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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

DERIVATIONS AND CENTROIDS OF FINITE DIMENSIONAL
DIALGEBRAS

By

MOHAMED ABUBAKAR HAGI MOHAMED

July 2016

Chairman : Isamiddin S. Rakhimov, PhD
Faculty : Science

The thesis deals with the derivations, generalized derivations and centroids of associa-
tive and diassociative algebras. In all the cases, we give an algorithm to find the deriva-
tion algebras. The algorithm is applied to compute the derivations of low dimensional
diassociative algebras. Having found the derivations, we determine those diassociative
algebras that are characteristically nilpotent. Some basic properties of derivations in
terms of left and right multiplication operators are also given for each case.

We introduce a generalization of derivation of diassociative algebras and study its prop-
erties. The generalization of derivation depends on parameters (α,β ,γ); we specify all
possible values of the parameters. All of the generalized derivations of low-dimensional
complex diassociative algebras are given.

We also introduce the concept of centroid for associative and diassociative algebras
and study some of their properties. An algorithm to find centroids of algebras is given
as well. The algorithm is then applied to determine the centroids of low-dimensional
algebras.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

TERBITAN DAN SENTROID BAGI DIMENSI TERHINGGA
DWIALJABAR

Oleh

MOHAMED ABUBAKAR HAGI MOHAMED

Julai 2016

Pengerusi : Isamiddin S. Rakhimov, PhD
Fakulti : Sains

Tesis ini berurusan dengan terbitan, terbitan teritlak dan sentroid bagi aljabar bersekutu
dan dwibersekutu. Dalam semua kes, kami memberikan satu algoritma untuk mencari
terbitan aljabar. Algoritma ini digunakan untuk mengira terbitan bagi dimensi rendah
aljabar dwibersekutu. Setelah mendapati terbitan tersebut, kita menentukan aljabar
dwibersekutu tersebut yang mana berciri nilpoten. Sesetengah sifat asas terbitan dalam
sebutan pengoperasi-pengoperasi pendaraban kiri dan kanan juga diberi bagi setiap kes.

Kami memperkenalkan pengitlakan terbitan aljabar dwibersekutu dan mengkaji sifat-
sifatnya. Pengitlakan terbitan ini bergantung pada parameter (α,β ,γ); kita menentukan
semua nilai yang mungkin bagi parameter. Semua terbitan teritlak berdimensi rendah
bagi aljabar dwibersekutu kompleks diberikan.

Kami juga memperkenalkan konsep sentroid bagi aljabar bersekutu dan dwibersekutu
dan mengkaji beberapa sifatnya. Algoritma untuk mencari sentroid aljabar tersebut
juga diberikan. Algoritma ini kemudiannya digunakan untuk menentukan sentroid
bagi aljabar berdimensi rendah.

ii



© C
OPYRIG

HT U
PM

ACKNOWLEDGEMENTS

First of all, I am thankful to Allah for giving me the strength, guidance and patience to
complete this thesis. May blessing and peace be upon Prophet Muhammad Sallalaha
Alaihi Wasallam, who was sent for mercy to the world.

I am sincerely grateful to Professor, Dr. I.S. Rakhimov, chairman of the supervisory
committee, for giving me the opportunity to work under his supervision. I thank him
for his excellent supervision, invaluable guidance, helpful discussions and continuous
encouragement, genuine interest in my research and career, never being too busy to set
regular meeting time, stimulating conversations and valuable advice on many topics,
for his patience and last but not least for making sure that I stayed on track. I highly
appreciate his assistance and commitment in preparation and completion of this thesis.
He is everything that one could hope for in a supervisor, and more.

Here, I want to thank Dr. Ikrom Rikhsiboev, for his insight and helpful guidance,
idea contributions and motivations during my study. Many thanks to, Dr. Sharifah
Kartini Binti Said Husain, senior lecturer of Mathematics Department, UPM and to
Prof.Madya, Dr. Hishamuddin B Zainuddin , the deputy director of Institute for Mathe-
matical Research (INSPEM) for their encouragements. Also to Dr Witriany Binti Basri
for her cooperation and guidence. I would like to take this opportunity to thank Mo-
gadishu University in Somalia, too.

I would like to thank my family. Thanks are owed to my dear father; mother; my
brothers; my sisters; my wife and all of my friends who helped me during my study. I
dedicate this work, with love and gratitude, to them.

Last but not least, I am also indebted to my friends in the Mathematics Department of
UPM for all the discussions and assistance held.

iii



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The
members of the Supervisory Committee were as follows:

Isamiddin S. Rakhimov, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairperson)

Hishamuddin B Zainuddin PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Sharifah Kartini BTE Said Husain, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Ikrom M. Rikhsiboev, PhD
Senior Lecturer
Malaysian Institute of Industrial Technology
Universiti Kuala Lumpur, Malaysia
(Member)

BUJANG KIM HUAT, PhD.
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

v



© C
OPYRIG

HT U
PM

Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at

any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Uni-

versiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research)
Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-

Chancellor (Research and Innovation) before thesis is published (in the form of writ-
ten, printed or in electronic form) including books, journals, modules, proceedings,
popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learn-
ing modules or any other materials as stated in the Universiti Putra Malaysia (Re-
search) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Stud-
ies) Rules 2003 (Revision 2012-2013) and the Unievrsiti Putra Malaysia (Research)
Rules 2012. The thesis has undergone plagiarism detection software.

