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Solid oxide fuel cells (SOFCs) are high efficiency power generators and operated at 
high temperature (1000 °C). Consequently, this high operating temperature may lead to 
many technological problems, such as material durability. Bismuth based electrolytes 
are able to perform higher ion conductivity than the current electrolytes (zirconia 
based) due to its intrinsic property (a quarter of oxygen sites for ions mobility). 
However, δ-Bi2O3 can exhibit high oxide ion conductivity at limited temperature range 
(730 °C to 825 °C). Introduction of WO3 into Bi2O3 was conducted in an attempt to 
stabilize δ-Bi2O3 down to room temperature. Unfortunately, the produced WO3 doped 
Bi2O3 materials with a general formula of (1-x)Bi2O3-xWO3, (0.22 ≤ x ≤ 0.255), were 
unable to stabilize δ-Bi2O3. Eventually, these materials synthesized via conventional 
solid state method and mechanochemical method, respectively, were fully indexed on 
the tetragonal system with space group I41. Single phase material of Bi6.24W0.88O12, can 
be obtained at lower temperature with shorter durations through mechanochemical 
method. The tetragonal structure, Bi6.24W0.88O12, synthesised through mechanochemical 
method was obtained at 650 °C for 24 hours, while the conventional solid state method 
synthesized material required a higher temperature (700 °C) for longer duration (48 
hours) to obtain a pure phase material. 

It must be highlighted that Bi6.24W0.88O12 did not undergo decomposition under the 
studied temperature range (room temperature to 910 °C) based on the XRD patterns 
from thermal stability experiment and data from thermogravimetric analysis (TGA).
This behavior clearly indicated that Bi6.24W0.88O12 was a high stability material. Three 
vibration bands (ν(W-O-W), Bi-O and ν (W-O)) were noticed in spectra of Fourier-
transform infrared (FT-IR) spectroscopy. Scanning Electron Microscopy (SEM) 
micrographs for pellets sintered at 900 °C illustrated greater grain size compared to 
pellets sintered at 700 °C. It was inferred that resistance of material could be reduced. 
X-ray Fluorescence (XRF) analysis recorded data with percentage of error below 5 %, 
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hence, this validated that compositions material and gave a confidence of the current 
work results. 

Bi6.24W0.88O12 exhibited the best ionic conductivity among other solid solutions of (1-
x)Bi2O3-xWO3, (0.22 ≤ x ≤ 0.255). Bi6.24W0.88O12 fabricated by mechanochemical 
method demonstrated the highest conductivity of 2.25 x 10-2 ohm-1cm-1 at 600 °C 
(average grain size of 12.46 μm to 48.16 μm) than conventional solid state route 
materials. It was also worthwhile to point out that a pure Bi6.24W0.88O12 ion conducting 
solid electrolyte without any electronic conduction was produced with ionic 
conductivity of 6 orders higher than the reported YSZ at 600 °C, elucidating a greater 
potential of Bi6.24W0.88O12 to be used as a material utilized in SOFC electrolytes 
applications. 

Doping was carried out on the Bi or W sites in Bi6.24W0.88O12 with selected dopants, 
including monovalent (Li+), divalent (Ca2+, Cu2+, Ni2+ and Zn2+), trivalent (Cr3+ and 
Y3+), tetravalent (Sn4+, Ti4+ and Zr4+), pentavalent (Sb5+, V5+, Nb5+ and Ta5+) and 
hexavalent (Mo6+) cations in order to investigate their effects on the electrical 
properties of doped Bi6.24W0.88O12 materials. All these dopants can be introduced into 
Bi6.24W0.88O12 with rather limited solid solution ranges. Ion vacancy, ionic potential and 
unit cell parameters of structure are the main factors that varying the conductivity of 
the doped materials. Bi6.24W0.68Nb0.20O11.900 was developed and achieved the highest 
oxide ion conductivity (2.96 x 10-2 ohm-1cm-1 at 600 °C) among other cation dopants. 
This doped material was 32 % more conductive than the undoped material. Therefore, 
it is important to point that this doped material could elevated the performance of 
SOFC. Nb particles (tiny particle) were homogeneously distributed over the surface 
ceramic of Bi6.24W0.68Nb0.20O11.900 as illustrated in SEM image. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

