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i 

 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the degree of Master of Science 

 

 

WEIGHTED BLOCK RUNGE-KUTTA METHODS FOR SOLVING STIFF 

ORDINARY DIFFERENTIAL EQUATIONS 

 

 

By 

 

SAUFIANIM BINTI JANA AKSAH 

 

May 2016 

 

 

 

Chairman :  Zarina Bibi Binti Ibrahim, PhD 

Faculty :  Science 

 

 

Weighted Block Runge-Kutta (WBRK) methods are derived to solve first order 

stiff ordinary differential equations (ODEs). The proposed methods approximate 

solutions at two points concurrently in a block at each step. Three sets of weight 

are chosen and implemented to the WBRK methods. Stability regions of the 

WBRK methods with each set of weight are constructed by using MAPLE14. 

Stability properties of the proposed methods with each weight show that the 

methods are suitable for solving stiff ODEs.  

 

Numerical results are presented and illustrated in the form of efficiency curves. 

Performances of the WBRK methods in terms of maximum error and 

computational time are compared with the third order Runge-Kutta (RK3) and the 

modified weighted RK3 method based on centroidal mean (MWRK3CeM). These 

methods are tested with problems of single and system of first order stiff ODEs. 

Comparison of the proposed methods between sets of weight is also analyzed. The 

numerical results are obtained by using MATLAB R2011a.  

 

Numerical results generated show that the WBRK methods obtained better 

accuracy and less computational time than the RK3 and MWRK3CeM method.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

 

 

KAEDAH BLOK RUNGE-KUTTA BERPEMBERAT UNTUK 

MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA KAKU 

 

 

Oleh 

 

SAUFIANIM BINTI JANA AKSAH 

 

Mei 2016 

 

 

Pengerusi :  Zarina Bibi Binti Ibrahim, PhD 

Fakulti :  Sains 

 

 

Kaedah Blok Runge-Kutta Berpemberat (BRKB) dibina untuk menyelesaikan 

persamaan pembezaan biasa (PPB) kaku peringkat pertama. Kaedah yang 

dicadangkan ini menganggarkan penyelesaian pada dua titik serentak dalam satu 

blok pada setiap langkah. Tiga set pemberat dipilih dan dilaksanakan pada kaedah 

BRKB. Rantau kestabilan kaedah BRKB dengan setiap set pemberat dibina dengan 

menggunakan MAPLE14. Sifat kestabilan kaedah yang dicadangkan dengan setiap 

pemberat menunjukkan bahawa kaedah tersebut sesuai untuk menyelesaikan PPB 

kaku. 

 

Keputusan berangka diberikan dan diilustrasikan dalam bentuk lengkungan 

kecekapan. Prestasi kaedah BRKB dalam bentuk ralat maksima dan masa 

pengiraan dibandingkan dengan kaedah Runge-Kutta peringkat ketiga (RK3) dan 

kaedah RK3 berpemberat yang diubah suai berdasarkan min sentroid (RK3PDMS). 

Kaedah-kaedah ini diuji dengan masalah PPB kaku peringkat pertama tunggal dan 

sistem. Perbandingan antara set-set pemberat kaedah yang dicadangkan juga 

dianalisis. Keputusan berangka diperoleh dengan menggunakan MATLAB 

R2011a. 

 

Keputusan yang dihasilkan menunjukkan bahawa kaedah BRKB memperoleh 

ketepatan yang lebih baik dan masa pengiraan yang lebih cepat daripada kaedah 

RK3 dan RK3PDMS.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Preliminaries  

 

Many problems in engineering, physical and social sciences are reduced to 

quantifiable form through the process of mathematical modeling that involved 

differential equations (DEs). For instance, the spread of epidemic in a population. 

This model enables researchers to prove the famous “Threshold Theorem of 

Epidemiology” which states that an epidemic will occur only if the number of 

people susceptible to the disease exceeds a certain threshold value (Ismail, 1999). 

Another example is the design of catenary curve shape of the Gateway Arch in St. 

Louis which is based on the solution graph of DEs (Becker, 2012). These problems 

are very difficult and complicated to be solved analytically, therefore researchers 

used numerical methods to solve them.  

