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The physical and chemical properties of bioglass have significance in both 

fundamental and practical applications such as to be used in bone replacements and 

dental implants which included excellent osteoconductivity and bioactivity, ability 

to deliver cells and controllable biodegradability. Hydroxyapatite (HA), which has 

a similar structure as natural bone is prominent due to its biocompatibility and 

structure. However, it‘s not suitable to be used in load bearing applications due to 

the low mechanical strength. The introduction of the bioglass in the HA can helps 

to increase the mechanical strength of the HA so that it‘s able to be used in load 

bearing application. Melt quenching technique is used to synthesis 45S5 bioglass 

because it‘s simple, low cost and applicable in large scale industry. Hence, in this 

study, the physical and mechanical properties of HA, reinforced with sample glass 

(SG) and treated glass (TG) at different sintering temperatures have been studied. 

SG has been prepared by the conventional melt quenching technique with 45S5 

type of bioglass composition using 45% SiO2, 24.5% CaCO3, 24.5% Na2CO3 and 

6% P2O5 as the starting raw materials. Two series of HA reinforced with 45S5 

bioglass were produced. The HASG samples were produced by mixing HA and SG 

according to their weight ratios and followed by pressing them into a pellet form. 

While, the HATG samples were produced by mixing HA with TG. Whereas, TG is 

SG sintered at 800 °C. All samples were sintered at 800, 1000, and 1200 °C with a 

soaking time of 3 hours. All samples under study were tested for density, XRD, 

FTIR, FESEM and microhardness. The density of SG decreases from 2.26 to 0.44 

gcm
-3

 while molar volume increases from 34.99 to 179.36 cm
3
mol

-1
 as sintering 

temperature increased, which might be due to decomposition of carbonate group. 

Whereas, the density of HA increased from 1.99 to 3.11 gcm
-3

 with an increase in 

the sintering temperature and molar volume decreased from 252.03 to 162.30 

cm
3
mol

-1
 with the sintering temperature. The density of both HASG and HATG 

samples was found decrease with an increase in the SG and TG. The density also 

decreased with the sintering temperature. The molar volume decreased with 

increasing in the composition of SG and TG, which also increased with 

temperature. This might be attributed to the replacement of low density SG with 
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HA. The XRD results revealed amorphous phase of SG. After SG undergoes 

sintering process, the crystalline phase of sodium calcium silicate (Na2Ca3Si6O16), 

sodium, calcium phosphate (NaCaPO4) and quartz (SiO2) was observed. It is 

evident from the study of HASG and HATG samples that SG behaves more as a 

sintering aid and promotes the conversion of HA to as –tetracalcium phosphate 

(β–TCP) and α–tetracalcium phosphate (α–TCP). The FTIR results revealed the 

presence of SiO4, PO4 vibrations in SG, HASG and HATG samples. In addition, 

the FESEM analysis revealed that by increasing the sintering temperature, the size 

of closed pores of SG samples increased, while the Ca/P ratio decreased. The 

FESEM morphology of the HASG and HATG samples showed irregular shapes of 

grains and closed pore formation. Smaller grain sizes and closed pores were 

observed in HATG samples. The incorporation of 45S5 bioglass in HA not only 

changes the crystal structure of HA but also introduced closed pores in the samples 

which caused the density and hardness reduced as well. This is due to 

decomposition of oxide material in the glass system. HA reinforced with 45S5 is 

suitable material for cancellous bone replacement, but the porosity of the sample 

not fulfilled the requirement for bone scaffold which is interconnected. Nearly, all 

the calculated Ca/P ratios were within a range for HA which is 1.3 to 2.0. 

Microvickers hardness of HASG and HATG increased with the sintering 

temperature and decreased as the composition of SG and TG is increased. This 

might be due to a coarser microstructure, crystal growth and porosity formation in 

the samples. Besides that, the hardness value in the range of 0.05–5.0 GPa shows 

that it's suitable used in cancellous bone applications. The compressive strength 

data of HATG were comparable to the cancellous bone which shows the 

compressive strength of 5–10 MPa. 
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SIFAT FIZIKAL DAN MEKANIKAL BAGI HIDROKSIAPATIT 

