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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

NEWTON-KANTOROVICH METHOD FOR SOLVING ONE- AND

TWO-DIMENSIONAL NONLINEAR VOLTERRA INTEGRAL EQUATIONS

OF THE SECOND KIND

By

HAMEED HUSAM HAMEED

January 2016

Chair: Assoc. Prof. Zainidin Eshkuvatov, PhD
Faculty: Science

The problems of nonlinear Volterra integral equations (VIEs) which consist of one
dimensional nonlinear VIE, system of 2×2 nonlinear VIEs, system of n× n non-
linear VIEs, and two dimensional nonlinear VIE, with smooth unknown functions
and continuous bounded given functions are discussed. The Newton-Kantorovich
method (NKM) is used to linearize the problems. Then the Nystrom-type Gauss-
Legendre quadrature formula (QF) is used to solve the linearized equations and
systems. New majorant functions are found for some problems which lead to the
increment of convergence interval. The new approach based on the subcollocation
method is developed and motivation leads to high accurate approximate solu-
tions. The existence and uniqueness of solution are proved and error estimation
and rate of convergence are obtained. Numerical examples show that our results
are coincided with the theoretical finding.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH NEWTON-KANTOROVICH BAGI SATU- DAN DUA-BERDIMENSI

VOLTERRA PERSAMAAN KAMIRAN TAK LINEAR JENIS KEDUA

Oleh

HAMEED HUSAM HAMEED

Januari 2016

Pengerusi: Profesor Madya . Zainidin Eshkuvatov, PhD
Fakulti: Sains

Masalah persamaan kamiran Volterra (VIEs) tak linear yang mengandungi VIEs
tak linear berdimensi satu, sistem 2 × 2 VIEs tak linear, sistem n × n VIEs
tak linear dan VIEs tak linear ber dimensi dua, dengan fungsi anu licin dan
fungsi tersedia selanjar terbatas di bincangkan. Kaedah Newton-Kantorovich
digunakan untuk melinearkan masalah. Kemudian formula quadratur Gauss-
Legendre digunakan untuk menyelesaikan persamaan dan sistem terlinear. Fungsi
majoran baharu ditemui untuk sesetengah masalah yang membawa kepada pen-
ingkatan selang penumpuan. Pendekatan baharu berdasarkan kepada kaedah sub-
kolokasi yang membawa kepada penyelesaian hampiran dengan ketepatan tinggi
dibina. Kewujudan dan keunikan penyelesaian dibuktikan, anggaran ralat dan
kadar penumpuan diperolehi. Contoh berangka menunjukkan keputusan kami
adalah sefara dengan penemuan secara teoritikal.
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CHAPTER 1

INTRODUCTION

1.1 Integral equations

1.1.1 A brief historical introduction

The theory of abstract Volterra equations has been developed rapidly in the last
few decades. The applications of this theory to many problems could be found
for instance, mechanics, physics, engineering, economics and even biology, so its a
good tool to deal with the problems arising in these fields. J. Fourier (1768-1830)
was considered as the initiator of the theory of integral equations (IEs), [see Cor-
duneanu (1991)] by obtaining the inversion formula for Fourier transform with

suitable conditions on the functions f and g, where g(t) = (2π)−
1
2

∫ ∞

0
eitτf(τ)dτ

and f(τ) = (2π)−
1
2

∫ ∞

0
e−itτg(t)dt. Of course, we can consider inversion for-

mula as the inverse Fourier integral operator . This consideration was taken by
V. Volterra during the end of 18th century, who specified the problem of solv-
ing integral equations (IEs) as the problem of finding inverses of certain integral
operators. Abel (1823) dealt with the integral equation (IE) known as ’Abel’s
equation’ of the form ,

∫ t

0
(t− τ)−αu(τ)dτ = F (t), 0 < α < 1.

There are two significant cases related to Abel’s equation. First, the kernel
k(τ) = τ−α has a singularity at the origin, and second, Abel’s equation is a con-
volution type equation and both cases had a important effect on the development
of the theory of IEs. Sonine (1884) tried to find the solution of various IEs, in par-
ticular Abel’s equation. Levi (1895)generalized some results wich concerned with
Abel’s type equations. Also, in 1895 Volterra considered more general equations
such as

u(t) +

∫ t

0
k(t, τ)u(τ)dτ = F (t),

where u(τ) is unknown function to be found. Five years after Volterra made his
first well known contribution to the theory of IEs, Fredholm introduced a new
theory for IEs containing a parameter of the form

y(t) + λ

∫ b

a
k(t, τ)y(τ)dτ = f(t).