PENYEDIAAN DAN SIFAT ELEKTRIK BISMUT 
TUNGSTAN ELEKTROLIT PEPEJAL 

Oleh 

YUEN MEI LIAN 

Februari 2016 

Pengerusi: Tan Yen Ping, PhD 

Fakulti: Sains 

Sel bahan api pepejal oksida (SOFC) ialah penjana kuasa yang berkecekapan tinggi dan 
beroperasi pada suhu tinggi (1000 °C). Akibatnya, suhu operasi yang tinggi ini 
membawa banyak masalah teknologi, contohnya ketahanan bahan. Elektrolit 
berdasarkan bismut boleh melaksanakan kekonduksian ion yang lebih baik daripada 
elektrolit semasa (berdasarkan zirkonia) disebabkan oleh sifat intrinsiknya (satu suku 
ruang oksigen untuk pergerakan ion). Namun demikian, δ-Bi2O3 dapat menunjukkan 
kekonduksian ion yang tinggi pada julat suhu terhad (730 °C ke 825 °C). Pengenalan 
WO3 ke dalam Bi2O3 dilakukan dengan tujuan untuk menstabilkan δ-Bi2O3 hingga ke 
suhu bilik. Malangnya, bahan WO3 terdop Bi2O3 dengan formula umum (1-x)Bi2O3-
xWO3, (0.22 ≤ x ≤ 0.255), yang terhasil ini gagal menstabilkan δ-Bi2O3. Akhirnya, 
bahan tersebut yang disintesiskan dengan tindak balas keadaan pepejal secara 
konvensional dan mekanokimia secara berasingan, dapat diindekskan pada sistem 
tetragonal dengan kumpulan ruang I41. Bahan berfasa tunggal bagi Bi6.24W0.88O12,
boleh diperoleh pada suhu yang lebih rendah dengan masa yang lebih singkat yang 
disintesiskan melalui tindak balas mekanokimia. Struktur tetragonal, Bi6.24W0.88O12,
yang disintesiskan melalui tindak balas mekanokimia dapat diperolehi pada 650 °C 
selama 24 jam, manakala  bahan bagi tindak balas keadaan pepejal secara konvensional 
memerlukan lebih tinggi suhu (700 °C) dengan lebih panjang tempoh (48 jam)  untuk 
mendapatkan bahan berfasa tunggal.

Dengan ini, dapat menegaskan bahawa Bi6.24W0.88O12 tidak mengalami sebarang 
penguraian di bawah julat suhu yang dikaji (suhu bilik ke 910 °C) berdasarkan corak 
XRD daripada eksperimen kestabilan haba dan data daripada from analisis 
termogravimetri (TGA). Sifat ini jelas menunjukkan bahawa Bi6.24W0.88O12 adalah 
bahan yang berkestabilan tinggi. Tiga jalur getaran (ν(W-O-W), Bi-O and ν (W-O)) 
dapat diperhatikan dalam spektra spektroskopi inframerah transformasi Fourier (FT-
IR). Mikrograf imbasan elektron mikroskopi (SEM) bagi pelet disinter pada suhu 900 
°C mempamerkan butiran yang bersaiz besar berbanding dengan pelet disinter pada 
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suhu 700 °C. Ini boleh dikatakan rintangan bahan dapat dikurangkan. Analisis 
pendarfluor X-ray (XRF) mencatat data dengan peratusan ralat di bawah 5 %, jadi, ini 
mengesahkan bahan komposisi dan memberikan satu keyakinan terhadap keputusan 
kerja ini. 

Bi6.24W0.88O12 mempamerkan kekonduksian ionik terbaik di kalangan larutan pepejal 
bagi (1-x)Bi2O3-xWO3, (0.22 ≤ x ≤ 0.255). Bi6.24W0.88O12 yang diperbuat melalui tindak 
balas mekanokimia menunjukkan kekonduksian paling tinggi dengan 2.25 x 10-2    
ohm-1cm-1 pada 600 °C (saiz purata bijirin adalah 12.46 μm ke 48.16 μm) daripada 
bahan tindak balas keadaan pepejal secara konvensional. Dengan ini adalah berbaloi 
menunjukkan Bi6.24W0.88O12 elektrolit pepejal ionik tulen tanpa kekonduksian 
elektronik dihasilkan dengan konduksi ionik sebanyak 6 kali lebih tinggi daripada YSZ
yang dilaporkan pada 600 °C, menjelaskan Bi6.24W0.88O12 berpotensi agung apabila 
bahan ini digunakan dalam SOFC sebagai elektrolit.