 

1.2 Differential Equation 

 

A DE is an equation that involves one or more derivatives of some unknown 

function or functions. There are various types of DEs. Some of the commonly 

known are ordinary differential equations (ODEs) and partial differential equations 

(PDEs). ODEs involve ordinary derivatives which contains a single independent 

variable and one or more dependent variables as shown  

 
2

2
, , , ,..., 0.

n

n

dy d y d y
f x y

dx dx dx

 
 

 
 

 

Usually, the independent variable is denoted by x  and the dependent variable is y .  

On the other hand, PDEs involve partial derivatives with more than one 

independent variable and one or more dependent variables of the form 

 
2 2

1

1 1 1 1

,..., , , ,..., ,..., ,..., ,... 0n

n n

y y y y
f x x y

x x x x x x

    
 

      
. 

 

One characteristic of DE is the order which is the highest derivative appearing in 

the equation represent by n  as shown in the above functions.  
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1.3 Problem Statement 

 

This research focuses in solving problems of first order stiff ODEs of the form 

 

         ' , ,y x f x y y a            (1.1) 

 

where      1 2, ,...,
T

ny y x y x y x    and      1 2, , , ,..., ,
T

nf f x y f x y f x y    with 

 1 2, ,...,
T

n    is a known vector.  

 

Throughout this research, we shall assume that  ,f x y  satisfies the following 

theorem that guarantees the existence of a unique solution of Eq. (1.1) as stated by 

Lambert (1973). 

 

Theorem 1.1 

Let  ,f x y  be defined and continuous for all points  ,x y  in the region D  

defined by a x b  , y   , a  and b  finite, and let there exist a constant L  

such that, for every x , y , *y  such that  ,x y  and  , *x y  are both in D , 

 

       , , * *f x y f x y L y y   .        (1.2) 

 

Proof: see Henrici (1962). 

 

Then, if   is any given number, there exists a unique solution  y x  of the initial 

value problem (IVP) (1.1), where  y x  is continuous and differentiable for all 

 ,x y  in D . The requirement (1.2) is known as Lipschitz condition, and the 

constant L  as a Lipschitz constant.  

 

1.4 Numerical Methods 

 

The exact solution of IVP (1.1) can be approximated by using numerical method. 

Generally, there are two classes of methods; a one-step method and a linear 

multistep method (LMM). One-step method uses the solution of current point for 

example, n
y , as initial value to compute solution at the next point, 1n

y
 . On the 

other hand, multistep method uses information from the previous steps to calculate 

the next value.  
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Euler‟s method is the easiest and widely used numerical method for solving IVP 

(1.1). It is written as 

 

 1 ,n n n n ny y hf x y hf    . 

 

The Euler‟s method is an explicit one-step method that does not requires any 

additional starting values. It is also readily permits a change of steplength during 

the computation. The most famous family of one-step method is Runge-Kutta (RK) 

methods.  

 

By referring to IVP (1.1), we indicate the solution by ( )y x . Next, we consider the 

sequence points  nx  defined by ,nx a nh   0,1, 2,...n   where h  is the step size. 

Let ny  be an approximation to the theoretical solution ,nx  that is, to  ny x , and let 

 ,n n nf f x y . If a computational method for determining the sequence  ny takes 

the form of a linear relationship between n iy   and n if   with 0,1,..., ,i k we call the 

method as LMM of step number k .  

 

The general LMM can be written as 

 

0 0

k k

i n i i n i

i i

y h f  

 

   

 

where i  and i  are constants. The method is explicit when 0k   and implicit 

when 0k  . Iterative methods such as Newton‟s method are often used to solve 

the implicit formula.  

 

In certain cases, an explicit LMM is used to “predict” the value of n iy  . That value 

is then used in an implicit formula to “correct” the value. The result is a predictor-

corrector method. There are three families of LMM; Adams-Bashforth methods, 

Adams-Moulton methods, and the backward differentiation formula (BDF). Further 

information on LMM can be found in Lambert (1973). 

 

1.5 Runge-Kutta Methods 

 

RK methods assumed that correct value of the slope over the step can be written as 

a linear combination of function ( , )f x y  evaluated at certain points at the step. RK 

methods may be regarded as a particular case of the general explicit one-step 

method of the form 
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     1 , , .n n n ny y h x y h                       (1.3) 

 

 

Definition 1.1 

Eq. (1.3) is said to have order p if p is the largest integer for which 

 

        1, , py x h y x h x y x h O h      

 

holds, where  y x  is the theoretical solution of the IVP shown in Eq. (1.1). 