After Fredholm’s publications, the theory of IEs was developed and enriched by
many mathematician like Picard (1906), Poincar (1910), Hilbert (1912), and Hey-
wood (1912) . The causal operator or nonanticipative operator was introduced
by Tonelli (1928), that is operator U acting between function spaces, such that
x(t) = y(t) for t ≤ T leads to (Ux)(T ) = (Uy)(T ). The significance of this kind
of operators is obvious since most phenomena evaluated via mathematical models
are casual phenomena. Tychnoff (1938) found a great connection between the
theory of abstract Volterra operators with the many applications in mathematical
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physics. He introduced a more modern approach which contributed to its devel-
opment, and considered as a model for future studies. The essential connection
between Hammerstein equations and the spectrum of the linear integral operator
was done by Dolph (1949). Kreın (1955) introduced a new method to solve the
integral equations by constructing the resolvent kernel concept. From the 1960s
onwards, many scientific research schools in the world are tried towards the inves-
tigation of different problems related to the theory of integral operators and IEs
By way of example, not exhaustive enumeration, Levin and Nohel (1960) referred
to the study of stability of nuclear reactors by means of IEs. During the 1970s
and the 1980s the mathematicians who are interested in the IEs concentrated their
efforts on problems occuring in continuum mechanics, particularly in viscoelastic-
ity, for instance, Londen and Nohel (1982) and Hrusa (1983). Most contributions
to the theory of IEs that published during the last two decades, dealt with dif-
ferent applications. In fact many mathematicians made their effort to solve such
applied problems by using a recent tools created by basic mathematical research
(monotone operators, linear and nonlinear semigroups of transformation, as well
as many other functional analytic methods). In this way, the theory of integral
equations has been quite developed and enriched.

1.1.2 Classification of integral equations

There are a huge number of different kinds of IEs, and each has its own case of
theoretical and numerical analysis. The first main division is the one dimensional
and multidimensional IEs. It follows by dividing the IEs into linear IEs and
nonlinear IEs. For most the part of the analysis of IEs, efforts have been put on
linear equations in a single variable, however in principle numerous of the ways
are usable to multi dimensional and nonlinear equations as well.
In general, for the linear IEs, it is often use two major classes, namely Volterra
and Fredholm IEs. Of course, we shall classify them later. Most standard linear
IE has the form

h(t)x(t) = f(t) + λ

∫ b(t)

a(t)
K(t, τ)x(τ)dτ, (1.1)

where a(t) and b(t) are the limits of integration with a(t) < b(t), t ∈ [t0, T ], λ is a
constant, and K(t, τ) is a known function of two variables t and τ , called kernel
of the IE, where x(t) is the unknown function, that to be found with f(t), h(t),
and K(t, τ) are given functions beforehand. The limits of integration a(t) and
b(t) may be both variables, constants, or mixed. Two different ways that depend
on the limits of integration are used to characterize IEs, namely

1. If the limits of integration are fixed, then IE is called a Fredholm integral
equation (FIE) which has the form

h(t)x(t) = f(t) + λ

∫ b

a
K(t, τ)x(τ)dτ, (1.2)

where a and b are constants.

2. If at least one limit is a variable, the equation is called a Volterra integral

2
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equation (VIE) which has the form

h(t)x(t) = f(t) + λ

∫ x

a
K(t, τ)x(τ)dτ. (1.3)

Moreover, there are three other distict kinds, that depend on the appearance of
the function h(t), are defined as follows

(i) If h(t) = 0, the IE is called, the first kind FIE (or VIE).

(ii) If h(t) = 1, the IE is called, the second kind FIE (or VIE).

iii If 0 6= h(t) 6= 1, the IE is called, the third kind FIE (or VIE).

In all FIEs or VIEs presented above, if f(t) is identically to zero, the resulting
equation gives

x(t) = λ

∫ b

a
K(t, τ)x(τ)dτ, (1.4)

or

x(t) = λ

∫ t

a
K(t, τ)x(τ)dτ, (1.5)

which is called homogeneous FIE or homogeneous VIE.

