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Materials in Bi2O3-Nb2O5 binary system have been successfully synthesized by 

conventional solid-state method and also mechanochemical method. Solid solution 

series, BixNbOδ was obtained at 2.5 ≤ x ≤ 6 for both conventional solid-state method 

and mechanochemical method. Bi3NbO7 was successfully obtained by 

mechanochemical method at lower synthesis temperature (milled at 1000 rpm for 1 

hour followed by heating at 700 oC for 24 hours) than conventional solid-state 

method. All the peaks in the XRD patterns can be fully indexed in a tetragonal 

system with space group I4m2. 

 

Electrical measurements indicated that, although both the Bi3NbO7 synthesized by 

two different methods exhibited almost the same conductivities. However the 

sample prepared by mechanochemical method showed lower activation energy. 

Among the solid solutions prepared by two different methods, Bi5NbO10 and 
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Bi6NbO11.5 exhibit the highest conductivity. Conductivity measurements were also 

carried out in dry oxygen free nitrogen (OFN) and different applied voltage in order 

to confirm the conduction species of the materials. 

 

Doping was carried on the Nb site with the selected dopants, i.e. Ta, W, V, Zr, Ti, Si, 

Co and Mo in order to enhance the electrical properties of the material. All dopants 

can be introduced into Bi5NbO10 with rather limited solid solutions. Among the 

doped materials, Bi5Nb0.95Cu0.05O9.925 exhibited the highest conductivity, which is 

one order higher than YSZ, which is used as the electrode material in solid oxide 

fuel cell currently. The activation energy is also comparable to that of YSZ, 0.8 eV. 

Conductivity of Bi5Nb0.91Zr0.09O9.955 was slightly higher than that of the parent 

material. No significant difference in conductivity was observed for other doped 

materials compared to the parent material Bi5NbO10.   

 

DTA thermograms of the materials in BixNbOδ (2.5 ≤ x ≤ 6) solid solutions showed 

that there are no thermal changes and phase transitions were observed. Whereas 

TGA result indicates that these materials were thermally stable for the temperature 

range studied. Elemental analysis was carried by inductively coupled plasma-optical 

emission spectroscopy (ICP-OES). The analysis confirmed the composition of the 

stoichiometric for single phase material. 
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Konduktor ion oksida dalam sistem Bi2O3-Nb2O5 telah berjaya disediakan melalui 

cara tindak balas keadaan pepejal dan juga mekanokimia. Bagi kedua-dua kaedah ini, 

siri larutan pepejal bagi  telah diperolehi dalam julat . Melalui 

kaedah mekanokimia, Bi3NbO7 telah berjaya disediakan dengan suhu sintesis yang 

lebih rendah (penginciran pada 1000 rpm selama 1 jam diikuti dengan pemanasan 

pada 700°C selama 24 jam) berbanding dengan cara tindak balas keadaan pepejal. 

Semua puncak dalam data XRD dapat diindeks sepenuhnya dalam simetri tetragonal 

dengan kumpalan ruang I4m2. 

δNbOBix 65.2 ≤≤ x

 
Ukuran elektrik menunjukkan nilai kekonduksian yang hampir sama bagi Bi3NbO7 

walaupun disediakan melalui dua cara yang berbeza. Namun demikian, bahan yang 

disediakan melalui cara mekanokimia menunjukkan tenaga pengaktifan yang lebih 

rendah. Di antara larutan pepejal yang disediakan melalui dua cara yang berlainan 

ini, Bi5NbO10 dan Bi6NbO11.5 menunjukkan kekonduksian yang paling tinggi. 

iii 



Ukuran kekonduksian juga dijalankan dalam keadaan oksigen bebas nitrogen dan 

dikenakan voltan yang berlainan demi mengenal pasti jenis kekonduksian bahan. 

 

Pendopan dijalankan di kekisi Nb dengan dopan yang terpilih seperti Ta, W, V, Zr, 

Ti, Si, Co dan Mo bagi meningkatkan kekonduksian bahan. Semua dopan dapat 

diperkenalkan ke dalam Bi5NbO10 dengan larutan pepejal yang agak terhad. Di 

antara semua bahan ini, didapati Bi5Nb0.95Cu0.05O9.925 menunjukkan kekonduksian 

yang paling tinggi, iaitu satu tertib lebih tinggi daripada YSZ yang sesuai digunakan 

sebagi elektrod dalam SOFC. Tenaga pengaktifannya juga hampir dengan YSZ iaitu 

0.8 eV. Kekonduksian bagi Bi5Nb0.91Zr0.09O9.955 adalah lebih tinggi jika berbanding 

dengan bahan induk, manakala, tiada perbezaan yang ketara dalam kekonduksian 

bagi bahan-bahan lain yang didopkan berbanding dengan bahan induk Bi5NbO10. 

 
Analisis perbezaan terma (DTA) menunjukkan tiada perubahan terma dan fasa bagi 

bahan dalam larutan pepejal BixNbOδ ( 65.2 ≤≤ x ). Sementara, TGA menunjukkan 

bahan adalah stabil secara terma bagi julat suhu yang diuji. Analisis unsur  yang 

dijalankan melalui plasma aruhan gandaan-spektroskopi penyebaran optik (ICP-

OES) membuktikan komposisi stoikiometri bagi bahan berfasa tulen yang 

disediakan. 
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atmospheres 
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xxi 

LIST OF ABBREVIATIONS/ NOTATIONS/ GLOSSARY OF TERMS 
 
3D  three dimensions     

ac  alternating current     

dc  direct current     

DTA  differential thermal analysis    

FT-IR  Fourier-transform infrared spectroscopy   

ICDD  international centre for diffraction data   

ICP-AES  inductivity coupled plasma-atomic emission spectroscopy 

JCPDS  Joint Committee on Powder Diffraction Standards  

μ PDSM  micro powder diffraction search/ match   

SEM  scanning electron microscopy    

SOFC  solid oxide fuel cell     

TGA  thermogravimetry analysis    

XRD  x-ray diffraction     

a,b,c,α,β,γ lattice diffraction     

A  area      

Aw  Warbung coefficient     

C  capacitance     

Cb  bulk capacitance     

Cdl  double-layer capacitance    

Cgb  grain boundary capacitance    

Co  vacuum capacitance     

d  d-spacing      

D  density      



xxii 

e  charge of the conducting species   

eo  permittivity of free space    

E  electric field     

Ea  activation energy     

ε'  relative permittivity     

ε*  complex permittivity     

f  frequency      

F  Faraday constant     

h,k,l  Miller indices     

I  current      

j  flux of charge     

J  density of the current     

l  thickness      

λ  wavelength     

M  dopant introduced     

M'  real part of modulus     

M"  imaginary part of modulus    

M*  complex modulus     

μ  mobility of the species    

P'  partial pressure to be measured    

P"  reference partial pressure    

R  resistance     

R  Boltzmann constant     

Rb  bulk resistance     