DIPERKUKUH DENGAN BIOKOMPOSIT 45S5  

Oleh 

ZARIFAH BT HJ NADAKKAVIL ALASSAN 

Julai 2016 

Pengerusi :  Khamirul Amin Matori, PhD 

Fakulti :  Sains 

Sifat fizikal dan kimia biokaca mempunyai kepentingan bagi kedua-dua aplikasi 

asas dan praktikal seperti digunakan dalam tulang gantian dan implan gigi yang 

merangkumi osteokonduktif dan bioaktiviti yang cemerlang, kebolehan 

menghantar sel dan biodegradasi terkawal. Hidroksiapatit (HA) yang mempunyai 

struktur yang sama dengan tulang semulajadi adalah penting oleh kerana keserasian 

biologi dan strukturnya. Walaubagaimanapun, ia tidak sesuai digunakan dalam 

aplikasi menahan beban kerana kekuatan mekanikal rendah. Dengan 

memperkenalkan biokaca ke dalam HA boleh meningkatkan kekuatan mekanikal 

HA supaya ia boleh digunakan di dalam aplikasi menahan beban. Teknik sepuh 

lindap digunakan untuk sintesis 45S5 biokaca kerana ia mudah, kos rendah dan 

dapat digunakan di dalam industri berskala besar. Oleh itu, dalam kajian ini, sifat 

fizikal dan mekanikal bagi HA yang diperkukuhkan dengan (kaca sampel) SG dan 

(kaca terawat) TG pada suhu persinteran berbeza telah dikaji. SG telah dihasilkan 

melalui teknik sepuh lindap konvensional dengan komposisi biokaca 45S5 

menggunakan 45% SiO2, 24.5% CaCO3, 24.5% Na2CO3 dan 6% P2O5 sebagai 

bahan asas permulaan. Dua siri sampel hidroksiapatit diperkukuhkan dengan 

biokaca 45S5 dihasilkan. Sampel HASG dihasilkan dengan mencampurkan HA 

dengan SG mengikut nisbah beratnya dan diikuti dengan penekanan supaya 

membentuk pelet. Manakala, sampel HATG dihasilkan dengan mencampurkan HA 

dengan TG. Yang mana, TG adalah SG yang disinterkan pada 800 °C. Semua 

sampel disinter pada suhu 800, 1000, dan 1200 °C dengan masa rendaman 3 jam. 

Semua sampel di bawah kajian diuji untuk. ujian ketumpatan, XRD, FTIR, FESEM 

dan kekerasan mikro. Ketumpatan bagi SG berkurangan dari 2.26 ke 0.44 gcm
-3

 

sementara isipadu molar bertambah dari 34.99 ke 179.36 cm
3
mol

-1
 dengan 

penambahan suhu persinteran yang mana mungkin disebabkan penguraian 

kumpulan karbonat. Sementara, ketumpatan bagi HA meningkat dari 1.99 ke 3.11 

gcm
-3

 dengan penambahan suhu persinteran manakala isipadu molar berkurangan 

dari 252.03 ke 162.30 cm
3
mol

-1
 dengan suhu persinteran. Ketumpatan bagi kedua 

sampel HASG dan HATG didapati berkurangan dengan penambahan SG dan TG. 

Ketumpatan juga berkurangan dengan suhu persinteran. Isipadu molar berkurangan 
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dengan penambahan SG dan TG, yang mana turut meningkat dengan suhu 

persinteran. Ini mungkin disebabkan penggantian SG yang berketumpatan rendah 

dengan HA. Keputusan XRD mendedahkan fasa amorfus bagi SG. Setelah SG 

melalui proses persinteran, fasa hablur iaitu sodium kalsium silikat (Na2Ca3Si6O16), 

sodium kalsium fosfat (NaCaPO4) dan kuarza (SiO2) dilihat. Bukti kajian dalam 

sampel HASG dan HATG, menunjukkan SG bertindak sebagai pemangkin 

persinteran dan menggalakkan penukaran dari HA kepada β–kalsium fosfat (β–

TCP) dan α–kalsium fosfat (α–TCP). Keputusan FTIR mendedahkan kehadiran 

getaran bagi SiO4, PO4 di dalam sampel SG, HASG dan HATG. Selain itu, analisis 

FESEM mendedahkan bahawa dengan peningkatan suhu persinteran, saiz liang 

tertutup bagi sampel SG meningkat manakala nisbah Ca/P berkurangan. Morfologi 

FESEM bagi HASG dan HATG sampel menunjukkan bentuk butiran tidak 

seragam dan pembentukan liang tertutup. Saiz butiran dan liang tertutup yang kecil 