Signature: Date:

Name and Matric No: Mohamed Abubakar Hagi Mohamed, GS35195

vi



© C
OPYRIG

HT U
PM

Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Signature:
Name of Name of
Chairman of Member of
Supervisory Supervisory
Committee: Committee:

Signature: Signature:
Name of Name of
Member of Member of
Supervisory Supervisory
Committee: Committee:

vii



© C
OPYRIG

HT U
PM

TABLE OF CONTENTS

Page

ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENTS iii
APPROVAL iv
DECLARATION vi
LIST OF TABLES x
LIST OF ABBREVIATIONS xi

CHAPTER
1 INTRODUCTION 1

1.1 Introduction 1
1.1.1 Basic concepts 1

1.2 Motivation 9
1.3 Objectives of the research 10
1.4 Thesis Organization 10
1.5 Literature Review 11

2 DERIVATIONS OF LOW-DIMENSIONAL COMPLEX ASSOCIATIVE
ALGEBRAS 15
2.1 Introduction 15
2.2 An algorithm for finding derivations 17

2.2.1 Two-dimensional associative algebras 17
2.2.2 Three-dimensional associative algebras 20
2.2.3 Four-dimensional associative algebras 22

2.3 Summary 29

3 ON DERIVATIONS OF SOME CLASSES OF DIALGEBRAS 30
3.1 Introduction 30
3.2 An amendment of the classifications three-dimensional associative di-

algebras 30
3.3 On nilpotency and solvability of associative dialgebras 36
3.4 Procedure to find derivation 42

3.4.1 Inner derivation of associative dialgebras 44
3.4.2 Description of derivations two-dimensional associative dial-

gebras 46
3.4.3 Description of derivations three-dimensional associative dial-

gebras 48
3.4.4 Description of derivations four-dimensional nilpotent asso-

ciative dialgebras 50

viii



© C
OPYRIG

HT U
PM

3.5 Description of the derivations of dendriform algebras 53
3.5.1 Two-dimensional dendriform algebras 54
3.5.2 An algorithm for finding derivations 55

3.6 Summary 58

4 GENERALIZED DERIVATIONS OF DIALGEBRAS 59
4.1 Introduction 59
4.2 (α,β ,γ)-derivations of finite-dimensional dialgebras 62

4.2.1 (α,β ,γ)-derivations of two-dimensional complex diassocia-
tive algebras 66

4.2.2 (α,β ,γ)-derivations of three-dimensional complex diassocia-
tive algebras 67

4.3 Summary 72

5 CENTROIDS OF SOME CLASSES OF ALGEBRAS 73
5.1 Introduction 73
5.2 Centroids of associative algebras 73

5.2.1 Description of centroids of two dimensional associative algebras 76
5.2.2 Description of centroids of three dimensional associative

algebras 78
5.2.3 Description of centroids of four dimensional associative

algebras 81
5.3 Centroids of associative dialgebras 86

5.3.1 Properties of centroids of associative dialgebras 87
5.3.2 Centroids of low dimensional associative dialgebras 91

5.4 Summary 96

6 CONCLUSION AND RECOMMENDATION 97
6.1 Conclusion 97
6.2 Recommendations 98

BIBLIOGRAPHY 99
APPENDICES 102
BIODATA OF STUDENT 107
LIST OF PUBLICATIONS 108

ix



© C
OPYRIG

HT U
PM

LIST OF TABLES

Table Page

2.1 Derivations of two-dimensional associative algebras 18

2.2 Derivations of three-dimensional associative algebras 21

2.3 Derivations of four-dimensional associative algebras 25

3.1 Isomorphism between three dimensional associative dialgebras 34

3.2 Derivations of two-dimensional associative dialgebras 47

3.3 Derivations of three-dimensional associative dialgebras 48

3.4 Derivations of four-dimensional nilpotent associative dialgebras 52

3.5 Derivations of two-dimensional dendriform algebras 56

4.1 The description of (α,β ,γ)-derivations of two-dimensional diassocia-
tive algebras 66

4.2 The description in (α,β ,γ)-derivations of three-dimensional diassocia-
tive algebras 67

5.1 Centroids of two-dimensional associative algebras 77

5.2 Centroids of three-dimensional associative algebras 78

5.3 Centroids of four-dimensional associative algebras 81

5.4 Centroids of two-dimensional associative dialgebras 92

5.5 Description of centroids of three dimensional associative dialgebras 93

x



© C
OPYRIG

HT U
PM

LIST OF ABBREVIATIONS

Asq
p qth isomorphism class of associative algebras in dimension p.

Diasq
p qth isomorphism class of diassociative algebras in dimension p.