Pendopan dijalankan pada tapak Bi atau W bagi Bi6.24W0.88O12 dengan dopan yang 
terpilih, termasuk kation monovalen (Li+), divalen (Ca2+, Cu2+, Ni2+ and Zn2+), trivalen 
(Cr3+ and Y3+), tetravalen (Sn4+, Ti4+ and Zr4+), pentavalen (Sb5+, V5+, Nb5+ and Ta5+)
and heksavalen (Mo6+) bagi mengkaji kesan pendopan pada sifat elektrik pada bahan 
terdop Bi6.24W0.88O12. Semua dopan yang diperkenalkan ke dalam Bi6.24W0.88O12 

mempunyai julat larutan pepejal terhad. Kekosongan ion, keupayaan ionik dan 
parameter sel unit struktur merupakan faktor utama yang mempelbagaikan 
kekonduksian bagi bahan terdop. Bi6.24W0.68Nb0.20O11.900 dihasilkan dan mencapai 
kekonduksian ion yang tertinggi (2.96 x 10-2 ohm-1 cm-1 pada 600 °C) di kalangan 
bahan dopan kation. Bahan terdop ini adalah 32 % lebih mengkonduksi daripada bahan 
tidak terdop. Oleh itu, ini adalah penting mengatakan bahawa bahan terdop ini boleh 
menaikkan prestasi SOFC. Zarah Nb (zarah kecil) adalah bertaburan secara homogen 
pada permukaan seramik seperti yang digambarkan di imej SEM.
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CHAPTER 1 

INTRODUCTION 

1.1 Electroceramics 

Ceramic materials can be divided into traditional ceramics and advanced ceramics. In 
the early civilizations, traditional ceramics are pottery, structural clay products, clay-
based refractories, cements, concretes and glasses. Recent year, attention is focused on 
advanced ceramics, which refer to the ceramics for electrical, magnetic, electronic and 
optical applications (functional ceramics) and structural ceramics at ambient and 
elevated temperatures. Traditionally, high electrical resistance ceramic materials are 
utilized for electrical insulation. In modern days, oxides and oxide compounds 
employed in the ceramic technology possess high electrical conductivity, either ionic or 
electronic (Moulson and Herbert, 2003; Rahaman, 2003). 

The foundations of electroceramics are the science of ceramic processing, chemistry 
and solid state physics with its products find applications in diverse fields. 
Electroceramics is a trans-disciplinary, both in fundamentals and applications aspects. 
Dielectric ceramics are referred to those linear and non-linear dielectrics. In contrast, 
conductive ceramics consists of super-conductors, conductors and semiconductors 
(including ionically and electronically conductive ceramics). In addition, magnetic 
ceramics and optical ceramics are electroceramics material too (Setter, 2001). 

Electroceramics are high technology materials whose properties and applications 
depend on the close control of structure, composition, ceramic texture, type of dopants 
and dopant (or defect) distribution. Some ceramics, like ‘fast-ion conductors’, which 
could conduct electricity well and predominantly by the transport of ions, thus they 
contribute crucial roles in fuel cell and sensor technologies. They are present as integral 
components of the circuit used in computers, signal processing, telecommunications, 
power transmission and power control technologies due to their  wide range of 
properties such as polarisation, mechanical and optical responses, which may be 
controlled through composition, chemical substitution, doping and fabrication 
conditions There are a few examples of the development in electroceramics 
technology, include ferroelectric research and development, alumina developments for 
thick-film microelectronics in oxide ceramics and high thermal conductivity ceramics 
for integrated circuit packaging (Steele, 1991; Levinson, 1987). Table 1.1 lists out 
some examples of electroceramics.
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Table 1.1: Examples of electroceramics