Example 1.1 Consider the one dimensional linear VIE of the first kind

∫ t

a
[g(t)− g(τ)] y(τ)dτ = f(t),

it is assumed that f(a) = f
′

t(a) = 0 and
f
′

t

g
′

t

6= 0.

The solution is y(t) =
d

dt

[

f
′

t(t)

g
′

t(t)

]

, (Polyanin and Manzhirov, 2012).

Example 1.2 Consider the one dimensional nonlinear VIE of the first kind

∫ t

0
y(τ)y(t− τ)dτ = A2tλ.

Solutions: y(t) = ±A
√

Γ(λ+ 1)

Γ(λ+1
2 )

t
λ−1
2 , where Γ(z) is the gamma function, (Polyanin

and Manzhirov, 2012)

Example 1.3 Consider the one dimensional linear VIE of the second kind

y(t)− λ

∫ t

a

g(t)

g(τ)
y(τ)dτ = f(t).

Solution: y(t) = f(t)+λ

∫ t

a
eλ(t−τ) g(t)

g(τ)
f(τ)dτ , (Polyanin and Manzhirov, 2012)

3
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Example 1.4 Consider the one dimensional nonlinear VIE of the second kind

y(t) +

∫ t

a
f(y(τ))dτ = At+ B.

Solution in an implicit form,

∫ y

y0

dτ

A− f(τ)
= t − a, y0 = Aa + B, (Polyanin

and Manzhirov, 2012).

Example 1.5 Consider the one dimensional linear FIE of the first kind

∫ b

a
[g1(t)h1(τ) + g2(t)h2(τ)] y(τ)dτ = f(t).

This IE has solution only if its right hand side is representable in the form

f(t) = A1g1(t) + A2g2(t),

where A1 and A2 are constants. In this case, any function y = y(t) satisfying the
normalization type conditions

∫ b

a
h1(τ)y(τ)dτ = A1,

∫ b

a
h2(τ)y(τ)dτ = A2,

is a solution of the IE. otherwise, the equation has no solution, (Polyanin and
Manzhirov, 2012).

Example 1.6 Consider the one dimensional nonlinear FIE of the first kind

∫ b

a
yk(t)f(τ, y(τ))dτ = g(t).

Solution: y(t) = λ[g(t)]
1
k , where λ is determined from the algebraic (or transcen-

dental) equation λk
∫ b

a
f(τ, λg

1
k (τ))dτ = 1, (Polyanin and Manzhirov, 2012).

Example 1.7 Consider the one dimensional linear FIE of the second kind

y(t)− λ

∫ b

a
g(t)h(τ)y(τ)dτ = f(t).

1. Assume that λ 6=
(

∫ b

a
g(τ)h(τ)dτ

)−1

, then the solution is y(t) = f(t) +

λkg(t), where k =

(

1− λ

∫ b

a
g(τ)h(τ)dτ

)−1
∫ b

a
h(τ)f(τ)dτ .

2. Assume that λ =

(

∫ b

a
g(τ)h(τ)dτ

)−1

.

4
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(i) For

∫ b

a
h(τ)f(τ)dτ = 0, the solution has the form y(t) = f(t)+Cg(t),

where C is an arbitrary constant.

(ii) For

∫ b

a
h(τ)f(τ)dτ 6= 0, there is no solution.

(Polyanin and Manzhirov, 2012).

Example 1.8 Consider the one dimensional nonlinear FIE of the second kind

y(t) +

∫ b

a
g(t)y(t)f(τ, y(τ))dτ = h(t).

The solution: h(t)1 + λg(t), where λ is determined from the algebraic (or tran-
scendental) equation

λ− F (λ) = 0, F (λ) =

∫ b

a
f

(

t,
h(τ)

1 + λg(τ)

)

dτ.

(Polyanin and Manzhirov, 2012).

Example 1.9 Consider the two dimensional linear VIE the second kind

u(x, t)−
∫ t

0

∫ x

0
(xy + tez)u(y, z)dydz

= xe−t + t− 1

3
x4 − xt+

1

3
x4e−t − 1

2
x2t2 − 1

4
x3t2 − xtet + xtet, x, t ∈ [0, t]

The solution: u(x, t) = xe−1 + t, (Tari et al., 2009).