Dendq
n qth isomorphism class of dendriform algebras in dimension n.

a Left multiplication
` Right multiplication
Dop Opposite dialgebra
Der(D) The algebra of all derivations of the algebra D
K[x,y] Polynomial algebra
AnnR(D) Right annihilator of the diassociative algebra D
AnnL(D) Left annihilator of the diassociative algebra D
IC Isomorphism classes of algebras
Derivation The basic derivations
Dim Dimensions of the algebra of derivations
La Left multiplication operator by an element a
Ra Right multiplication operator by an element a
Λ(A) Centroid of associative algebra A
Γ(D) Centroids of diassociative algebra D
C(D) Central derivation of D
� Dimonoid of D
∼= Isomorphism
Z1(A,M) First cocycles
B1(A,M) First coboundaries
ZD(H) centralizer of H in D
� End of the proof

xi



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

CHAPTER 1

INTRODUCTION

1.1 Introduction

A derivation is a function on an algebra which generalizes certain features of the deriva-
tion operator. Specifically, given an algebra A over a ring or field K, a K-derivation is
a K-linear map d from A to itself that satisfies Leibniz’s law: d(xy) = (dx)y+ x(dy).
More generally, a K-linear map D from A into an A-module M, satisfying the Leib-
niz law is also called a derivation. The collection of all K-derivation of A to itself is
denoted by DerK(A). The collection of all K-derivation of A into an A-module M is
denoted by DerK(A,M). Plainly, the derivations of A to M are exactly the elements of
Z1(A,M) 1-cocycles, while the so-called inner derivations are 1-coboundaries denoted
by B1(A,M). Thus the derivations of A to M form an A-module with operations defined
point wise, and the set of inner derivations is a submodule of derivations. The quotient
of these modules is the first cohomology group H1(A,M). Derivations occur in many
different contexts in diverse areas of mathematics. If the algebra A is noncommutative
then the commutator with respect to an element of the algebra A defines a linear en-
domorphism of A to itself, which is a derivation over K. Furthermore, the K-module
Der(A) forms a Lie algebra with respect to Lie bracket defined by the commutator:
[d1,d2] = d1 ◦d2−d2 ◦d1.

1.1.1 Basic concepts

In this section, we introduce some basic concepts and notations that are used throughout
this thesis. Most of the Lie algebra concepts can be found in any standard book on Lie
algebras. For Leibniz algebra, the notations and concepts are referred by papers such as
Loday and Pirashvili (1993), Albeverio et al. (2008), Albeverio et al. (2006), Rakhimov
and Bekbaev (2010) and Ladra et al. (2011).

Definition 1.1 Let K be a field, V be a vector space over K with a binary operation
f : V ×V −→V . If the binary operation is bilinear, i.e

f (α1x+α2y,z) = α1 f (x,z)+α2 f (y,z),

f (z,α1x+α2y) = α1 f (z,x)+α2 f (z,y) ,

where x,y,z ∈V and α1,α2 ∈K . Then V is said to be an algebra over K.

Let us introduce some classes of algebras which are closely related to the class of
algebras in the thesis. The definitions and examples are mostly well-known and we
bring them for completeness.

1
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Definition 1.2 An associative algebra A is a vector space over a field K equipped with
bilinear map f : A×A :−→ A satisfying the associative law:

f ( f (x,y),z) = f (x, f (y,z)) for all x,y,z ∈ A.

Further the notation x · y (even just xy) will be used for f (x,y). Note that field, poly-
nomial algebras, set of linear transformations on a vector space (quadratic matrices
over a fixed field) are simple examples of associative algebras, where statements and
hypotheses can be verified.

Definition 1.3 Let A be an associative algebra. A linear transformation d : A→ A is
said to be derivation if

d(x · y) = d(x) · y+ x ·d(y)

for all x,y ∈ A.

Definition 1.4 A Lie algebra L is a vector space over a field K equipped with a
bilinear map

[·, ·] : L×L→ L

satisfying the following conditions:

[x,x] = 0, for all x ∈ L (1.1)[
[x,y],z

]
+
[
[y,z],x

]
+
[
[z,x],y

]
= 0, for all x,y,z ∈ L. (1.2)

Remark 1.1

1. The identity (1.2) is called the Jacobi identity.
2. Relation (1.1) implies the anticommutativity of the multiplication of L:

[x,y] =−[y,x] for all x,y ∈ L

In fact, we have
0 = [x+ y,x+ y] = [x,y]+ [y,x].

Conversely, if the characteristic of the field K is different from 2, anticommutativity of
the bracket implies [x,x] = 0.

Example 1.1 Any vector space V has a Lie bracket defined by [x,y] = 0 for all x,y ∈V.
This is abelian Lie algebra structure on V. In particular, the field K may be regarded
as a one-dimensional abelian Lie algebra.

2
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Example 1.2 Let K = R. The vector product (x,y) 7→ x∧ y defines the structure of
a Lie algebra on R3. Explicitly, if x = (x1,x2,x3) and y = (y1,y2,y3) then x∧ y =
(x2y3− x3y2,x3y1− x1y3,x1y2− x2y1)

Definition 1.5 A Leibniz algebra L is a vector space over a field K equipped with a
bilinear map

[·, ·] : L×L→ L

satisfying the Leibniz identity[
x, [y,z]

]
=
[
[x,y],z

]
−
[
[x,z],y

]
for all x,y,z ∈ L. (1.3)

A Leibniz algebra is a Lie algebra if the condition

[x,x] = 0 for all x ∈ L

is fulfilled.