dapat dilihat di dalam sampel HATG. Dengan penyertaan biokaca 45S5 dalam HA 

bukan sahaja mengubah struktur hablur HA tetapi juga memperkenalkan. liang 

tertutup dalam sampel yang menyebabkan ketumpatan dan kekerasan berkurangan 

juga. Ini adalah disebabkan oleh penguraian bahan oksida dalam sistem kaca. HA 

diperkukuhkan dengan 45S5 adalah bahan sesuai untuk penggantian tulang 

kancelus tetapi keliangan sampel tidak memenuhi kelayakan bagi rangka tulang 

iaitu bersambungan. Hampir kesemua nisbah Ca/P yang dikira berada pada julat 

bagi HA iaitu di antara 1.3 ke 2.0. Kekerasan vickers mikro bagi sampel HASG 

dan HATG meningkat dengan suhu persinteran dan berkurangan apabila komposisi 

SG dan TG meningkat. Ini mungkin kerana mikrostruktur yang kasar, pertumbuhan 

kristal dan pembentukan keliangan di dalam sampel. Selain itu, nilai kekerasan 

berada di dalam julat 0.05–5.0 GPa menunjukkan ia sesuai digunakan dalam 

aplikasi tulang kancelus. Data kekuatan mampatan bagi HATG berpadanan dengan 

tulang kancelus dengan menunjukkan kekuatan 5–10 MPa. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

 

1.1 Introduction 

 

1.1.1 Biomaterials/ Bioceramic 

 

An inorganic compound that consists of metallic and non–metallic materials, which 

harden at high temperatures, is defined as ceramics. They can be single crystal, 

polycrystalline, glass, ceramic or composites. It is a widely known fact that glasses 

and ceramics have been widely used outside the body for various applications. They 

are commonly used in large industrial applications such as housewares, automotive 

industries, building's construction, chemical wares and health care industries. 

Nowadays, ceramic can also be employed in the body as implants and dental 

applications. Ceramic is widely used as a restorative material such as gold, porcelain 

crowns, glass-filled ionomer cements and dentures.  

 

Bioceramics are ceramic materials that are used in medical and dental applications 

such as, repair and reconstruction of diseased or damaged parts of the body (Rukiye, 

2000). Bioceramic is a type of biomaterial that is produced in a variety of forms and 

phases and serves in different applications within a human body. A biocompatible 

ceramic is composed of calcium and phosphate such as hydroxyapatite (HA) or 

tricalcium phosphate (TCP). It is either intended for a permanent replacement, such 

as, coating gliding surfaces to reduce wear in prosthetic joints, or as a temporary 

structure, as in the case of bioresorbable pins, plates and screws.  

 

Various studies have been conducted for the design and construction of engineering 

scaffolds for the regeneration of different tissues with natural materials and artificial, 

or a combination of them. Any material that is prone to the purpose for repair and 

reconstruction of lost, damaged or deceased tissue can be referred as biomaterials 

(Seeram et al., 2004). According to William, “biomaterial is a material that is used in 

implants or medical devices, designed to interact with the biological systems” (Hench, 

2013). 

 

In order to be used for medical application, the material must possess lots of specific 

characteristics whose fundamental requirements are related to a biocompatibility. The 

compatible materials are considered as biomaterials due to their biocompatibility, 

which is a descriptive term and indicates an ability of a material to perform the 

appropriate host response, in a particular application (Seeram et al., 2004). 

 

In order to form an ideal scaffold that can be used in bone tissue engineering, it requires 

certain criteria as follows; an ability to deliver cells, excellent osteoconductivity, good 

biodegradability, appropriate mechanical properties, which include an extremely 

porous structure with porosity ˃ 90%. Moreover, it must also possess an ability of 

irregular shape fabrication, and a commercialization potential (Chen et al., 2006). 

Table 1.1 summarized important scaffold design parameters.  
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Table 1.1: Scaffold design parameters for bone tissue engineering (Chu and Liu, 

2008). 

 

 

 

 

1.1.2 Bioglass 

 

The basic component of bioglass is composed of SiO2, Na2O, CaO and P2O5. The 45S5 

bioglass is a type of bioglass which consists of 45% SiO2, 24.5% CaCO3, 24.5% 

Na2CO3 and 6% P2O5. The glass is known as bioactive based on its definition by 

Hench, “a bioactive material is one that elicits a specific biological response at an 

interface of a material that results in a formation of a bond between the tissues and 

material” (Hench, 1993).  

 

Glass is an inorganic substance that is produced by melting several minerals together 

at high temperature and cooling the molten to its solid state through its glass transition 

temperature without crystallizing them. Bioglass is different from glass ceramic due 

to its possibilities to control a range of chemical properties and rate of bonding with 

the tissues. 

 

Bioglass, which consists of basic components such as SiO2, Na2O, CaO and P2O5 is 

known to have the most stimulatory effect on bone cell function (El-Ghannam, 2004). 

