

UNIVERSITI PUTRA MALAYSIA

PREPARATION AND CHARACTERIAZATION OF BISMUTH NIOBIUM OXIDE ION CONDUCTORS

NG SIN NEE

FS 2009 30

PREPARATION AND CHARACTERIAZATION OF BISMUTH NIOBIUM OXIDE ION CONDUCTORS

By

NG SIN NEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2009

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PREPARATION AND CHARACTERIAZATION OF BISMUTH NIOBIUM OXIDE ION CONDUCTORS

By

NG SIN NEE

October 2009

Chairman : Tan Yen Ping, Ph.D.

Faculty : Science

Materials in Bi₂O₃-Nb₂O₅ binary system have been successfully synthesized by conventional solid-state method and also mechanochemical method. Solid solution series, Bi_xNbO_δ was obtained at $2.5 \le x \le 6$ for both conventional solid-state method and mechanochemical method. Bi_3NbO_7 was successfully obtained by mechanochemical method at lower synthesis temperature (milled at 1000 rpm for 1 hour followed by heating at 700 °C for 24 hours) than conventional solid-state method. All the peaks in the XRD patterns can be fully indexed in a tetragonal system with space group *I*4m2.

Electrical measurements indicated that, although both the Bi₃NbO₇ synthesized by two different methods exhibited almost the same conductivities. However the sample prepared by mechanochemical method showed lower activation energy. Among the solid solutions prepared by two different methods, Bi₅NbO₁₀ and $Bi_6NbO_{11.5}$ exhibit the highest conductivity. Conductivity measurements were also carried out in dry oxygen free nitrogen (OFN) and different applied voltage in order to confirm the conduction species of the materials.

Doping was carried on the Nb site with the selected dopants, i.e. Ta, W, V, Zr, Ti, Si, Co and Mo in order to enhance the electrical properties of the material. All dopants can be introduced into Bi_5NbO_{10} with rather limited solid solutions. Among the doped materials, $Bi_5Nb_{0.95}Cu_{0.05}O_{9.925}$ exhibited the highest conductivity, which is one order higher than YSZ, which is used as the electrode material in solid oxide fuel cell currently. The activation energy is also comparable to that of YSZ, 0.8 eV. Conductivity of $Bi_5Nb_{0.91}Zr_{0.09}O_{9.955}$ was slightly higher than that of the parent material. No significant difference in conductivity was observed for other doped materials compared to the parent material Bi_5NbO_{10} .

DTA thermograms of the materials in Bi_xNbO_δ (2.5 $\leq x \leq 6$) solid solutions showed that there are no thermal changes and phase transitions were observed. Whereas TGA result indicates that these materials were thermally stable for the temperature range studied. Elemental analysis was carried by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The analysis confirmed the composition of the stoichiometric for single phase material.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

PENYEDIAAN DAN PENCIRIAN KONDUKTOR ION OKSIDA NIOBIUM BISMUTH

Oleh

NG SIN NEE

Oktober 2009

Pengerusi : Tan Yen Ping, Ph. D.

Fakulti : Sains

Konduktor ion oksida dalam sistem Bi₂O₃-Nb₂O₅ telah berjaya disediakan melalui cara tindak balas keadaan pepejal dan juga mekanokimia. Bagi kedua-dua kaedah ini, siri larutan pepejal bagi Bi_xNbO_{δ} telah diperolehi dalam julat $2.5 \le x \le 6$. Melalui kaedah mekanokimia, Bi₃NbO₇ telah berjaya disediakan dengan suhu sintesis yang lebih rendah (penginciran pada 1000 rpm selama 1 jam diikuti dengan pemanasan pada 700°C selama 24 jam) berbanding dengan cara tindak balas keadaan pepejal. Semua puncak dalam data XRD dapat diindeks sepenuhnya dalam simetri tetragonal dengan kumpalan ruang *I4*m2.