Materials Properties Applications
BaTiO-based High dielectric permittivity Small plate capacitors, tube 

capacitors and multilayer 
capacitors (MLCs)

Pb(Ti, Zr)O3 Piezoelectric Sensors, actuators, ultrasonic 
transducer and electro-
acoustic

n-doped 
semiconducting 
BaTiO3

grain boundaries barrier 
controlled, positive 
temperature coefficient
(PTC) of the resistivity

self-controlled electrical 
heating systems

ZrO2 Ionic conductor Electrochemical oxygen 
sensors in cars and high-
temperature solid oxide fuel 
cells (SOFCs)

ZnO strongly non-linear current-
voltage behavior

Overvoltage protection 
varistors

YBa2CuO7 high-temperature 
superconducting ceramics

power applications as high-
voltage energy transmission 
cables and magnetic energy 
storage

1.2 Solid Oxide Electrolyte 

1.2.1 Overview 

Electrical conduction occurs by the long range diffusion of either electrons or ions. 
Predominant one charge carrier (electron or ion) causes the conduction to occur in a 
material. Meanwhile, in certain organic materials, mix charge carrier conduction of 
ionic and electronic is significant. 

Solid electrolytes, fast ion conductors and superionic conductors refer to one set of ions 
that can move easily. They show high conductivity in the absence of a significant 
electronic contribution. Such materials often have rather special crystal structures with 
open tunnels or layers through which the mobile ions may move. The conductivity 
values, example 10-3 ohm-1 cm-1 for Na+ ion migration in β–alumina at (25 °C) is 
comparable to those observed for strong liquid electrolytes. It is now apparent from 
both theoretical and experimental results on a wide variety of materials that ionic 
conductivities of 0.1 ohm-1 cm-1 to 10.0 ohm-1 cm-1 are the maximum that are likely to 
be obtained for any material. These values are obtained when a large proportion of the 
ions move at any one time.  

Most crystalline materials have low ionic conductivities because the atoms or ion



© C
OPYRIG

HT U
PM

3
 

vibrate at their lattice sites and cannot move freely, escape from their lattice sites. For 
example, NaCl is an insulator at room temperature (conductivity around 10-15 ohm-1

cm-1). This phenomenon does not observe for solid electrolytes materials, where 
cations or anions are free to move throughout the whole structure. Consequently, they 
are intermediate between normal crystalline solids and liquid electrolytes. Figure 1.1 
depicts solid electrolytes as intermediate between normal crystalline solids and liquids. 
Figure 1.2 shows the electrical conductivities of several common substances. 

Solid electrolytes have conductivities that fall between those of a typical 
semiconductor, silicon and a typical aqueous electrolyte, sodium chloride. They are 
stable only at high temperatures. Otherwise, they may undergo a phase transition to a 
polymorph with a low ionic conductivity on cooling. For example, AgI is poor 
conductor at 25 °C. However, its structure changes to polymorph, α-AgI (phase 
transition), which has mobile Ag+ ions on heating, lead to conductivity increases. 

There has been many potential applications of solid electrolytes, include fuel cells, 
sensors, electrochromic materials for both optical display and ‘smart window’ devices, 
low-cost electrolysis of water and selective atomic filters. Oxygen detectors for 
automotive pollution-control systems employ solid O2- conductors and solid-state 
batteries using Li+ conducting solid electrolytes are the devices of solid electrolytes. 

1.2.2 Conduction Mechanism

In ionic crystal, the individual lattice atoms transfer electrons between each other to 
form positively charged cations (donate electrons) and negatively charged anions 
(accept electrons). This strong natural binding force between cations and anions is 
known as electrostatic. The conductivity of ionic crystals is about twenty two orders of 
magnitude smaller than the conductivity of typical metallic conductors at room 
temperature. This could be attributed to the wide band-gap in insulators that allows few 
electrons to excite from the valance into the conduction bands (Hummel, 1992). 

During ionic conduction, ions are charge carriers because the cations or anions are free 
to move throughout the structure. There are two requirements must be fulfilling either 
in order for ions to move freely: (i) some lattice sites must be vacant to allow the 
adjacent ions to hop into the vacancies and leaving their own sites vacant, or (ii) 
available interstitial sites for ions in interstitial sites hop into the adjacent interstitial 
sites. 