Example 1.3 Let A be an associative algebra and P be a projector in End(A), that is
P2 = P. Suppose that P(aP(b)) = P(P(a)b). Denote Px by x. Define

[x,y] = xy− yx.

This provides A with a Leibniz algebra structure. Indeed,
[[x,y],z]− [x, [y,z]]+ [y, [x,z]]

= [x,y]z− z[x,z]− x[y,z]+ [y,z]x+ y[x,z]− [x,z]y

= (xy− yx)z− z(xy− yx)− x(yz− zy)+(yz− zy)x+ y(xz− zx)− (xz− zx)y

= (x̄ȳ− ȳx̄)z− z(x̄ȳ− ȳx̄)− x̄ȳz+ x̄zȳ+ ȳzx̄− zȳx̄+ zȳx̄z− ȳzx̄− x̄zȳ+ zx̄ȳ

= (x̄ȳ− ȳx̄)z− z(x̄ȳ− ȳx̄)− x̄ȳz− zȳx̄+ ȳx̄z+ zx̄ȳ

= 0.

In the above example we take P as an identity operator then one has a Lie algebra.

Example 1.4 Let L be a Lie algebra and let M be a L-module with an action M×
L→ L, (m,x) 7→ mx. Let ψ : M→ L be a L-equivariant linear map, this is ψ(mx) =
[ψ(m),x], for all m ∈ M and x ∈ L, then one can define a Leibniz structure on M as
follows:

[m,n]
′

:= mψ(n), for all m,n ∈M.

3
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Definition 1.6 Let L and L1 be two algebras over a field K. A linear mapping ψ :
L−→ L1 is a homomorphism if

ψ([x,y]L) = [ψ(x),ψ(y)]L1 , for all x,y ∈ L. (1.4)

The notion of diassociative algebras is a generalization of associative algebras, with
two operations, which gives rise to Leibniz algebras instead of Lie algebras.

Definition 1.7 Let D be a vector space over a field K equipped with two associative
products ` and a: D×D−→ D, If for any x,y,z ∈ D satisfying the identities:

x a (y a z) = x a (y ` z)

(x ` y) a z = x ` (y a z)

(x ` y) ` z = (x a y) ` z,

then (D,`,a) is called an associative dialgebra or (the term diassociative algebra also
is used).

The operations a and ` are called left and right products, respectively. A bar-unit in D
is an element e in D such that x a e = x = e ` x for all x ∈ D.
A bar-unit needs not to be unique. The subset of bar-units of D is called its halo. A
unital dialgebra is a dialgebra with a specified bar-unit e.
Observe that if a dialgebra has a unit e, which satisfies e a x = x for any x ∈ D, then
a=` and D is an associative algebra with unit e.

Example 1.5 If A is an associative algebra, then the formula x a y = xy = x ` y defines
a structure of dialgebra on A.

Example 1.6 If (A,d) is a differential associative algebra with d2 = 0, then the formu-
las x a y = xdy and x ` y = dxy define a structure of dialgebra on A.

Example 1.7 Let D = Rn. We define a and ` on D as follows:

(x a y)i = xi

( n

∑
j=1

y j

)
f or 1≤ i≤ n (1.5)

and

(x ` y)i =
( n

∑
j=1

x j

)
yi f or 1≤ i≤ n. (1.6)

Then it is easy to check that D = (Rn,a,`) is an associative dialgebra.

4
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Example 1.8 Let V be a vector space and fix φ ∈V ∗ (the algebraic dual), then one can
define a dialgebra structure on V by setting x a y = φ(y)x and x ` y = φ(x)y, denoted
by Vφ . If φ 6= 0, then Vφ is a dialgebra with non-trivial bar-units.

Example 1.9 Let K[x,y] be the polynomial algebras over a field K (charK = 0) with
two indeterminate x,y. We define the left product a and the right product ` on K[x,y]
as follows:

f (x,y) a g(x,y) = f (x,y)g(y,y)

and
f (x,y) ` g(x,y) = f (x,x)g(x,y).

Then (K[x,y],a,`) is an associative dialgebra.

Example 1.10 Let (D,a,`) be an associative dialgebra. Consider the module of n×n
- matrices Mn(D) =Mn(K)⊗D with products (α a β )i j = Σkαik a βk j and (α ` β )i j =
Σkαik ` βk j. Then (Mn(D),a,`) is a diassociative algebra. Moreover, if D1 and D2 are
diassociative algebras over a field K then their tensor product D1

⊗
KD2 is provided

by a dialgebra structure defined as follows:

(a⊗a′)? (b⊗b′) = (a?b)⊗ (a′ ?b′) for ?=` and a .

Definition 1.8 A subset I of a dialgebra D is called a subalgebra of D, if I is the
subspace of D and for any x,y ∈ I:

x a y, x ` y ∈ I.

Definition 1.9 A two-sided ideal of associative dialgebra D is a subspace I such that
x ? y, y? x are in I for all x ∈ D, y ∈ I with ? =` and a . Note that I is called the right
and left ideal if y ` x, y a x are in I, and x ` y, x a y are in I, respectively, for all x ∈ D,
y ∈ I .