Ukuran elektrik menunjukkan nilai kekonduksian yang hampir sama bagi Bi₃NbO₇ walaupun disediakan melalui dua cara yang berbeza. Namun demikian, bahan yang disediakan melalui cara mekanokimia menunjukkan tenaga pengaktifan yang lebih rendah. Di antara larutan pepejal yang disediakan melalui dua cara yang berlainan ini, Bi₅NbO₁₀ dan Bi₆NbO_{11.5} menunjukkan kekonduksian yang paling tinggi.

Ukuran kekonduksian juga dijalankan dalam keadaan oksigen bebas nitrogen dan dikenakan voltan yang berlainan demi mengenal pasti jenis kekonduksian bahan.

Pendopan dijalankan di kekisi Nb dengan dopan yang terpilih seperti Ta, W, V, Zr, Ti, Si, Co dan Mo bagi meningkatkan kekonduksian bahan. Semua dopan dapat diperkenalkan ke dalam Bi₅NbO₁₀ dengan larutan pepejal yang agak terhad. Di antara semua bahan ini, didapati Bi₅Nb_{0.95}Cu_{0.05}O_{9.925} menunjukkan kekonduksian yang paling tinggi, iaitu satu tertib lebih tinggi daripada YSZ yang sesuai digunakan sebagi elektrod dalam SOFC. Tenaga pengaktifannya juga hampir dengan YSZ iaitu 0.8 eV. Kekonduksian bagi Bi₅Nb_{0.91}Zr_{0.09}O_{9.955} adalah lebih tinggi jika berbanding dengan bahan induk, manakala, tiada perbezaan yang ketara dalam kekonduksian bagi bahan-bahan lain yang didopkan berbanding dengan bahan induk Bi₅NbO₁₀.

Analisis perbezaan terma (DTA) menunjukkan tiada perubahan terma dan fasa bagi bahan dalam larutan pepejal Bi_xNbO_δ ($2.5 \le x \le 6$). Sementara, TGA menunjukkan bahan adalah stabil secara terma bagi julat suhu yang diuji. Analisis unsur yang dijalankan melalui plasma aruhan gandaan-spektroskopi penyebaran optik (ICP-OES) membuktikan komposisi stoikiometri bagi bahan berfasa tulen yang disediakan.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep gratitude to my supervisor, Dr. Tan Yen Ping, for her invaluable advice, constructive suggestion and continuous discussion throughout the entire course of this project. I would also like to extend my sincere appreciation to my co-supervisor Assoc. Prof. dr. Taufiq-Yap Yun Hin for his guidance, suggestion and comments throughout the research work. Their credits are always appreciated and never forgotten.

Particular thanks are also extended to Prof. Dr. Zobir Hassim and his MULIA research group (density measurement), Assoc. Prof. Dr. Fauziah Othman and her group members, Mr. Ho Oi Kuan (SEM), Madam Choo (ICP-OEP), Mr. Kamal margona, Madam Zaidina, Miss Nor Azlina (DTA, TGA), Madam Rusnani (IR) and all the laboratory technicians for their help and guidance in operating the instruments.

I am extremely grateful to all my senior Dr. Khaw Chwin Chieh, Dr. Tan Kar Ban, Dr. Lee Chiu Sze, Mr. Lim Chia Meng and my friend, Miss Wong Sook Yeng, Mr. Liew Seng Choy and Miss Yuen Mei Lian, lab mates and all the researcher in UPM for their help throughout these few years.

The financial support from the Ministry of Science and Technology and Universiti Putra Malaysia is gratefully acknowledged. Without this support, it is impossible for me to pursue this project with success. Lastly, I would also like to extend my

gratitude to the Kementerian Sains, Teknologi dan Inovasi, Malaysia for granting me the NSF scholarship.

Last but not least, I would like to give my sincere thanks to my beloved family members for their love, continuous support, encouragement and understanding. A word of appreciation and deepest affection is inadequate to express my gratitude to them.

I certify that a Thesis Examination Committee has met on 22 October 2009 to conduct the final examination of Ng Sin Nee on her thesis entitled "Preparation and Characteriszation of Bismuth Oxide Ion Conductors" in accordance the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Scence.