Besides, sufficient energy to pass over an energy barrier is required in order for ions to 
move through a crystalline solid. Thus, ionic conduction is easier at higher 
temperatures as ions vibrate more vigorously and defect concentrations are higher. A 
highly polarized anion framework is needed for significant ionic conduction. Some 
factors that must be satisfied in order to obtain high ionic conductivity of ceramics are 
high density of mobile ions, the availability of vacant sites that can be accessed by the
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Figure 1.1: Solid electrolytes as intermediate between normal crystalline solids 
and liquids (West, 1999)

Figure 1.2: Electrical conductivities of selected common substances and 
representative solid electrolytes (Greenblatt, 1994) 
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mobile ions and good connectivity among the sites (requiring conduction channels with 
low free energy (Ea) barriers between the sites). 

For any material and charge carrier, the specific conductivity, σ, is given by 
σ = �

i

nieiμi                    (1.1) 

For ionic conductivity, σ,
σ = Nioneμion                  (1.2)  

where Nion is the number of ions which can change their positions under the influence 
of   an electric field, e is elementary charge and μion is the mobility of ions. 

Arrhenius law shows the correlation between the conductivity and temperature 
(Corumle et al., 2015). It can be represented by the formula: 

σ = σo exponential (-Ea/kT)      (1.3) 

where σ is oxygen ion conductivity, σo is the pre-exponential factor, Ea is the apparent 
activation energy for oxygen migration, k is the Boltzmann constant and T is the 
absolute temperature (K). 

Oxide ion conductors are ionic conductors as advanced ceramic materials in which 
oxide ions (anions) act as charge carriers. They are very useful for a number of 
electrochemical devices, including solid oxide fuel cells (SOFCs) and oxygen sensors. 

1.2.3 Application 

1.2.3.1 Solid Oxide Fuel Cells (SOFC) 

Fuel cells are electrochemical energy conversion devices that generate electricity and 
heat by converting the chemical energy of fuels without combustion as an intermediate 
step. It converts gaseous fuels (hydrogen, natural gas and gasified coal) via an 
electrochemical process directly into electricity. This direct use of hydrocarbon fuels 
greatly decreases the complexity and cost of the fuel cell system. It does not produce 
significant amounts of pollutants compared with internal combustion engines. It is 
environmentally friendly operation, low noise, high efficient and compact in the 
generation of electricity through chemistry instead of combustion. 

Fuel cells and batteries can be connected together in series to produce higher voltages. 
However, a battery is an energy storage device that stores its fuel internally and that 
can only supply a fixed amount of energy. In contrast, fuel cell does not need to be 
recharged and generates electricity as long as fuel and water are supplied externally. 
Fuel cell has no fixed capacity and can accept almost all kind of fuel, including natural 
gas, coal gas, gaseous fuels from biomass and liquid fuels (Badwal and Foger, 1995). 
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Generally, there are four types of fuel cells – solid oxide, proton exchange membrane, 
molten carbonate and alkaline. Solid oxide fuel cells (SOFCs) are the most attractive 
because they have the highest efficiencies and the potential of using many fuels, 
including gasoline and diesel, without expensive external reformers that create more 
volatile chemicals compare to any conventional fuel cell design. It is significant to 
environmental benefits. It can operate at high temperatures, producing high-grade 
exhaust, which can be recovered and used for other applications, such as space heating 
and cooling, and generating extra electricity by spinning a gas turbine linked to the unit.  

As a power generator, it can convert more than 55 % of the energy in its fuel source to 
electricity. Its efficiency is much higher than that of conventional coal plants 
(efficiencies around 34 %). When the high-quality exhaust from the electrochemical 
process is used, overall efficiencies of a SOFC could reach 85 % (Badwal and Foger, 
1995). 