Moreover, the fabrication techniques for bioglass include both traditional melting 

methods and sol gel techniques. At first, the bioglass was used in a form of substitute 

for small solid bone that was used in a middle of ear surgery. Not long after that, 

bioglass was also used in other applications such as in periodontology, endodontology 

or as coatings on metallic orthopedic implants. Recently, bioglass has been considered 

as one of the potential material in tissue engineering and regenerative medicine 

(Boccaccini et al., 2010).  

 

Parameters Requirements 

Porosity Maximum possible without comprising 

mechanical properties 

Pore size 200-400 μm 

Pore structure  Interconnected 

  

Mechanical properties of the cancellous bone 

Tension and compression Strength: 5-10 MPa 

Hardness 0.05-5 GPa 

Mechanical properties of the cortical bone 

Tension  Strength: 80-150 MPa 

Compression Strength: 130-220 MPa 

 Fracture toughness: 6-8 MPam1/2 

Hardness 7-30 GPa 
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Bioglass has gained attention of many researchers due to its unique characteristics such 

as: relatively low softening temperature that can be used as a sintering aid which is 

required during sintering to bond ceramic particles and fill the micropores. Besides 

that, bioglass also has the ease of compositional design based on properties unique to 

a particular clinical applications. Its also have a wide range controllability of chemical 

properties and rate of bonding with tissues and a rapid rate of surface reaction that 

leads to their direct attachment to bone via a chemical bond (Balamurugan et al., 

2007). 

 

1.1.3 Hydroxyapatite 

The chemical formula of HA is Ca5(PO4)3(OH), which is a form of calcium phosphate. 

It is also written as Ca10(PO4)6(OH)2 to denote that the crystal unit cell is comprised 

of two entities. This material has a similar structure as natural bone mineral that’s why 

it has been used as a bone substitute because of its biocompatibility and structural 

properties (El-Ghannam, 2004). Almost, 70% of the biological apatite is found in 

bones by weight. 

 

HA has been classified as one of the best biocompatible and bioactive material, which 

has many biological applications such as, bone repair scaffolds. Besides that, it also 

possesses several advantages such as, it is found to be osteoconductive, which 

enhances the growth of bone cells (Maryam and Fathi, 2012). Furthermore, when 

implanted in vivo, the presence of HA can also induce osteogenesis because of its 

osteoinductive and bone bonding ability (Deplaine et al., 2010). A bone graft material 

that is osteoconductive and osteoinductive does not only serve as a scaffold for 

currently existing osteoblasts, but it also triggers the formation of new osteoblasts, 

theoretically promoting the faster integration of a graft. 

 

HA is entirely compatible with a body because when exposed to body fluids, HA bonds 

to bones by forming indistinguishable unions. This bond begins with a formation of 

carbonate apatite crystals in bone, where it promotes the adhesion of matrix–producing 

cells and organic molecules due to a surface chemistry and surface charges (Racquel 

and John, 1993). However, HA is unsuitable for load bearing applications. This is due 

to low tensile strength and fracture toughness compared to natural bone which gives 

drawback to HA derived implants. 

 

In this study, reinforcement of HA with an incorporation of 45S5 system perhaps is a 

suitable choice for improving its mechanical properties so that’s its able to be used as 

bone generation scaffolding. This research is focused on the improving the physical 

and mechanical properties so that’s its able to be used as bone scaffold.  

 

 

1.2 Problem Statements 

 

According to the World Health Organization (WHO), an estimated 20 to 50 million 

people sustain an injury and most of them suffer permanent injury level due to road 

accidents ("World report on road traffic injury prevention," 2015). Most of the injuries 

in vehicle accidents involve broken bones and fractures. These broken bones sustained 

in any vehicle accident can be more severe than in a fall or sports accident. People who 
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suffer fractures in car accidents often require surgery and the victim may require 

reconstructive surgery involving hardware to secure the bones. With a recent 

advancement in the field of biomaterials can be used as a bone replacement.  

 

HA has been classified as one of the best biomaterials. HA possesses a similar structure 

as a natural bone mineral that is why, it has been used as a bone substitute (El-

Ghannam, 2004). Due to this particular property, they can be used as implant materials 

in the human body to replace and/or repair diseased or damaged bone. However, the 

drawback of hydroxyapatite in scaffold engineering is not suitable to be used in load 

bearing applications due to their properties which is brittleness and low mechanical 

strength compared to bone. The low mechanical strength is due to porosity, grain size 

and amorphous phase (Valeri and Aleksandra, 2012). This can be improve by 

reinforced with several filler such as polymers (collagen), metals and  inorganic 

materials (carbon nanotubes) (Valeri and Aleksandra, 2012). Even so, combining HA 

with polymer may mask the osteoinductive properties of HA itself. Nevertheless, it 

only can be attempt for dense type of materials only. Availability of HA in porous 

form encourages the extensive use of these biomaterials to serve as tissue engineering 

scaffolds for cells (El-Ghannam, 2004; Maria et al., 2000). Porous HA can be develop 

by salt leaching, gas foaming, phase separation, freeze-drying and sintering. 