Members of the Thesis Examination Committee were as follows:

Kamaliah Bt Sirat, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Chairperson)

Anuar Kassim, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Tan Wee Tee, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Madzlan Aziz, PhD

Professor Faculty of Science Universiti Teknologi Malaysia (External Examiner)

BUJANG BIN KIM HUAT, PhD

Professor and Deputy Dean School of Graduation Studies Universiti Putra Malaysia

Date: 24 December 2009

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Tan Yen Ping, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Taufiq Yap Yun Hin, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 January 2010

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

NG SIN NEE

Date: 26 January 2010

TABLE OF CONTENTS

ABSTRACT

i

ABSTRAK ACKNOWL APPROVAL DECLARAT LIST OF TA LIST OF FIG LIST OF AB	EDGEMENTS J TION ABLES GURES BBREVIATIONS	iii v vii ix xiii xv xxi
CHAPTER		
 INTROD I.1. Ionic	OUCTION Conductivity and Solid Electrolytes Ionic Conduction e Ion Conductor and Their Applications Solid Oxide Fuel Cell (SOFC) Oxygen Sensor ctives	1 3 7 7 11 15
 LITERA 2.1. Pure 	TUR REVIEW Bi_2O_3 The Structure of α - Bi_2O_3 The Structure of δ - Bi_2O_3 The Structure of β - Bi_2O_3 rical Properties of Bi_2O_3 ed Bi_2O_3 Systems $Bi_2O_3 - Nb_2O_5$ Binary System Bi_3NbO_7 Family anochemical Synthesis luction of Dopants	16 18 19 20 22 24 25 33 34
3. PREPAR 3.1. Samp 3.1.1. 3.1.2. 3.1.3.	RATION AND CHARACTERIZATION ble Preparation General Principle of Solid State Reaction Solid State Reaction with Manual Mixing Mechanochemical Method	37 37 37 38

3.1.2. Solid State Reaction with Manual Mixing	37
3.1.3. Mechanochemical Method	38
3.2. Pellet Preparation	40
3.3. Characterizations	42
3.3.1. X-ray Diffraction (XRD)	43
3.3.2. Elemental Analysis – Inductively Coupled Plasma – Optical	
Emission Spectrometry (ICP-OES)	47
3.3.3. Electrical Properties	49
3.3.3.1. AC Impedance Spectroscopy	50
3.3.3.2. Cole-cole Plot	54
3.3.3.3. Modulus Spectroscopy	61

3.3.3.4. Experimental Procedure	63
3.3.4. Thermal Analyses	64
3.3.4.1. Thermogravimetric Analysis (TGA)	65
3.3.4.2. Differential Thermal Analysis (DTA)	65
3.3.5. Fourier – transform Infrared Spectroscopy (FT – IR)	67
3.3.6. Scanning Electron Microscopy (SEM)	68
3.3.7. Melting Point	69
3.4. Estimations of Errors	69
4. RESULTS AND DISCUSSION	
4.1. Background	71
4.2. Phase Formation	71
4.2.1. Solid State Synthesis	71
4.2.1.1. Parent Material Bi ₃ NbO ₇	71
4.2.1.2. Bi ₃ NbO ₇ Solid Solutions	75
4.2.2. Mechanochemical Synthesis	81
4.2.2.1. Parent Material Bi_3NbO_7	81
4.2.2.2. Bi_3NbO_7 Solid Solutions	83
4.2.3. Elemental Analysis	90
4.2.4. Thermal Analysis	90
4.2.4.1. Differential Thermal Analysis (DTA)	90
4.2.4.2. Thermogravimetric Analysis (TGA)	93
4.2.5. Scanning Electron Microscopy (SEM)	100
4.2.6. Fourier – transform Infrared Spectroscopy $(FT – IR)$	103
4.2.7. Melting Point	109
4.2.8. Summary	111
4.3. Electrical Properties of B ₁₃ NbO ₇ Solid Solutions	112
4.3.1. B ₁₃ NbO ₇ Solid Solutions Prepared via Solid State Synthesis	112
4.3.2. $B_{13}NbO_7$ Solid Solutions Prepared via Mechanochemical	100
Synthesis	132
4.3.3. Summary	139
4.4. $B1_5ND_{1-x}M_xO_\delta$	141
4.4.1. Phase Formation	141
4.4.2. Elemental Analysis	150
4.4.5. I nermai Analyses	101
4.4.3.1. Differential inermal Analysis (DIA)	101 171
4.4.5.2. I nermogravimetric Analysis (IGA)	101
4.4.4. Scanning Electron Microscopy (SEM)	1/1
4.4.5. Electrical Properties of Doped Materials	1/4