Besides, solid oxide fuel cells have a wide variety of applications from use as auxiliary 
power units in vehicles to stationary power generation with outputs from 100 W to 2 
MW. A compact SOFC system can supply a maximum power of 64 kW for driving and 
that the system efficiency is 3 to 4 times higher than an internal combustion engine 
system. During the past few years, developments in ceramics for solid oxide fuel cells 
in lowering of the operating temperature from 1000°C to 800°C with improved 
conductivity characteristics, has been achieved by reducing the thickness and 
polarisation losses over the cell interfaces, allowing better electrochemical performance 
(Arespacochaga et al., 2015; Mahato et al., 2015).

SOFCs are made from solid state materials, namely ceramic oxides. Figure 1.3 reveals 
SOFC consists of three components: a cathode, an anode and an electrolyte 
(sandwiched between cathode and anode). A dense electrolyte is favourable as a good 
ion conducting characteristics and low electronic conductivity. Charge carriers in the 
electrolyte are oxygen species. The electrolyte is a nonporous ceramic material with ion 
conducting oxide. 

             
Figure 1.3: Schematic of a ceramic fuel cell or solid oxide fuel cell (SOFC) 
(Huijsmans, 2001) 
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At cathode, oxygen (from air) accepts electrons from external circuit and is reduced to 
negatively charged oxygen ions (O2-). These ions travel through the solid electrolyte to 
the anode, where they react with fuel at the anode. The fuel is oxidized by the oxygen 
ions and releases electrons to an external circuit, thereby producing electricity. In other 
words, electrochemical reduction of oxygen occurs at the cathode and the oxygen 
passes through the electrolyte membrane via a vacancy mechanism to the anode. At the 
anode, electrochemical oxidation of hydrogen occurs, where the hydrogen is provided 
from directly reformed natural gas or other hydrocarbons. The solid electrolyte 
conducts these ions between the electrodes, thus maintaining overall electrical charge 
balance and the flow of electrons in the external circuit provides useful power. 

Fuel cell stack is the connection of several single cells in series using electrical 
interconnections to achieve higher voltages. Traditionally, the SOFC electrolyte is 
yttrium-stabilised zirconia (YSZ) at the extremely high operation temperature (around 
1000 °C) over the years because of its oxide ion concentration and its chemical stability 
in reducing and oxidising atmospheres. This high operating temperature is a major 
problem which accelerates the degradation of cell components as well as limit choices 
of cell components. Therefore, the increment cost in fabrication of cell components is 
unavoidable. 

New electrolytes with higher oxygen conductivity and negligible electrical conductivity 
that could be applied in the SOFC with lower operation temperature compare to YSZ 
are required in order to reduce materials costs and improve chemical and mechanical 
stability of the ceramics (Shao et al., 2012; Pelosato et al., 2015). 

1.2.3.2 Oxygen Sensor 

In solid electrolytes, the conductivity of a solid electrolyte due to the mobility of
oxygen ion, O2-, is very low at room temperature and comparable to that of an aqueous 
electrolyte when temperatures achieve above 600 °C. If the operation temperature is 
not too high or the oxygen partial pressure is not too low, the conductivity due to the 
electron mobility can be neglected and pure oxygen ion conduction is assumed. This 
property is utilized in oxygen concentration cells containing solid electrolytes for the 
measurement of oxygen partial pressures in gas mixtures or concentrations of gases in 
liquids. 

Oxygen sensors apply in automobiles to control the combustion for the internal 
combustion engine (air/fuel ratio). However, The main concern of such sensors as 
oxygen concentration cell are thermal resistance requirement under the exposure to the 
high temperature exhaust gas up to 1000 °C, gas tightness against the exhaust gas 
pressure and intensity warranty to endure mechanical shocks. Yttrium stabilize zirconia 
is currently selected as sensor due to the electrical conduction, mechanical toughness 
and easily obtainable. 