An ideal I of associative dialgebra D is said to be nilpotent if it is nilpotent as a subal-
gebra of D.

It is observed that the sum I1 + I2 = {z ∈ D|z = x1 + x2, x1 ∈ I1 and x2 ∈ I2} of two
nilpotent ideals I1, I2 of D is nilpotent. Therefore there exists unique maximal nilpotent
ideal of D called nilradical. The nilradical plays an important role in the classification
problem of algebras.

Definition 1.10 Let (D1,a1,`1), (D2,a2,`2) be associative dialgebras over a field K.
Then a homomorphism from D1 to D2 is a K- linear mapping φ : D1→ D2 such that

φ(x a1 y) = φ(x) a2 φ(y)

and
φ(x `1 y) = φ(x) `2 φ(y)

5
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for all x,y ∈ D1.

The set of diassociative algebras in a fixed dimension n forms a category denoted by
Dias.

Example 1.11 Obviously, I = {0} and D are two-sided ideals. As well as the kernel
Kerϕ = {x ∈ D1| ϕ(x) = 0} of a homomorphism ϕ : D1 −→ D2 from diassociative
algebra D1 to D2 is two-sided ideal in D1 whereas the image Imϕ = {y ∈ D2|∃ x ∈
D1 : ϕ(x) = y} is just a subalgebra of D2.

Remark 1.2 If D1 = D2 then a homomorphism is called endomorphism. In addition if
φ is bijective then φ is called automorphism.

Definition 1.11 A derivation of associative dialgebra D is a linear transformation d :
D→ D satisfying

d(x a y) = d(x) a y+ x a d(y)

and
d(x ` y) = d(x) ` y+ x ` d(y)

for all x,y ∈ D.

The set of all derivations of associative dialgebra D is a subspace of EndK(D). This
subspace equipped with the bracket [d1,d2] = d1 ◦d2−d2 ◦d1 is a Lie algebra denoted
by Der(D).
In Lie algebras case the property to be characteristically nilpotent is an important prop-
erty. For diassociative algebras case this property is defined similarly to that Lie alge-
bras case as follows.

Definition 1.12 An associative dialgebra D is called characteristically nilpotent if
Der(D) is nilpotent as an associative algebra.

Associative dialgebra possess of two binary operations which are two right Rx, rx and
two left Lx, lx multiplication operators defined as follows

Rx(y) := y a x, rx(y) := y ` x,

Lx(y) := x a y, lx(y) := x ` y.

Lemma 1.1 (Rikhsiboev et al., 2014) The sets R(D) = {Rx|x∈D}, L(D) = {Lx|x∈D},
r(D) = {rx|x ∈ D}, l(D) = {lx|x ∈ D} are subspaces of End(D).

Note that the following combinations of the right and left multiplication operators are
also derivations of the diassociative algebra D:

LxRy +LxLy and lxry + lxly.

6
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Lemma 1.2 (Rikhsiboev et al., 2014) For the right and left multiplication operators of
diassociative algebras the following identities hold:

RxRy = Rrx(y), Rxry = rRx(y), rxRy = rxry,

LxLy = Lxly, lxLy = Llx(y), lxly = lLx(y).

The following proposition shows that diassociative algebra plays the analogous role as:

Proposition 1.1 (Loday, J.L., and Frabetti, A., and Chapoton, F. and Goichot, F.,
2001)If D is a dialgebra and we define the bracket

[·, ·] : D×D→ D

by
[x,y] := x a y− y ` x, for all x,y ∈ D.

Then (D, [·, ·]) is a Leibniz algebra.

We recall the definitions of a few more classes of algebras also introduced by Loday that
are closely related to the above mentioned two classes of algebras in order to complete
Loday’s categorical diagram. One of these classes is called the class of dendriform
algebras.

Definition 1.13 Dendriform algebra E is an algebra equipped with two binary opera-
tions

�: E×E −→ E,≺: E×E −→ E,

which ∀x,y,z ∈ E satisfy the following axioms:

(x≺ y)≺ z = x≺ (y≺ z)+ x≺ (y� z),

(x� y)≺ z = x� (y≺ z),

(x≺ y)� z+(x� y)� z = x� (y� z).

Example 1.12 Let E be any algebra of operator valued-functions on the real line,

closed under integral
∫ x

0
dy. One may wish to consider, for example, smooth n× n

matrix-valued functions. Then E is a dendriform algebra for the operations:

(A≺ B)(x) := A(x) ·
∫ x

0
B(y)dy and (A� B)(x) :=

∫ x

0
A(y)dy ·B(x)

with A,B ∈ E.
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Example 1.13 (Matrices over dendriform algebras). Since in the axioms of a dendri-
form algebra the variables a,b,c stay in this order in all the monomials, the tensor
product of two dendriform algebras is naturally a dendriform algebra. Similarly, let
Mn(E) be the module of n×n- matrices with entries in the dendriform algebra E. Then
the formulas

(α ≺ β )i j = ∑
k

αik ≺ βk j and (α � β )i j = ∑
k

αik � βk j

make Mn(E) into a dendriform algebra.