4.4.5. Electrical Properties of Doped Materials1744.4.6. Summary199

201
204
205
206
233
234

Table2.1	Bi ₂ O ₃ phase transition temperatures	Page 17
2.2	Conductivity of each phase of Bi_2O_3 at 650 °C	20
3.1	Wavelength used and detection limits of elements in ICP-OES analysis	49
3.2	Capacitance values and their possible interpretations	58
3.3	Estimation of errors for experimental parameters	70
4.1	Phase assemblage of Bi_xNbO_δ ($2 \le x \le 7$) prepared via conventional solid state method	78
4.2	The lattice parameters of Bi_xNbO_δ ($2 \le x \le 7$) prepared via conventional solid state method	78
4.3	Phase assemblage of Bi_xNbO_δ ($2 \le x \le 7$) prepared via mechanochemical method	87
4.4	The lattice parameters of Bi_xNbO_{δ} ($2 \le x \le 7$) prepared via mechanochemical method	87
4.5	Elemental concentrations of Bi_xNbO_{δ} (2.5 \leq x \leq 6) synthesized via solid state method	91
4.6	Elemental concentrations of Bi_xNbO_{δ} (2.5 \leq x \leq 6) synthesized via mechanochemical method	92
4.7	Melting points of x in Bi_xNbO_δ	109
4.8	Conductivities (σ_{300} and σ_{600}) and activation energies (E _a) of Bi_xNbO_{δ} , $2.5 \le x \le 6$	122
4.9	Conductivity values at 550 and 800° C for Bi ₃ NbO ₇ at different atmospheres	129
4.10	Conductivity values at 550 and 800° C for Bi_5NbO_{10} at different atmospheres	129
4.11	Conductivities (σ_{300} and σ_{600}) and activation energies (E _a) of Bi_xNbO_{δ} , $2.5 \le x \le 6$ synthesized via mechanochemical method	139
4.12	The coordination number (CN), charge and ionic radius of the dopants	141

4.13	Phase assemblage of single-phase doped materials	153
4.14	The lattice parameters of single-phase doped materials with general formula $Bi_5Nb_{1-x}M_xO_{\delta}$ (M=dopant)	155
4.15	Elemental concentrations of $Bi_5Nb_{1-x}V_xO_\delta$ ($0 \le x \le 0.10$)	156
4.16	Elemental concentrations of $Bi_5Nb_{1-x}Ta_xO_{\delta}$ ($0 \le x \le 0.04$)	157
4.17	Elemental concentrations of $Bi_5Nb_{1-x}Zr_xO_{\delta}$ ($0 \le x \le 0.09$)	158
4.18	Elemental concentrations of $Bi_5Nb_{1\text{-}x}Mo_xO_{\delta}~(0\leq x\leq 0.02)$	159
4.19	Elemental concentrations of $Bi_5Nb_{1-x}Cu_xO_{\delta}$ ($0 \le x \le 0.05$)	160
4.20	Conductivity (σ_{300} and σ_{600}) and activation energies (E _a) of doped materials	198