Figure 1.4 depicts the operation principle for oxygen sensor. An oxygen concentration 
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Figure 1.4: The operation principle for oxygen sensor (Yamada, T. 2003) 

cell can be constructed by separating two gas chambers (chamber A and B) by an 
oxygen ion conducting solid electrolyte. Along the border of the solid electrolyte wall, 
oxide ion is transferred in a direction that reduces the difference of oxygen partial 
pressure between chamber A and chamber B. Electromotive force is generated and 
measured. This is known as an oxygen concentration cell. The output will be related to 
the logarithm of the ratio of the partial pressures of oxygen at each of the electrodes as 
given by the Nernst equation: 

Electromotive force = (RT/4F) ln (Pa/Pb)      (1.4) 

where R is the gas constant, T is absolute temperature, F is Faraday constant, Pa is 
oxygen partial pressure in the high oxygen concentration chamber A (oxygen partial 
pressure in the ambient air/reference material) and Pb is oxygen partial pressure in the 
low oxygen concentration chamber B (oxygen partial pressure in the exhaust 
gas/sample). Consequently, when a non-combusting mixture of known oxygen 
concentration is used as reference (air), the partial pressure of oxygen in the gas 
mixture of the sample may be determined. 

1.3 Solid Solutions 

A solid solution is a crystalline phase that can have variable compositions. Simple solid 
solutions are divided into two types in doped crystals, which are substitutional solid 
solutions and interstitial solid solutions. 

In substitutional solid solutions, the atom or ion that is being introduced directly 
replaces an atom or ion of the same charge (homovalent) in the parent structure. There 
are a few requirements to be fulfilled for a range of simple substitutional solid solutions 
to form. First, the atom or ion must be the same charge as mentioned above. Second, 
the ions that replace each other must be fairly similar in size. A difference of 15 per 
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cent in the radii of the metal atoms that replace each other is the most that can be 
tolerated for the formation of a substantial range of solid solutions. 

In non-metallic systems solid solutions, the limit is above than 15 per cent, but it is 
difficult to quantify this in term of the sizes of the ions and the formation of the solid 
solutions is very temperature dependent. Consequently, formation of extensive solid 
solutions often needs high temperatures, whereby the formation of solid solutions at 
lower temperatures may be more restricted or hardly exist. Ions with similar size may 
substitute for each other easily and extensive solid solutions that are stable at all 
temperatures may be formed. For ions that differ in size by 15 to 20 per cent, solid 
solutions will be formed at high temperatures and with the ionic size differs by more 
than around 30 per cent, solid solutions are not expected to form. The crystal structure 
of the two end members of a solid solution is an important factor to consider in the 
formation of solid solutions. If a complete solid solution series is formed, the end 
members must be isostructural but conversely, if two phases are isostructural, it is not 
necessary that a complete solid solution series is formed. Generally, it is common to 
have partial or limited ranges of solid solutions (West, 1999) 

For the formation of interstitial solid solutions, the introduced species occupies a site 
that is normally empty and no ions or atoms are left out in the formation of interstitial 
solid solutions. This type of substitution is generally observed in metals in which small 
atoms such as H, C and N enter empty interstitial sites within the host metal structure. 

Besides the simple solid solutions discussed above, there are more complex solid 
solution formation mechanisms which involved heterovalent or aliovalent substitution 
(ions are substituted by other ions of different charges). Thus, additional changes 
involving creation of vacancies or interstitials (ionic compensation) or electrons or 
holes (electronic compensation) are needed. 

For ionic compensation, substitution host cations with higher valence species results in 
creation of cation vacancies or interstitial anions. Meanwhile, anion vacancies or 
interstitial cations are created when lower valence species substitute for host cations in 
a crystal. Thus, cation or anion vacancies can be created to preserve electro-neutrality. 
Alternatively, interstitial can be created. However, this mechanism is not common 
because most structures do not have interstitial sites large enough to accommodate 
extra cations or anions (West, 1999). 

There is also another type of substitution called double substitution in which two 
substitutions take place simultaneously to give solid solutions. The substituting ions 
may be of difference charge, as long as the overall electro-neutrality is preserved. The 
mechanism for formation of solid solutions in many metal containing materials and 
especially in those that have mixed valency involves electronic compensation. This 
yields products which are semiconducting or metallic, or superconducting at low 
temperatures. Some examples of this mechanism are generation of cation vacancies by 
deintercalation, creation of mixed valency cations with insertion of interstitial anions 
into the structure and creation of interstitial cations of one element and mixed valency 
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cations of another element which arises from intercalation. This type of phenomena is 
seen in electrode materials such as LiMn2O4, LiCo2O4, LiWO3 and superconductor such 
as YBa2Cu3Oδ (West, 1999). 