Example 1.10 Consider the two dimensional nonlinear VIE the second kind

u(x, t)−
∫ t

0

∫ x

0
(y2 + e−2z)u2(y, z)dydz = x2et +

1

14
x7e2t − 1

5
x5t, x, t ∈ [0, 1].

The solution: u(x, t) = x2et, (Tari et al., 2009).

Example 1.11 Consider the two dimensional linear FIE the second kind

u(x, t) = f(x, t) +

∫ 1

0

∫ 1

0

(

e(
x
5 )

5
y − 1

)

u(y, z)dydz, 0 ≤ x, t ≤ 1.

The solution: u(x, t) = xt, (Heydari et al., 2013)

Example 1.12 Consider the two dimensional nonlinear FIE the second kind

u(x, t) = f(x, t) +

∫ 1

0

∫ 1

0
(y sin(z) + 1)u3(y, z)dydz, 0 ≤ x, t ≤ 1, (1.6)

where f(x, t) = x cos(t) +
1

20
(cos4(1)− 1) − 1

12
sin(1)(cos2(1) + 2). The solution

: u(x, t) = x cos(t), (Heydari et al., 2013).

5
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1.1.3 Converting initial value problem to Volterra integral equation

In this section, we show the strategy of converting an initial value problem (IVP)
to an equivalent VIE. For simplicity reasons, we will employ this procedure to the
second order initial value problem of the form

y
′′

(t) + p(t)y
′

(t) + q(t)y(t) = g(t), (1.7)

with the initial conditions

y(0) = α, y
′

(0) = β, (1.8)

where α and β are constants, p(t) and q(t) are analytic functions, and g(t) is
continuous through the interval of discussion. To accomplish our aim, let

y
′′

(t) = u(t), (1.9)

where u(t) is a continuous function. By integration both sides of (1.9) from 0 to
t we get

y
′

(t)− y
′

(0) =

∫ t

0
u(τ)dτ, (1.10)

or

y
′

(t) = β +

∫ t

0
u(τ)dτ. (1.11)

Integration both sides of (1.11) from 0 to t we obtain

y(t)− y(0) = βx+

∫ t

0

∫ x

0
u(τ)dτdx, (1.12)

or

y(t) = α + βx+

∫ t

0
(t− τ)u(τ)dτ. (1.13)

By substituting (1.9), (1.11), and (1.13) into the IVP (1.7) to get the VIE:

u(t) + p(t)

[

β +

∫ t

0
u(τ)dτ

]

+ q(t)

[

α + βt+

∫ t

0
(t− τ)u(τ)dτ

]

= g(t). (1.14)

The last equation can be represented in the standard VIE form:

u(t) = f(t)−
∫ t

0
K(t, τ)u(τ)dτ, (1.15)

where
K(t, τ) = p(t) + q(t)(t− τ), (1.16)

and
f(t) = g(t)− [βp(t) + αq(t) + βtq(t)] . (1.17)

To generalize the steps introduced above, we consider the general IVP:

y(n) + a1(t)y
(n−1) + · · ·+ an−1(t)y

′

+ an(t)y = g(t), (1.18)

6
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with initial conditions

y(0) = c0, y
′

(0) = c1, y
′′

(0) = c2, · · · , y(n−1)(0) = cn−1, (1.19)

where ai(t), 1 ≤ i ≤ n are analytic functions, and g(t), u(t) are continuous func-
tions through the interval of discussion. Now set the transformation:

y(n)(t) = u(t). (1.20)

Integrating both sides with respect to t to get

y(n−1)(t) = cn−1 +

∫ t

0
u(τ)dτ. (1.21)

Also by integrating both sides again with respect to t yields

y(n−2)(t) = cn−1 + cn−1t+

∫ t

0

∫ x

0
u(τ)dτdx. (1.22)

In equation (1.22) we reduce the double integral to a single integral by using the
general form (Kanwal, 2013, pp.385)

∫ t

a

∫ tn−1

a
· · ·
∫ t2

a

∫ t1

a
F (τ)dτdt1 · · · dtn−1 =

1

(n− 1)!