LIST OF FIGURES

Figure 1.1	Electrical conductivities of selected common substances and representative solid electrolytes	Page 2
1.2	Solid electrolytes as intermediate between normal crystalline solids and liquids	2
1.3	Ionic conductivity of some the most promising oxide ion conductors as a function of the inverse temperature	3
1.4	Schematic diagram of solid oxide fuel cell	10
1.5	The principle for oxygen sensor	12
1.6	Schematic figure of the sensor element	14
2.1	The stable and metastable regions found in Bi_2O_3	17
2.2	Structure models for fluorite related δ -Bi ₂ O ₃ : (a) Sillen models; (b) Gattow model; (c) Willis model	19
2.3	Electrical conductivity of Bi_2O_3 as a function of temperature	21
2.4	Conductivity of $(Bi_2O_3)_{1-x}$ $(Y_2O_3)_x$. The values for x are: 1-0; 2-0.05; 3-0.20; 4-0.25; 5-0.33; 6-0.425; 7-0.50; 8-0.60.	23
2.5	Fluorite unit cell showing all oxygen sites together with the electron density residue positions	26
2.6	Scheme for the incorporation of a pyrochlore-type structure motif into a fluorite-type average structure	27
2.7	The metal atom compositional ordering model of the Type III Bi_3NbO_7 phase viewed close to the $[010] = [110]_F$ direction. Bismuth atoms are darker then niobium atoms	29
2.8	The final Rietveld-refined of the Type III Bi_3NbO_7 phase viewed close to the $[010] = [110]_F$ direction. Oxygen atoms are black, NbO ₆ octahedra are light grey and bismuth atoms are dark grey	30
2.9	The final Rietveld-refined structure viewed along the $[110] = [100]_F$ direction, showing the distorted, oxygen deficient, fluorite-type lattice	31
3.1	Flow chart for sample preparation	39

3.2	Flow chart for sample preparation using ball milling	41
3.3	Flow chart for sample preparation and characterization	42
3.4	The X-ray diffraction experiment	43
3.5	Principle of x-ray diffraction	44
3.6	Process that takes place when a sample droplet is introduced into an ICP discharge	48
3.7	Admittance bridge	51
3.8	Impedance bridge	51
3.9	Semi-circle and spike in a cole-cole plot	54
3.10	Semicircles in a complex plane plot	56
3.11	Brickwork model of grain boundary regions in a ceramic placed between metal electrodes	57
3.12	Equivalent circuit for a polycrystalline solid electrolyte; C_{dl} – electrode double-layer capacitance; C_b , R_b –bulk crystals; C_{gb} , R_{gb} – grain boundaries	59
3.13	Impedance diagram due to a blocking interface: (a) a perfectly smooth interface; (b) rough electrode or due to Warburg impedance	60
3.14	(a) A complex Z* plot and (b) the respective Z" and M" spectroscopic plots	62
4.1	Phase evolution of Bi ₃ NbO ₇ synthesized via conventional solid state method at different speeds and synthesis temperatures	73
4.2	XRD pattern of Bi ₃ NbO ₇	74
4.3	XRD patterns of Bi_xNbO_{δ} (2 \leq x \leq 7) prepared via solid state method	77
4.4	Variation of lattice parameter, a, with x in Bi_xNbO_δ solid solutions prepared via solid state method	79
4.5	Variation of lattice parameter, c, with x in Bi_xNbO_δ solid solutions prepared via solid state method	80
4.6	Phase evolution of Bi ₃ NbO ₇ synthesized via mechanochemical method at different speeds and synthesis temperatures	82

4.7	Phase evolution of Bi_3NbO_7 synthesized via mechanochemical method (1000 rpm for 1 hour) with synthesis temperature	84
4.8	XRD patterns of Bi_xNbO_δ (2 \le x \le 7) prepared via mechanochemical method.	85
4.9	Variation of lattice parameter, a, with x in Bi_xNbO_δ solid solutions prepared via mechanochemical method	88
4.10	Variation of lattice parameter, c, with x in Bi_xNbO_δ solid solutions prepared via mechanochemical method	89
4.11	DTA thermograms of Bi ₃ NbO ₇ solid solution prepared via solid state method	94
4.12	DTA thermograms of Bi ₃ NbO ₇ at various heating and cooling rate	95
4.13	DTA thermograms of Bi ₃ NbO ₇ solid solution prepared via mechanochemical method	96
4.14	DTA thermograms of Bi_3NbO_7 synthesized via mechanochemical at various heating and cooling rate	97
4.15	TGA thermogram of single-phase materials prepared via solid state method	98
4.16	TGA thermogram of single-phase materials prepared via mechanochemical method:	99
4.17	SEM micrographs of Bi ₃ NbO ₇ prepared via conventional and sintered at different sintering temperature	102
4.18	SEM micrographs of single-phase $Bi_{2.5}NbO_{6.25}$, Bi_3NbO_7 and $Bi_6NbO_{11.5}$ prepared via conventional method	105
4.19	SEM micrographs of single-phase Bi _{2.5} NbO _{6.25} , Bi ₃ NbO ₇ and Bi ₆ NbO _{11.5} prepared via mechanochemical method	107
4.20	IR spectra for solid solutions Bi_xNbO_δ (2.5 $\leq x \leq 6$)	110
4.21	Complex impedance plane plots for Bi_3NbO_7 at (a) $450^{\circ}C$ (b) $650^{\circ}C$ (c) $800^{\circ}C$	115
4.22	A combined Z" and M" spectroscopic plots for Bi_3NbO_7 at $300^{\circ}C$	118