 

Definition 1.2  
Eq. (1.3) is consistent with the IVP (1.1) if 

 

   , ,0 , .x y f x y   

 

Definition 1.3 

Eq. (1.3) is convergent by the following properties: 

 

(i) Let the function  , ,x y h  be jointly continuous as a function of its three 

arguments, in the region D  defined by    , , , ,x a b y    and 

 00,h h with 0 0.h   

 

(ii)  Let  , ,x y h  satisfy a Lipschitz condition of the form 

   * *, , , ,x y h x y h M y y     for all points  *, ,x y h  and  , ,x y h  in 

D . 

 

Eq. (1.3) is convergent if and only if it is consistent (Lambert, 1973). 

 

In addition, Lambert also considers that conditions (i) and (ii) are satisfied if the 

function satisfies the condition stated in Theorem 1.1. It is also mentioned that 

there is no requirement regarding the zero stability, since no parasitic solutions can 

arise with a one-step method. 

 

In this research, we are using explicit third order RK (RK3) methods as the basic 

for development of the proposed method. The formula below shows the general 

form of classical RK3 methods as shown in Lambert (1973). 

 

    
1 1 2 3( 4 ),

6
n n

h
y y k k k              (1.4) 
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where 

 

 

1

2 1

3 1 2

( , ),

1 1
( , ),

2 2

( , 2 ).

n n

n n

n n

k f x y

k f x h y hk

k f x h y hk hk



  

   

 

 

1.6 Stability of Runge-Kutta Methods 

 

The stability theory in numerical analysis is concerned with the growth of 

numerical errors in computed solution of the DE. The linear stability and accuracy 

of explicit RK methods are characterized completely by the stability function of the 

method, which in turn dictates the acceptable stepsize as stated by Butcher (2008b). 

The following stability analysis for explicit RK methods and proof for the stated 

theorem are shown in Hairer and Wanner (1991). 

 

Definition 1.4  

The function ( )R z  is called the stability function of the method. It can be 

interpreted as the numerical solution after one step for 

 

0' , 1, ,y y y z h     

 

the famous Dahlquist test equation. The set  

 

  1;S z C R z    

 

is called the stability domain of the method. 

 

Theorem 1.2 

If RK method is of order p , then 

   
2

11 ...
2! !

p
pz z

R z z O z
p

       

with  .h z   
 

As referred in Rahim (2004), absolute stability can also be defined as follows. 

 

Definition 1.5 

By letting z h , then ( )R z  is known as the stability function of the method. 

Hence, 0
n

y   as 0n   if and only if  
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     ( ) 1R z            (1.5) 

 

 and the method is absolutely stable for those value of z  for which Eq. (1.5) holds. 

The region 
A

  of the complex z  plane which Eq. (1.5) holds is the region of 

absolute stability of the method. 

 

Burden et al. (2015) stated that a method can be applied effectively to a stiff 

equation only if h  is in the region of absolute stability of the method which will 

results in a restriction on the size of h . The condition also applies for the 

approximation to decay to zero and the growth of error to be under control. The 

absolute criterion forces h  to remain small. 

 

1.7 Stiff Systems of Ordinary Differential Equations 

 

Many fields of application, notably chemical engineering and control theory yield 

IVPs that sometimes exhibit a phenomenon known as stiffness (Akanbi et al., 

2011). There has been various definition of stiffness used by former researchers as 

mention in the literature with respect to the linear system of first order equation 

which defined as below 

 

      ' , ,y Ay x y a a x b             (1.6) 

 

where  1 2, ,...,T

my y y y ,  1 2, ,...,T

m    , and A  is an m m  matrix with the 

eigenvalues , 1,2,...,i i m  . In this research, we used the most widely accepted 

definition of stiffness given by Lambert (1973). 