∫ t

a
(t− τ)F (τ)dτ, (1.23)

and get

y(n−2)(t) = cn−2 + cn−1t+

∫ t

0
(t− τ)u(τ)dτ. (1.24)

By integrating both sides of equation (1.21) we get

y(n−3)(t) = cn−3 + cn−2t+
1

2
cn−1t

2 +

∫ t

0

∫ t2

0

∫ t1

0
u(τ)dτdt1dt2 (1.25)

then by using the concept of equation (1.23) we obtain

y(n−3)(t) = cn−3 + cn−2t+
1

2
cn−1t

2 +
1

2

∫ t

0
(t− τ)2u(τ)dτ. (1.26)

Keeping the integration process yields

y(t) =
n−1
∑

k=0

ck
k!
tk +

1

(n− 1)!

∫ t

0
(t− τ)n−1u(τ)dτ. (1.27)

Substituting (1.20)− (1.27) into (1.18) gives

u(t) = f(t)−
∫ t

0
K(t, τ)u(τ)dτ, (1.28)
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where

K(t, τ) =
n
∑

k=1

ak
(k − 1)!

(t− τ)k−1, (1.29)

and

f(t) = g(t)−
n
∑

j=1

aj





j
∑

k=1

cn−k

(j − k)!
tj−k



 . (1.30)

In the following, we give an example on the applicability of the conversion methods

Example 1.13 Convert the following IVP to an equivalent VIE:

y
′

(t)− 2ty(t) = et
2
, y(0) = 1. (1.31)

Now set
y
′

(t) = u(t). (1.32)

Integrating both sides of (1.32), then using the initial condition y(0) = 1 leads to

y(t)− y(0) =

∫ t

0
u(τ)dτ, (1.33)

or

y(t) = 1 +

∫ t

0
u(τ)dτ, (1.34)

substituting (1.32) and (1.34) into (1.31) gives the equivalent VIE:

u(t) = 2t+ et
2
+ 2t

∫ t

0
u(τ)dτ. (1.35)

Example 1.14 Convert the following IVP to an equivalent VIE:

y
′′′

(t)− y
′′ − y

′

+ y = 0, y(0) = 1, y
′

(0) = 2, y
′′

(0) = 3. (1.36)

We first set

y
′′′

(t) = u(t), (1.37)

integrating both sides of (1.37) then using the initial condition y
′′

(0) = 3 we get

y
′′

(t) = 3 +

∫ t

0
u(τ)dτ. (1.38)

By repeating Integration once again and then use the initial condition y
′

(0) = 2
we obtain

y
′

(t) = 2 + 3t+

∫ t

0

∫ x

0
u(τ)dτdx = 2 + 3t+

∫ t

0
(t− τ)u(τ)dτ. (1.39)

8
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Integrating agian and using y(0) = 1 we find

y(t) = 1 + 2t+
3

2
t2 +

∫ t

0

∫ t2

0

∫ t1

0
u(τ)dτdt1dt2 (1.40)

= 1 + 2t+
3

2
t2 +

1

2

∫ t

0
(t− τ)2u(τ)dτ.

Substituting (1.37)− (1.40) into (1.36) yields the VIE:

u(t) = 4 + t+
3

2
t2 +

∫ t

0

[

1 + (t− τ)− 12(t− τ)2
]

u(τ)dτ. (1.41)

(Wazwaz, 2011)

1.2 Newton-Kantorovich method

1.2.1 Idea and history of the Newton method

The basic idea of the Newton method (NM) is very simple, it is linearization
method. Assume that F : R1 → R1 is a differentiable function and we are solving
the equation

F (x) = 0. (1.42)

Starting with an initial point x0, we can formulate a linear approximation of F (x)
in a neighborhood of x0 such that

F (x+ h) ≈ F (x0) + F ′(x0)h, (1.43)

and solve the corresponding linear equation. Thus we get the recurrent method

xk+1 = xk − F ′(xk)
−1F (xk), k = 0, 1, ... (1.44)