4.23	A combined Z" and M" spectroscopic plots for Bi_5NbO_{10} at $300^{\circ}C$	119
4.24	Arrhenius plots of Bi ₃ NbO ₇	120
4.25	Arrhenius plots of Bi_xNbO_δ (2.5 $\le x \le 6$) synthesized via solid state method (first cooling cycle)	121
4.26	Arrhenius plots of Bi ₃ NbO ₇ in two different atmospheres	125
4.27	Arrhenius plots of Bi ₅ NbO ₁₀ in two different atmospheres	126
4.28	Isothermal conductivity at 300°C of Bi ₃ NbO ₇ in different atmospheres	127
4.29	Isothermal conductivity at 300°C of Bi ₅ NbO ₁₀ in different atmospheres	128
4.30	Complex plots of Bi_3NbO_7 at different applied voltages at $500^{\circ}C$	130
4.31	Complex plots of Bi_5NbO_{10} at different applied voltages at $500^{\circ}C$	131
4.32	Complex impedance plane plots for Bi_3NbO_7 at (a) 450°C, (b) 650°C and (c) 800°C	134
4.33	A combined Z" and M" spectroscopic plots for Bi_3NbO_7 at $300^{\circ}C$	135
4.34	Arrhenius plots of Bi_3NbO_7 synthesized via solid state (Δ) and mechanochemical (\blacklozenge) methods	137
4.35	Arrhenius plots of Bi_xNbO_{δ} , $(2.5 \le x \le 6)$ synthesized via mechanochemical method	138
4.36	XRD patterns of W-doped solid solutions, $Bi_5Nb_{1\text{-}x}W_xO_\delta~(0\leq x\leq 0.11)$	143
4.37	XRD patterns of Mo-doped solid solutions, $Bi_5Nb_{1\text{-}x}Mo_xO_\delta$ (0 $\leq x \leq 0.03)$	144
4.38	XRD patterns of V-doped solid solutions, $Bi_5Nb_{1\text{-}x}V_xO_{\delta}~(0\leq x\leq 0.11)$	147
4.39	XRD patterns of Ta-doped solid solutions, $Bi_5Nb_{1\text{-}x}Ta_xO_{\delta}~(0\leq x\leq 0.05)$	148