 

Definition 1.6 

The linear system (1.6) is said to be stiff if 

 

(i)  Re 0, 1,2,...,i i m    and 

 

(ii)    i
i

i
i

 ReminRemax  , where i are the eigenvalues of A , and the ratio 

 

 

max Re

min Re

i
i

i
i

S



  is called the stiffness ratio. By following the definition 

above, stiff problem has 1.S   
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Next, we will discuss on mean and introduce some of the means that commonly 

used in mathematics. These means are then represented in a trapezoid to show the 

connection between each means. 

 

1.8 Mean 

 

According to Umberger (2000), there are many types of mean in mathematics 

represent by different equations. However, most people memorize these equations 

without making a relation to geometrical form of the means. Umberger had 

presented seven types of mean –arithmetic mean (AM), geometric mean (GM), 

harmonic mean (HaM), heronian mean (HeM), contraharmonic  mean (CoM), root 

mean square (RMS) and centroidal mean (CeM)- and shows how to construct them 

in a trapezoid.  

 

Figure below is an example of trapezoid containing all seven means. 

 

 

   
 

Figure 1.1: Trapezoid with Means. 

 

As for this research, we are focusing on CeM. CeM is the length of a segment 

which is parallel to the bases a and b of the trapezoid, and also passes through the 

centroid area of the trapezoid as shown in Figure 1.1. CeM of any two real numbers 

a  and b  can be represented by the following equation. 

 

 
 

2 22
.

3

a ab b
CeM

a b

 



 

 

A detailed step-by-step construction of each means in a trapezoid can be found in 

Umberger (2000).  

 

 HaM 

 GM 

 HeM 

 AM 

 CeM 

 RMS 

 CoM 
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1.9 Objective of the Thesis 
 

In this research, we develop a block method based on RK method for solving first 

order stiff ODEs. The aims in developing a block method are to reduce the 

computational time and improve accuracy of the proposed methods when 

compared with existing methods.  

 

Objectives of this thesis are 

 

i. to develop weighted block RK (WBRK) methods for solving first order 

stiff ODEs, 

 

ii. to implement the new developed methods on stiff ODEs problems in order 

to test the performance of the methods, 

 

iii. to construct the stability regions of the WBRK methods with different sets 

of weight and analyze their stability properties to indicate that the methods 

are suitable for solving first order stiff ODEs, and 

 

iv. to determine the accuracy and efficiency of the WBRK methods between 

weights and between the existing methods.  

 

1.10 Planning of the Thesis 
 

In Chapter 1, we give some introductions on DE that related to the research. Then, 

a brief statement regarding the problem that need to be solved is also included. 

Numerical methods that are commonly used in solving ODEs problems are 

discussed. This leads to introduction on the RK method and its stability properties. 

Definition of stiff system for solving ODEs is presented. Means in a trapezoid is 

defined in this chapter. The objective and planning of the thesis are also discussed. 

 

In Chapter 2, we review on the literature of the classical RK methods and stiffness. 

Some historical background of mean and block methods related to the research are 

also discussed. 

 

Derivation of CeM by Pushpam & Dhayabaran (2011), and modified weighted 

RK3 based on CeM (MWRK3CeM) method by Sharmila & Amirtharaj (2011) are 

discussed in the beginning of Chapter 3. Then, we present the modification of 

MWRK3CeM to form the new proposed methods called the WBRK methods. The 

general form of the methods is presented in the chapter. Implementation of the 

chosen sets of weight to the WBRK methods can be found in the subsections of 

Chapter 3. 
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In Chapter 4, we study the stability of the WBRK methods with different sets of 

weight. In order to do so, we construct the stability regions of the methods for each 

weight from the stability polynomial of the proposed methods.  Then, we analyze 

the stability properties of each set of weight. 

 

Numerical results are presented in Chapter 5. In the chapter, we present the 

problems of single and system of first order stiff ODEs. These problems are tested 

with different stepsizes to see the relationship between the stepsizes and the 

accuracy of the proposed methods. Comparisons are made with the RK3 method 

and MWRK3CeM in terms of maximum error and computational time of the 

proposed methods with the comparing methods to analyze the performances of the 

methods. The comparison is also made between the sets of weight implemented. 

Results are presented in table form and illustrated in efficiency curve. The results 

are analyzed and discussed. 

 

Finally, Chapter 6 will summarize the findings of the research and suggestions for 

related future studies. 
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