For Dendriform algebra the concept of homomorphism is defined similarly to that of
diassociative algebras. Thus the class of Dendriform algebras forms a category denoted
by Dend.

Proposition 1.2 (Loday, J.L., and Frabetti, A., and Chapoton, F. and Goichot, F., 2001)
For a dendriform algebra E, the product defined by

x∗ y = x≺ y+ x� y,

is associative .

Another class of algebras introduced by Loday is a class called Zinbiel algebras. The
definition of the Zinbiel algebra is as follows.

Definition 1.14 (?) Zinbiel algebra R is an algebra with a binary operation : R×
R−→ R satisfying the condition :

(x · y) · z = x · (y · z)+ x · (z · y),

for ∀x,y,z ∈ R.

Homomorphism of Zinbiel algebras is a linear transformation preserving operations.
The category of Zinbeil algebras as denoted by Zinb.

Proposition 1.3 (Loday, J.L., and Frabetti, A., and Chapoton, F. and Goichot, F., 2001)
Let R be a Zinbiel algebra and put

x≺ y := x · y,x� y := y · x,∀x,y ∈ R.

Then (R,≺,�)is a dendriform algebra. conversely, a commutative dendriform algebra
E(i.e.dendriform algebra for which xy = yx ) is a Zinbiel algebra.
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Loday has showed that the classical relationship between Lie and associative algebras
can be translated into an analogous relationship between Zinbiel and associative com-
mutative algebras, with bracket [x,y] = xy− yx.
All of these classes of algebras can be assembled into a diagram called Loday diagram
as in Fig. 1.1.

Figure 1.1: Loday Diagram

1.2 Motivation

The main motivation of the research is the application of the concept of derivation in
analysis, differential equations, differential geometry, differential algebra, mechanics,
physics and other many areas of science. In algebra the derivations are important invari-
ant in studying the cohomological problems. The study of derivations of diassociative
algebra provides solution to some important structural and cohomological problems.
Extensions of the results on derivations to diassociative algebras are desirable. Par-
ticularly, there is an important class of diassociative algebras called characteristically
nilpotent which forms one of the irreducible components of variety of diassociative al-
gebras. One of the important invariant of algebras is the dimension of the derivation al-
gebra. The dimension of the derivation algebra and the dimension of the automorphism
group are complements to each other. These two invariants are useful in geometric
classification of diassociative algebras.

The study of the generalized derivation can be use in the geometrical classification of
diassociative algebras, notably in the study of the degenerations of the diassociative
algebras.
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The centroid are a key ingredient in the classification of associative and diassociative
algebras. The centroid also plays an important role in understanding forms of an alge-
bra: All scalar extensions of a simple algebra remain simple if and only if its centroid
just consists of the scalars in the base field. In particular, for finite-dimensional simple
associative algebras, the centroid is critical in investigating Brauer groups and division
algebras. Another area where the centroid occurs naturally is in the study of derivations
of an algebra.

1.3 Objectives of the research

The main objectives of this research are:

• To describe the algorithm for derivations of associative algebras, dialgebras and
also compute their derivations on low dimensional cases.

• To give the list of isomorphism classes of three-dimensional diassociative alge-
bras together with their properties.

• To introduce the concept of generalized derivations on diassociative algebras and
give descriptions of the generalized derivations in low dimensional cases.

• To introduce the concept of centroids of associative, dialgebras and studied their
properties.

1.4 Thesis Organization

The thesis contains five chapters. Now, we briefly mention the layout of the thesis as
follows.

• Chapter one is a review of some important results on diassociative and dendri-
form algebras. We introduce the basic definitions of associative and diassociative
algebras which will be used throughout the thesis.

• Chapter two is devoted to derivations of associative algebras. A simple algorithm
to find the derivations is given and it is applied for low-dimensional cases.

• Chapter three focuses on studying the derivations of two, three and four-
dimensional dialgebras. In tables the characteristically nilpotency of the above
cases are indicated.

• In Chapter four, we give a description of (α,β ,γ)-derivations of low dimensional
dialgebras and determines if different types of subspaces of algebras.

• In Chapter five, we examine centroids of two, three and four-dimensional alge-
bras and dialgebras are respectively, to determine which centroid is small.

• Chapter six makes some conclusions on results of the thesis and suggest a few
problems for future research in these areas.
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1.5 Literature Review

In 1993, Loday introduced the notion of Leibniz algebras, a generalization of Lie al-
gebra, where the skew-symmetricity of the bracket is dropped and the Jacobi identity
is replaced with the Leibniz identity (the identity has been called Leibniz identity by
Loday due to its similarity to Leibniz rule, this is the reason for the class to be called
by the name of Leibniz). Loday also showed that the link between Lie and associative
algebras can be extended to analogous link between Leibniz algebras and a so-called
associative dialgebras which is a generalization of associative algebras possessing two
composition laws. Loday showed that if D = (V,a,`) is a diassociative algebra struc-
ture on a vector space V then the Leibniz algebra structure on V is defined by the bracket
[x,y] := x a y− y ` x. Conversely, the universal enveloping algebra of Leibniz algebra
has the structure of diassociative algebra. Loday has given some examples to motivate
the study of these classes of algebras. On the structure of algebras from these classes
not so much is known. Researchers (Loday, Pirashvili and others) mainly focused on
their (co)homological problems.