4.40	XRD patterns of Zr-doped solid solutions, $Bi_5Nb_{1-x}Zr_xO_{\delta}$ (0 $\leq x \leq 0.10$)	149
4.41	XRD patterns of Si-doped solid solutions, $Bi_5Nb_{1\text{-}x}Si_xO_{\delta}~(0\leq x\leq 0.05)$	150
4.42	XRD patterns of Ti-doped solid solutions, $Bi_5Nb_{1\text{-}x}Ti_xO_{\delta}~(0\leq x\leq 0.12)$	151
4.43	XRD patterns of Cu-doped solid solutions, $Bi_5Nb_{1\text{-}x}Cu_xO_{\delta}~(0\leq x\leq 0.06)$	152
4.44	DTA thermograms of W- and Mo-doped solid solutions	162
4.45	DTA thermograms of V- and Ta-doped solid solutions	163
4.46	DTA thermograms of Zr- and Si-doped solid solutions	164
4.47	DTA thermograms of Ti-doped solid solutions	165
4.48	DTA thermograms of Cu-doped solid solutions	166
4.49	TGA thermograms of W and V-doped solid solutions	167
4.50	TGA thermograms of Ta and Zr-doped solid solutions	168
4.51	TGA thermograms of Ti and Si-doped solid solutions	169
4.52	TGA thermograms of Mo and Cu-doped solid solutions	170
4.53	SEM micrograph of selected Cu-doped materials	172
4.54	SEM micrograph of selected Zr-doped materials	173
4.55	Complex impedance plots of $Bi_5Nb_{0.95}Cu_{0.05}O_{9.925}$ at (a) 250°C (b) 450°C (c) 650°C and (d) 800°C	177
4.56	Complex impedance plots of $Bi_5Nb_{0.91}Zr_{0.09}O_{9.955}$ at (a) 250°C (b) 450°C (c) 650°C and (d) 800°C	179
4.57	A combined Z" and M" spectroscopic plots for $Bi_5Nb_{0.95}Cu_{0.05}O_{9.925}$	180
4.58	A combined Z" and M" spectroscopic plots for $Bi_5Nb_{0.91}Zr_{0.09}O_{9.955}$	181
4.59	Arrhenius plots of W-doped materials with general formula $Bi_5Nb_{1-x}W_xO_{\delta}$	184

4.60	Arrhenius plots of Mo-doped materials with general formula $Bi_5Nb_{1\text{-}x}Mo_xO_\delta$	185
4.61	Arrhenius plots of V-doped materials with general formula $Bi_5Nb_{1-x}V_xO_{\delta}$	186
4.62	Arrhenius plots of Ta-doped materials with general formula $Bi_5Nb_{1-x}Ta_xO_{\delta}$	189
4.63	Arrhenius plots of Zr-doped materials with general formula $Bi_5Nb_{1-x}Zr_xO_{\delta}$	190
4.64	Arrhenius plots of Si-doped materials with general formula $Bi_5Nb_{1-x}Si_xO_{\delta}$	191
4.65	Arrhenius plots of Ti-doped materials with general formula $Bi_5Nb_{1-x}Ti_xO_{\delta}$	192
4.66	Arrhenius plots of Cu-doped materials with general formula $Bi_5Nb_{1-x}Cu_xO_{\delta}$	195
4.67	Arrhenius plots of $Bi_5Nb_{0.95}Cu_{0.05}O_{9.925}$ in two different atmospheres	196
4.68	Arrhenius plots of $Bi_5Nb_{0.91}Zr_{0.09}O_{9.955}$ in two different atmospheres	197

LIST OF ABBREVIATIONS/ NOTATIONS/ GLOSSARY OF TERMS

3D	three dimensions
ac	alternating current
dc	direct current
DTA	differential thermal analysis
FT-IR	Fourier-transform infrared spectroscopy
ICDD	international centre for diffraction data
ICP-AES	inductivity coupled plasma-atomic emission spectroscopy
JCPDS	Joint Committee on Powder Diffraction Standards
μ PDSM	micro powder diffraction search/ match
SEM	scanning electron microscopy
SOFC	solid oxide fuel cell
TGA	thermogravimetry analysis
XRD	x-ray diffraction
a,b,c,α,β,γ	lattice diffraction
А	area
A_w	Warbung coefficient
С	capacitance
C _b	bulk capacitance
C _{dl}	double-layer capacitance
C_{gb}	grain boundary capacitance
Co	vacuum capacitance
d	d-spacing
D	density

е	charge of the conducting species
eo	permittivity of free space
Е	electric field
Ea	activation energy
ε'	relative permittivity
ε*	complex permittivity
f	frequency
F	Faraday constant
h,k,l	Miller indices
Ι	current
j	flux of charge
J	density of the current
l	thickness
λ	wavelength
М	dopant introduced
Μ'	real part of modulus
M''	imaginary part of modulus
M^{*}	complex modulus
μ	mobility of the species
Р'	partial pressure to be measured
Р"	reference partial pressure
R	resistance
R	Boltzmann constant
R _b	bulk resistance