This is the method initiated by Newton in 1669. In deed, Newton dealt only with
polynomial equation of the form P (x) = 0 and he omitted higher order in h when
he used the approximation of P (x+ h). In 1690 J. Raphson proposed the general
form of method (1.44) (not assuming F (x) to be a polynomial and using the notion
of derivative) and the method was developed by many famous mathematicians,
such as Fourier, Cauchy, and others. For instance Fourier in 1818 proved the
convergence of the method is quadratically in a neighborhood of a root, while
Cauchy provided a multidimensional extension of (1.44) and used the method
to prove the existence of a root of an equation. Essential early contributions
to the investigation of the method are due to Fine (1916) when he proved the
convergence in the n-dimensional case with no assumption on the existence of
a solution. Bennett (1916) extended the result to the infinite-dimensional case.
Basic results on the NM and numerous references can be found in the books of
Ostrowski et al. (1960), Ortega and Rheinboldt (1970), Rheinboldt (1974), and
Deuflhard (2011).
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1.2.2 Fréchet and Gâteaux derivative

Suppose we have an operator P mapping an open set Ω of one B-space X into a
set ∆ of another B-space Y . We take a fixed point x0 ∈ Ω and assume that there
exists a continuous linear operator U ∈ B(X, Y ) such that, for every x ∈ X,

lim
t→0

P (x0 + tx)− P (x0)

t
= U(x). (1.45)

In this situation we say that the linear operator U is the derivative of P at the
point x0. Then we write

U = P ′(x0). (1.46)

The derivative just defined is often called the Gâteaux derivative, or the weak
derivative, and the element U(x) is called the Gâteaux differential.
Let us denote by K̄ the set of all x ∈ X with ‖x‖ = 1, if the limit in equation (1.45)
is uniform for x ∈ K̄, then P is said to be differentiable at x0 and in this case
P ′(x0) is called the Fréchet derivative, or strong derivative. The differentiability
of an operator P at a point x0 means, in other words, that there exists a linear
operator U such that, for every ǫ > 0, we can find δ > 0 , whenever ‖∆x‖ <
δ, (∆x ∈ X), we have by Kantorovich and Akilov (1982)

‖P (x0 +∆x)− P (x0)− U(∆x)‖ ≤ ǫ‖∆x‖. (1.47)

1.2.3 Kantorovich’s contribution

In 1948, L. V. Kantorovich published the seminar paper (Kantorovich, 1948a),
where he suggested an extension of the NM to functional spaces. The results were
also included in the survey paper Kantorovich (1948b). Further developments of
the method can be found in Kantorovich (1949), Kantorovich (1957) and in the
monographs Kantorovich and Akilov (1959), Kantorovich and Akilov (1982). This
contribution by Kantorovich to one of the fundamental techniques in numerical
analysis and functional analysis cannot be underestimated. Kantorovich analyzed
the same equation as (1.42),

P (x) = 0, (1.48)

but now P : X → Y , where X and Y are Banach spaces. The proposed method
reads as (1.44):

xk+1 = xk − P ′(xk)
−1P (xk), k = 0, 1, 2, ..., (1.49)

where P ′(xk) is the ( Fréchet) derivative of the nonlinear operator P (x) at the
point xk and P ′(xk)−1 is its inverse. Now, suppose we have an operator P map-
ping an open subset Ω of Banach space X into Banach space Y . Assume that
there is a zero of P in Ω, that is an element x∗ such that

P (x∗) = 0. (1.50)

Choose an arbitrary element x0 ∈ Ω. If we assume that P has a continuous
derivative in Ω, we can replace the element P (x0) = P (x0) − P (x∗) by the ap-
proximation P ′(x0)(x0−x∗). We therefore have reason to suppose that a solution
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of the equation
P ′(x0)(x0 − x) = P (x0), (1.51)

will be close to x∗. But this equation is linear, so its solution is easy to find

x1 = x0 −
[

P ′(x0)
]−1

(P (x0)) , (1.52)

assuming that
[

P ′(x0)
]−1

exists. If we continue this process, we obtain, starting
from the initial approximation x0 a sequence {xn}, where

xn+1 = xn −
[

P ′(xn)
]−1

(P (xn)) , (n = 0, 1, · · · ). (1.53)

Each xn is an approximate solution to the equation

P (x) = 0. (1.54)

NM is clearly not always feasible. Firstly, xn may pass beyond the set Ω for some

value of n, and secondly,
[

P ′(xn)
]−1

may not exist.
If the sequence {xn} converges to a root x∗ and x0 is chosen close enough to x∗,
then, by the continuity of P ′, the operators P ′(xn) and P ′(x0) will only differ a
small amount. Thus equation (1.53) can be replaced by the simplified formula

xn+1 = xn −
[

P ′(x0)
]−1

(P (xn)) , (n = 0, 1, · · · ), (1.55)

which is significantly simpler than formula (1.53), although in general they yield
poorer approximations. We shall call this methos of generating the sequence {xn}
in (1.55) the Newton-Kantorovich method (NKM).