An associative dialgebra is a vector space with two bilinear binary associative opera-
tions a,`, satisfying certain conditions (Loday, J.L., and Frabetti, A., and Chapoton,
F. and Goichot, F., 2001). Associative algebras are particular case of the associative
dialgebras when the two operations coincide.

The classification problem of algebras is one of the important problems of modern al-
gebra. The problem has been successfully solved for semisimple parts of many classes
of finite-dimensional algebras. However, the complete classification of solvable and
nilpotent parts is still unsolved. Particularly, for Lie, Leibniz and associative algebras
the solution to the problem in low-dimensional cases has been given with some condi-
tions.

One of the approaches is to use the conditions on structure constants due to axioms
of the class of algebras considered. As for associative dialgebras none of the above
mentioned parts are studied.

The classification of associative algebras is an old and often recurring problem. The
first investigation into it was perhaps done by Peirce (1881). Many interesting results
related to the problem have appeared since then. Further works in this field can be found
in Hazlett (1916) (nilpotent algebras of dimension ≤ 4 over C), Mazzola (1979)- asso-
ciative unitary algebras of dimension five over algebraic closed fields of characteristic
not two, Mazzola (1980)- nilpotent commutative associative algebras of dimension≤ 5,
over algebraic closed fields of characteristic not two, three and recently, Poonen (2008)-
nilpotent commutative associative algebras of dimension≤ 5, over algebraically closed
fields and De Graaf (2010) classify nilpotent associative algebras of dimensions ≤ 3
over any field, and four-dimensional commutative nilpotent associative algebras over
finite fields and over R.

A new era in the development of the theory of finite-dimensional associative algebras
begun due to works of Wedderburn (1907), who obtained the fundamental results of
this theory: description of the structure of semisimple algebras over a field, a theorem
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on the lifting of the quotient by the radical, the theorem on the commutativity of finite
division rings, and others.
Recent development of the theory of associative algebras was in the 80s of the last
century, when some open, unsolved problems of this field were ultimately solved.

The next theorems are basis of the structural theory of associative algebras (see
Kirichenko (2007)).

Theorem 1.1 (Wedderburn, 1907) Any finite-dimensional semisimple associative al-
gebra A is uniquely decomposed into a direct sum of a number of simple algebra:

A = B1⊕B2⊕·· ·⊕Bk.

Recall that an algebra is simple if it has nontrivial two-sided ideals.

Theorem 1.2 Any finite-dimensional simple associative algebra A is isomorphic to the
algebra of matrices Mn(D) over a division ring D, the number n and the division ring
D are uniquely determined by the algebra A.

These theorems give a complete description of semisimple algebras. At the same time
on the structure of nonsemisimple algebras, not much is known, even for an alge-
braically closed fields.

Complex associative algebras in dimension up to 5 were first classified by B. Pierce
back in 1870, initially in the form of manuscripts, which appeared later in Pierce (1881).
There are classifications of unital 3, 4 and 5-dimensional associative algebra by Gabriel
(1975) and Mazzola (1979), respectively.

The Rota-Baxter algebra was first introduced by Baxter (1960) while doing probability
study, which was then used and popularized by Rota (1969) and his co-workers. Lo-
day (1993) introduced dendriform algebra notion related to dialgebra structure. The
central point from our point of view is the intimate relation between the Rota-Baxter
algebras and dendriform algebras. In 2002, Ebrahimi attempted to explore the rela-
tionship between Rota-Baxter operators and Loday-type algebras, i.e. dendriform di-
and tri-algebras (see Ebrahimi-Fard (2002)). It has already been proved that associative
algebras equipped with a Rota-Baxter operator of arbitrary weight always give rise to
dendriform structures. The relationship between Rota-Baxter algebras and dendriform
dialgebras and the study of the adjoint functors for the category of Rota-Baxter alge-
bras and categories of dendriform di and trialgebras were considered in the work of
Ebrahimi and Guo (2005 and 2007). The reformulation of the free dendriform algebra
over the generator via a parenthesis setting was done by Leroux (2006). He also gave a
brief survey on planar binary trees.

Dialgebra cohomology with coefficients was studied by Frabetti (1997, 2001) whereas
Majumdar and Mukherjee (2002) considered the deformations of dialgebras. Dialge-
bras may appear in different contexts. For example dialgebra can be related to triple

12



© C
OPYRIG

HT U
PM

product as in (Pozhidaev, 2008). Lin and Zhang (2010) were the first to defined a new
associative dialgebra over a polynomial algebra F [x,y] with two indeterminates x and
y. Bokut et al. (2010) made use of the Grobner-Shirshov basis for a dialgebra .

The idea of left-symmetric dialgebras was introduced by Felipe (2011). Bremner
(2012) has explored some recent developments in the theory of associative and nonasso-
ciative dialgebras. The problems of finding special identities for dialgebras was studied
by Kolesnikov and Voronin (2013). Zhang et al. (2014) has introduced the concepts
of a totally compatible Lie dialgebra. The first paper concerning the Construction of
dialgebras through bimodules over algebras is given by Salazar-Dı́az et al. (2016).

