111)</td>
<td>65</td>
</tr>
<tr>
<td>13</td>
<td>DEPT spectra of methyl 3, 4, 5-trihydroxybenzoate (111)</td>
<td>66</td>
</tr>
<tr>
<td>14</td>
<td>COSY spectrum of methyl 3, 4, 5-trihydroxybenzoate (111)</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>HMQC spectrum of methyl 3, 4, 5-trihydroxybenzoate (111)</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>HMBC spectrum of methyl 3, 4, 5-trihydroxybenzoate (111)</td>
<td>69</td>
</tr>
<tr>
<td>17</td>
<td>IR spectrum of mangostanin (20)</td>
<td>73</td>
</tr>
<tr>
<td>18</td>
<td>EI mass spectrum of mangostanin (20)</td>
<td>74</td>
</tr>
<tr>
<td>19</td>
<td>Mass fragmentation patterns of mangostanin (20)</td>
<td>74</td>
</tr>
<tr>
<td>20</td>
<td>1H-NMR spectrum of mangostanin (20)</td>
<td>75</td>
</tr>
<tr>
<td>21</td>
<td>13C-NMR spectrum of mangostanin (20)</td>
<td>76</td>
</tr>
</tbody>
</table>
DEPT spectra of mangostanin (20) 77
COSY spectrum of mangostanin (20) 78
HMQC spectrum of mangostanin (20) 79
HMBC spectrum of mangostanin (20) 80
Parvifoliol A 83
IR spectrum of parvifoliol A1 (112) 84
EI mass spectrum of compound (112) 85
1H-NMR spectrum of parvifoliol A1 (112) 86
13C-NMR spectrum of parvifoliol A1 (112) 87
DEPT spectra of parvifoliol A1 (112) 88
COSY spectrum of parvifoliol A1 (112) 89
HMQC spectrum of parvifoliol A1 (112) 90
HMBC spectrum of parvifoliol A1 (112) 91
IR spectrum of epicatechin (39) 94
UV spectrum of epicatechin (39) 95
EI mass spectrum of epicatechin (39) 95
Mass fragmentation patterns of epicatechin (39) 95
1H-NMR spectrum of epicatechin (39) 96
13C-NMR spectrum of epicatechin (39) 97
DEPT spectra of epicatechin (39) 98
COSY spectrum of epicatechin (39) 99
HMQC spectrum of epicatechin (39) 100
HMBC spectrum of epicatechin (39) 101
IR spectrum of methyl 3,4-dihydroxybenzoate (113) 104
46 EI mass spectrum of methyl 3,4-dihydroxybenzoate (113)
47 1H-NMR spectrum of methyl 3,4-dihydroxybenzoate (113)
48 13C-NMR spectrum of methyl 3,4-dihydroxybenzoate (113)
49 DEPT spectra of methyl 3,4-dihydroxybenzoate (113)
50 COSY spectrum of methyl 3,4-dihydroxybenzoate (113)
51 HMQC spectrum of methyl 3,4-dihydroxybenzoate (113)
52 HMBC spectrum of methyl 3,4-dihydroxybenzoate (113)
53 IR spectrum of 4-hydroxybenzoic acid (114)
54 EI mass spectrum of 4-hydroxybenzoic acid (114)
55 1H-NMR spectrum of 4-hydroxybenzoic acid (114)
56 13C-NMR spectrum of 4-hydroxybenzoic acid (114)
57 COSY spectrum of 4-hydroxybenzoic acid (114)
58 HMQC spectrum of 4-hydroxybenzoic acid (114)
59 HMBC spectrum of 4-hydroxybenzoic acid (114)
60 IR spectrum of chavibetol (77)
61 EI mass spectrum of chavibetol (77)
62 1H-NMR spectrum of chavibetol (77)
63 13C-NMR spectrum of chavibetol (77)
64 DEPT spectra of chavibetol (77)
65 COSY spectrum of chavibetol (77)
66 HMQC spectrum of chavibetol (77)
67 HMBC spectrum of chavibetol (77)
68 IR spectrum of β-sitosterol (47)
69 EI mass spectrum of β-sitosterol (47)
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>1H-NMR spectrum of β-sitosterol (47)</td>
<td>132</td>
</tr>
<tr>
<td>71</td>
<td>13C-NMR spectrum of β-sitosterol (47)</td>
<td>133</td>