Definition 1.1 Kantorovich and Akilov (1982) The majorant function:
Let the equation (1.54) be written as

x = S(x), (1.56)

where S is defined on the ball ‖x − x0‖ < R and S(x) = x − Γ0P (x) with

Γ0 =
[

P
′

(x0)
]−1

for NKM and Γ0 =
[

P
′

(x)
]−1

for NM.

As well as we consider the real equation

t = φ(t) (1.57)

where the function φ is defined in the interval [t0, T ], with T = t0 + r < t0 + R.
We say that equation (1.57) (or the function φ) majorizes equation (1.56) ( or
the operator S) if

• ‖S(x0)− x0‖ ≤ φ(t0)− t0;

• ‖S′(x)‖ ≤ φ′(x) whenever ‖x− x0‖ ≤ t− t0.

The following theorem, i.e the Kantorovich theorem which deals with the majorant
function

ψ(t) = Kt2 − 2t+ 2η, (1.58)

where k, η are real nonnegative real numbers.
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Theorem 1.1 . (Kantorovich and Akilov, 1982, pp. 532). Suppose that the
operator P is defined in open ball Ω, where ‖x − x0‖ ≤ R and has a continuous
second derivetive in closed ball Ω0, whih ‖x−x0‖ ≤ r, r ≤ R. Suppose, in addition,
that

1) Γ0 =
[

P
′

(x0)
]−1

exists and is a continuous linear operator;

2) ‖Γ0(P (x0))‖ ≤ η;

3) ‖Γ0P
′′

(x)‖ ≤ K, (x ∈ Ω0),

where K and η are given in equation (1.58). Then, provided h = Kη ≤ 1

2
and

r ≥ r0 =
1−

√
1− 2h

h
η, equation (1.48) has a solution x∗, and the Newton-

Kantorovich process converges to this solution. Furthermore, ‖x − x0‖ ≤ r0.

Also, if for h <
1

2
we have r < r1 =

1 +
√
1− 2h

h
η, while for h =

1

2
we have

r ≤ r1, then x
∗ is the unique solution in Ω0.

The rate of convergence is given by

‖x∗ − xn‖ ≤ η

h

(

1−
√
1− 2h

)n+1
, (n = 0, 1, 2, · · · ).

1.3 Research aims and objectives

The objectives of the thesis are listed as follow:

a) To solve one dimensional nonlinear Volterra type IE of the second kind by
NKM, establish the convergence of the proposed method and obtain the
error estimation.

b) To solve 2× 2 system of nonlinear Volterra type IEs of the second kind by
NKM, establish the convergence of method and obtain the error estimation.

c) To solve n× n system of nonlinear Volterra type IEs of the second kind by
NKM, establish the convergence of method and obtain error estimation.

d) To solve two dimensional nonlinear Volterra type IE of the second kind by
NKM, establish the convergence of method and obtain the error estimation.

1.4 Organization of the thesis

This thesis has seven chapters. Chapter 1 contains a brief introduction to the
general integral equations, historical introduction, classification of IEs, the mean-
ing of Fréchet and Gâteaux derivatives and the concept of majorant function.
The literature reviews are given in chapter 2. Chapter 3 focuses on finding the
approximate solution of one dimensional nonlinear Volterra type IE via NKM.
NKM, the majorant function and the concept of Gauss-Legendre formula are dis-
cussed in chapter 4 to find the approximate solution of system of 2× 2 nonlinear
Volterra type IE. In chapter 5, we deal with the system of n×n nonlinear Volterra
type integral equation, then finding the approximate solution by NKM. Chapter
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6 discusses the NKM and two dimensional Gauss-Legendre quadrature formula
(QF) to find the approximate solution of two dimensional nonlinear VIE. Chapter
7 gives some future works as an extension to this research.
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