Unfortunately, the fabrication only focusing the open porosity without taking account 

the closed pores and it's also decreased the mechanical strength of HA. 

 

Bioglass is a silica based glass that binds to bone more efficiently. It is a synthetic 

amorphous material with high biocompatibility (Mistry et al., 2011). Due to this 

particular property, it can be used as an implant material in a human body to replace 

and/or repair diseased or damaged bone in orthopedic, cranio–maxillao facial and 

periodontal surgeries as well as a filling material for human teeth (Mistry et al., 2011).  

 

The use of HA in load bearing parts can be explored by provided the strength and 

toughness of HA by reinforcement with 45S5 bioglass. Despite the fact bioglass is 

brittle, the brittleness of the glass can be improved by sintering process. High sintered 

density and ultra fine particles will ensure leading to improve mechanical properties 

of the composites via dispersion strengthening. The solid state method is chosen as the 

method of synthesis of HA reinforced with bioglass due to their simplicity and low 

cost production. Besides that, its offer large scale production, which saves energy and 

time.  

 

Therefore, this research has focused on the fabrication of bioceramic composite 

materials via solid state method using HA and 45S5 bioglass to be used as tissue 

engineering scaffolds. In this study, the reinforcement of HA with the incorporation of 

glasses within the SiO2–CaCO3–Na2CO3–P2O5 glass system is a suitable choice for 

improving physical, mechanical and microstructure properties.  

 

 

1.3 Objectives of the study 

 

The major part of this research deals with a characterization of SG, HA, HA reinforced 

with SG and HA reinforced with TG. The main objectives of this research are 

summarized as follows: 
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1. To synthesize a sample glass (SG) based on 45S5 composition: SiO2–CaCO3–

Na2CO3–P2O5 through melting and water quenching technique.  

2. To determine the effect of sintering on the physical, structural, and mechanical 

properties of SG. 

3. To investigate the impact of the SG and TG on the physical, structural, and 

mechanical properties of HA.  

4. To examine the effect of sintering on the physical, structural, and mechanical 

properties of HA reinforced with SG and TG.  

 

 

1.4 Scopes of the study 

 

The melt quenching and thermal treatment technique is used in this study. The research 

has been focused on the physical and mechanical properties of HA reinforced with 

45S5 bioglass prepared using melt quenching technique. The research is done in order 

to achieve optimum physical and mechanical properties of the sample by excluding 

the bioactivity study such as invivo and invitro test. The SG samples was prepared 

based on 45S5 compositions: 45% SiO2, 24.5% CaCO3, 24.5% Na2CO3 and 6% P2O5 

using conventional solid state method through water quenching and followed by 

sintering at 800, 1000 and 1200 °C for 3 hours. The HASG sample was prepared by 

mixing SG with HA at 20, 40, 60 and 80 wt.%, which was followed by sintering at 

800, 1000 and 1200 °C for 3 hours. TG was prepared by sintering SG at 800 °C for 3 

hours. The HATG sample was prepared by mixing TG with HA at 20, 40, 60 and 80 

wt.% and followed by sintering at 800, 1000 and 1200 °C for 3 hours. The density of 

the samples was measured by density meter, with ethanol as immersion–liquid while; 

molar volume is calculated based on density and molecular weight of the samples. The 

structure of the samples was measured using x-ray diffraction technique to study the 

phase and crystal structure of the samples. In order to evaluate the bonding structure 

of the samples, FTIR spectroscopy was used in this study. The surface morphology 

and microstructure of samples were analyzed using Field emission scanning electron 

microscopy (FESEM) while the chemical composition was detected by energy 

dispersive x–ray spectrometer (EDX) and Ca/P ratio value of the samples was 

determined by Ca and P ratio. The micro Vickers hardness test was used to determine 

the hardness of samples.  

 

 

1.5 Outline of thesis 

 

This thesis is structured as follows: Chapter 1 gives an introduction of biomaterials, 

bioglass and HA. The previous works, including the past and current literature of 

bioglass and HA with bioglass, is covered in Chapter 2. In Chapter 3, the 

methodologies employed for the preparations and characterization of the SG, HA, 

HASG and HATG are discussed. The results concerning the effect of SG and TG on 

physical, structural, mechanical properties of HA are analyzed and discussed in 

Chapter 4. The conclusion and suggestions for future works are given in Chapter 5.
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