</tr>
<tr>
<td>72</td>
<td>IR spectrum of 2-hydroxylchavicol (80)</td>
<td>137</td>
</tr>
<tr>
<td>73</td>
<td>EI mass spectrum of 2-hydroxylchavicol (80)</td>
<td>137</td>
</tr>
<tr>
<td>74</td>
<td>1H-NMR spectrum of 2-hydroxylchavicol (80)</td>
<td>138</td>
</tr>
<tr>
<td>75</td>
<td>13C-NMR spectrum of 2-hydroxylchavicol (80)</td>
<td>139</td>
</tr>
<tr>
<td>76</td>
<td>DEPT spectra of 2-hydroxylchavicol (80)</td>
<td>140</td>
</tr>
<tr>
<td>77</td>
<td>COSY spectrum of 2-hydroxylchavicol (80)</td>
<td>141</td>
</tr>
<tr>
<td>78</td>
<td>HMQC spectrum of 2-hydroxylchavicol (80)</td>
<td>142</td>
</tr>
<tr>
<td>79</td>
<td>HMBC spectrum of 2-hydroxylchavicol (80)</td>
<td>143</td>
</tr>
<tr>
<td>80</td>
<td>IR spectrum of 2-allyl-3,4-dihydroxybenzaldehyde (115)</td>
<td>146</td>
</tr>
<tr>
<td>81</td>
<td>EI mass spectrum of compound (115)</td>
<td>146</td>
</tr>
<tr>
<td>82</td>
<td>1H-NMR spectrum of 2-allyl-3,4-dihydroxybenzaldehyde (115)</td>
<td>147</td>
</tr>
<tr>
<td>83</td>
<td>13C-NMR spectrum of 2-allyl-3,4-dihydroxybenzaldehyde (115)</td>
<td>148</td>
</tr>
<tr>
<td>84</td>
<td>DEPT spectra of 2-allyl-3,4-dihydroxybenzaldehyde (115)</td>
<td>149</td>
</tr>
<tr>
<td>85</td>
<td>COSY spectrum of 2-allyl-3,4-dihydroxybenzaldehyde (115)</td>
<td>150</td>
</tr>
<tr>
<td>86</td>
<td>HMQC spectrum of 2-allyl-3,4-dihydroxybenzaldehyde (115)</td>
<td>151</td>
</tr>
<tr>
<td>87</td>
<td>HMBC spectrum of 2-allyl-3,4-dihydroxybenzaldehyde (115)</td>
<td>152</td>
</tr>
<tr>
<td>88</td>
<td>Mechanism of DPPH free radical scavenging of antioxidant</td>
<td>156</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
<tr>
<td>δ</td>
<td>delta</td>
</tr>
<tr>
<td>δ</td>
<td>chemical shift in ppm</td>
</tr>
<tr>
<td>λ_{max}</td>
<td>maximum wavelength in nm</td>
</tr>
<tr>
<td>μ</td>
<td>microgram</td>
</tr>
<tr>
<td>μL</td>
<td>microliter</td>
</tr>
<tr>
<td>^{13}C</td>
<td>carbon-13</td>
</tr>
<tr>
<td>°C</td>
<td>degree celcius</td>
</tr>
<tr>
<td>CDCl$_3$</td>
<td>deuterated chloroform</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>chloroform</td>
</tr>
<tr>
<td>cm$^{-1}$</td>
<td>per centimeter</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlated Spectroscopy</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>dd</td>
<td>doublet of doublet</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by Polarization Transfer</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>EtOAC</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>EIMS</td>
<td>Electron Impact Mass Spectrometry</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas Chromatography-mass spectroscopy</td>
</tr>
<tr>
<td>^{1}H</td>
<td>proton</td>
</tr>
</tbody>
</table>
hex hexane
HMBC Heteronuclear Multiple Bond Connectivity by 2D Multiple
HMQC Heteronuclear Multiple Quantum Coherence
IC₅₀ Inhibition Concentration at 50 percent
Id Inhibition diameter
br broad
t triplet
s singlet
m multiplet
MeOH methanol
m.p melting point
MS mass spectrum
m/z mass per charge
NMR Nuclear Magnetic Resonance
TLC Thin Layer Chromatography
IR Infrared
UV Ultraviolet
ε molar absorptivity
CHAPTER I