There were several approaches to the study of generalized derivations on Lie algebras.
For example Hartwig et al. (2006) defined the generalized derivation as a linear operator
A satisfying the property A[x,y] = [Ax,τy]+ [σx,Ay], where τ,σ are fixed elements of
EndL. Such derivations have been called (σ ,τ)-derivations of L. In Bresar (1991), he
considered the following generalization: a linear transformation A of a Lie algebra L is
said to be a generalized derivation if there exists B ∈DerL such that for all x,y ∈ L, the
condition A[x,y] = [Ax,y]+[x,By] holds. Leger and Luks (2000) studied a more general
version defining the generalized derivation as A ∈ EndL such that there exist B,C ∈
EndL possessing the property C[x,y] = [Ax,y]+[x,By]. In Novotnỳ and Hrivnák (2008),
the authors introduced a new version of a generalization of Lie algebra derivations and
use them in algebraic and geometric classification problems in low-dimensional cases.
Our interest is to study the generalized derivations of finite dimensional diassociative
algebras. The algebra of derivations and generalized derivations are very useful in
algebraic and geometric classification problems of algebras.

It is natural in our study to consider centroid of algebras since it is closely related
to derivation. The definition of centroid for non associative algebra can be found in
Jacobson (1979). In Jacobson (1979), it is also stated that the centroid of a simple Lie
algebras is a field. Centroid plays a vital role in the classification of finite dimensional
extended affine Lie algebras over arbitrary field of characteristic 0 (Neher, 2004). There
have been considerable efforts on the centroid of some classes of algebras.

Melville (1992) investigated the centroids of some classes of nilpotent Lie algebras and
their infinite dimensional analogues. Melville (1993) also, showed that for some Cartan
algebras over an algebraically closed field of characteristic zero, the centroid of the
cartan algebras is just the scalar. Benkart and Neher (2006) developed general results
on centroids of Lie algebras and applied them to determine the centroid of extended
affine Lie algebras, loop-like and Kac-Moody Lie algebras, and Lie algebras graded
by finite root systems. McCrimmon (1999) used eigenvalue lemma to characterise the
centroids of the basic simple Jordan algebras, triples and pairs. Richardson (2008)
studied the centroids of quadratic Jordan superalgebra wherein it was shown that such
superalgebra have no odd centroid.
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The centroids of n-Lie algebras and centroid structures of n-Lie algebras have been
studied in Bai et al. (2009). Ni (2014) has classified the centroids of Zinbiel algebras
up to dimension 6 4 and studied properties of its cenroids.
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International Journal of Algebra and Computation, 20(03):391–415.

Bremner, M. R. (2012). Algebras, dialgebras, and polynomial identities. Serdica Math.
J., 38:91–136.

Bresar, M. (1991). On the distance of the composition of two derivations to the gener-
alized derivations. Glasgow Mathematical Journal, 33(01):89–93.

De Graaf, W. A. (2010). Classification of nilpotent associative algebras of small di-
mension. arXiv preprint arXiv:1009.5339.

Ebrahimi-Fard, K. (2002). Loday-type algebras and the rota–baxter relation. Letters in
Mathematical Physics, 61(2):139–147.

Felipe, R. (2011). A brief foundation of the left-symmetric dialgebras. Comunicacin
del CIMAT, pages 1–13.

Frabetti, A. (1997). Dialgebra homology of associative algebras. C.R. Acad. Sci. Paris,
325(2):135–140.

Frabetti, A. (2001). Dialgebra (co) homology with coefficients. In Dialgebras and
related operads, pages 67–103.

Gabriel, P. (1975). Finite representation type is open. In Representations of algebras,
pages 132–155. Springer.

Hartwig, J. T., Larsson, D., and Silvestrov, S. D. (2006). Deformations of Lie algebras
using σ -derivations. Journal of Algebra, 295(2):314–361.

Hazlett, O. C. (1916). On the classification and invariantive characterization of nilpo-
tent algebras. American Journal of Mathematics, 38(2):109–138.

99



© C
OPYRIG

HT U
PM

Jacobson, N. (1979). Lie algebras, Interscience. Courier Dover Publications, pages
1–331.

Kirichenko, V. (2007). Algebras, Rings and Modules, Mathematics and Its Applica-
tions. Volume 2. Springer.

Kolesnikov, P. and Voronin, V. Y. (2013). On special identities for dialgebras. Linear
and Multilinear Algebra, 61(3):377–391.

Ladra, M., Rikhsiboev, I., and Turdibaev, R. (2011). Automorphisms and derivations
of Leibniz algebras. arXiv preprint arXiv:1103.4721.

Leger, G. F. and Luks, E. M. (2000). Generalized derivations of Lie algebras. Journal
of Algebra, 228(1):165–203.

Leroux, P. (2006). Free dendriform algebras. part i. a parenthesis setting. International
journal of mathematics and mathematical sciences, 2006.

Lin, L. and Zhang, Y. (2010). F[x,y] as a dialgebra and a Leibniz algebra. Communi-
cations in Algebra, 38(9):3417–3447.

Loday, J. (1993). Une version non commutative des algèbres de Lie: les algèbres de
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