1.4 Problem Statements 

Fabrication of fuel cells is costly. This is because the currently used electrolyte, yttria-
stabilized zirconia (YSZ), only could demonstrates high ionic conductivity at high 
operating temperature (around 1000 °C) in fuel cell. Durability is another limitation as 
fuel cell might suffer after the cell repeatedly heats up to high operating temperature 
and then cools down to room temperature. Moreover, solid oxide systems may have 
issues with material corrosion, materials aging, undesirable chemical reaction between 
cell components (like electrolyte, electrodes, and interconnecting material) and 
precious of the cell components (like platinum) is needed in order to withstand such 
high operating temperature. In short, precise detailed knowledge of fuel cell 
electrochemical operations is the main goal that should be obtained in purpose to solve 
these fuel cell challenges (Mahato et al., 2015).

δ-Bi2O3 exhibits higher ionic conductivity than zirconia based electrolytes. However, it 
has low melting point (824 °C) and can only exist in a narrow stability range (between 
730 °C to 825 °C) (Niu et al., 2011). Bi3+ in the compounds can be reduced to metallic 
Bi state in a reducing atmosphere at high temperature (oxygen pressure less than 10−7

Pa at 670 °C) (Katayama et al., 2011).Therefore, this unstable of thermodynamic phase 
change of Bi2O3-based materials is a disadvantages for the application as SOFC 
electrolyte (Lin and Wei, 2011). 

Bismuth based tungsten oxide materials with a general formula of (1-x)Bi2O3-xWO3,
(0.220 ≤ x ≤ 0.255), were studied. WO3 was chosen as dopant in this present work to 
introduce into Bi2O3. The introduction of more oxygen atoms by doping with high 
charge valence, W6+, is believed could suppress the phase transition which cause by the 
present of oxygen vacancies in Bi2O3 structure. Two synthesis methods, conventional 
solid state and mechanochemical method, were selected to evaluate their suitability in 
synthesizing the desired single phase material at the best synthesis condition (lower 
temperature and shorter duration). The outcome is believed could provide a useful 
guideline, specifically for large scale of ceramic production in industrial. 

There are few targets of the present work. A material that can present a higher stability 
at different temperatures with varying oxygen partial pressure and changes of 
atmospheres is desired as a solid electrolyte in SOFC. In other words, this material 
does not undergo decomposition to other phase or degradation of ionic conductivity 
under any conditions in a wide range of temperature (room temperature to 1000 °C). In 
addition, it will be excellent if a pure oxide ion electrolyte is produced which 
demonstrates higher ionic conductivity than the current electrolyte (YSZ) at 
comparable temperature. Therefore, this can accelerate the performance of a fuel cell. 
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Recent progress in chemical doping is another option to modify the behaviour of a 
material, specifically the electrical property. Generally, amount of oxide ion vacancy is 
correlated well with variations in conductivity of doped materials. It is worthy to 
mention that such phenomenon may or may not be the only one significant criteria in 
determining the electrical behaviour of a material. Ionic potential cation and unit cell 
parameters are two other factors that do play a role in determining the variation of 
electrical conductivity in a material. 

1.5 Objectives 

The objectives of this study are: 

1. To prepare (1-x)Bi2O3-xWO3, (0.220 ≤ x ≤ 0.255), via conventional solid state 
and mechanochemical methods. 

2. To characterize the single phase materials using X-ray powder diffraction (XRD), 
thermogravimetry analysis (TGA), scanning electron microscopy (SEM), Fourier-
transform infrared spectroscopy (FT-IR) and X-ray fluorescence (XRF) 
spectroscopy. 

3. To study the electrical properties of single phase materials using AC impedance 
spectroscopy. 

4. To prepare and characterize chemically doped materials in Bi6.24W0.88O12 by using 
monovalent (Li+), divalent (Ca2+, Cu2+, Ni2+ and Zn2+), trivalent (Cr3+ and Y3+), 
tetravalent (Sn4+, Ti4+ and Zr4+), pentavalent (Sb5+, V5+, Nb5+ and Ta5+) and 
hexavalent (Mo6+) cations. 

5. To correlate electrical properties of prepared materials and other parameters, such 
as composition and structure. 
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