INTRODUCTION

1.1 General Introduction

Focus on plant research has recently increased all over the world. It is well known that plants synthesize poisonous chemicals to defend themselves against hostile environment and various predators. Some of these chemicals are very dangerous to human, but some may be very useful and can be used to treat diseases. Research on medicinal plants, especially in tropical areas of the Ancient World, is of special importance from a therapeutic point of view. Nature, both flora and fauna give us some interesting model compounds, providing chemists with lead compounds for the design and synthesis of more pharmacologically viable derivatives.

Natural product research plays a significant role in drug discovery especially in nutraceuticals, agrochemicals and traditional medicines research. Two of the challenges in natural products research are the unknown nature and complexity of natural products extracts and the detection of minor active compounds in biological assay.

Nature probably provides unlimited sources of valuable secondary metabolites, which might be of high biological importance for several kinds of applications. The World Health Organization has listed over 21,000 plant species used around the world for medicinal purposes. Asian countries are enormously rich in still widely unexplored medicinal plants and natural products of unknown biological activities. Malaysia is identified as one of 12 mega-diversity countries in the world. It is estimated that 1,200
plants species in Peninsular Malaysia and 2000 species in Sabah and Sarawak have been harvested for medicinal or herbal purposes (Perry, 1980). The rainforest of Malaysia is rich with many species of herbal and medicinal plants and offers great opportunities for chemical investigation. However, the research on higher plant as a natural source of drugs is still largely unexplored. According to Perry (1980), there are 12000 species of flowering plants found in Malaysia. Unfortunately, only about 100 of 1300 that are said to be medicinal have been investigated. Hence, there is huge potential in research on medicinal plants.

Garcinia mangostana L. is well studied plant of its different parts like leaves, heartwood, ripe fruits and especially fruit hull (pericarp or rind) which was reported to be a source of mangostin, xanthone, tannin, isoflavone and other bioactive substances (Deachathai *et al.*, 2005). However, phytochemical investigation of whole young fruit of *Garcinia mangostana* L. has never been reported. Hence, it was chosen to be studied further for its chemical constituent and biological activity. While *Piper betle* leaves were studied in order to identify the bioactive substance as it is widely use in traditional medicine in Malaysia.
1.2 Objectives of Study

The objectives of this study are:

1. To extract and isolate the chemical constituents of the young fruits of *Garcinia mangostana* L. and *Piper betle* leaves using chromatographic techniques.

2. To identify and elucidate the structure of the isolated pure compounds using various spectroscopic techniques (IR, UV, MS and NMR).

3. To test the bioactivity of the crude extracts and isolated compounds.
CHAPTER 2
LITERATURE REVIEW

2.1 Botanical Aspects Of The Plants

2.1.1 The Family Guttiferae

The Guttiferae is widely distributed family of evergreen tropical trees with milky or colored sap, comprising of about 40 genera and 1000 species. It is also known as Clusiaceae and mainly found in humid and hot regions (Babu et al., 1988). There are 4 genera and 121 species found spreading in all kind of habitats in Malaysia with the most common genera of *Garcinia*, *Calophyllum*, *Mesua* and *Mammea*. *Garcinia* and *Mesua* can be found in dry land forests; *Calophyllum* in swampy forests while *Mesua* in lowlands (Morton, 1987).

Guttiferae plants grow as trees, shrubs and herbs with yellow or brightly coloured resinous juice which can be used as timber and as a source of resins, gums, pigments, dyes, edible oil and fruits (Mabberly, 1987). The leaves are simple, entire, opposite and stipulate with the present of resin or oil gland. The flowers are regular and often bright in colour (Dale and Greenway, 1961).

2.1.2 *Garcinia*

Garcinia is the most numerous genus of the Guttiferae family with about 400 species widely distributed in tropical Asia, Africa, New Caledonia and Polynesia (Morton,
Plants of this genus normally reach up to 20 metres in height; have green leaves, edible fruits and produce yellow latex or resins.

Garcinia is well known as a genus of fruit trees in Malaysia. The fruits of many species are edible. Mangosteen (*Garcinia mangostana* L.) in which the flesh is encased within an outer harden shell (rind) is eaten fresh; the acidic fruits like *Garcinia atroviridis, Garcinia cambogia* and *Garcinia planconi* serve as a substitute for tamarind in curries. Furthermore, the fruits can be preserved in a dry state, with or without the aid of salt (Burkill, 1993).

Garcinia is often used for traditional medicines to threat abdominal pain, dysentery, diarrhoea, infected wound and gonorrhoea (Jayaprakasha *et al.*, 2006). The fruits of *Garcinia xanthochymus* have been widely used for bilious condition, diarrhoea and dysentery in Thailand (Perry, 1980). Meanwhile the fruit hull of *Garcinia mangostana* L. used for healing skin infections and wound (Mahabusarakum *et al.*, 1987). In Indonesia, the leaves and seeds of *Garcinia dulcis* have been used for the treatment of lymphatitis, parotitis and struma (Kosela *et al.*, 2000).

2.1.3 *Garcinia mangostana* L.

The origin of *Garcinia mangostana* L. is in Southeast Asia and distributed in Northern Australia, Brazil, Central America, Hawaii, Southern India, Indonesia, Malaysia, Thailand and other tropical countries (Morton, 1987).