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fulfillment of the requirement for the degree of Master of Science 

 
 

FAST FOURIER TRANSFORM PROCESSOR IMPLEMENTATION FOR 
HIGH INPUTS ON FIELD PROGRAMMABLE GATES ARRAY  

 
 

By 
 
 

ZAID ALI ABBAS 
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In the past few years, fast Fourier transform (FFT) proved to be an efficient 
method to accomplish the discrete Fourier transform (DFT) with less number 
of operations. FFT has been vastly applied for many applications, such as 
image processing technique, network data transmission (XDSL, WiMAX, and 
WLAN), orthogonal frequency-division multiplexing (OFDM), digital signal 
processing (DSP) and numerous applications that require high input data 
(1024 and up) processing. Low power and low complexity are the main 
concerns in high input FFT. Therefore, this research aims to investigate the 
power consumption, hardware resources usage and speed for radix-(2, 4 and 
8) FFT processor, using the same device and environment to investigate the 
performance of each. Memory-based architecture chosen to use for FFT 
processors, due to the reduction in the number of butterflies and rotators, as 
they are reused for different stages of the FFT, were implemented on 
Cyclone II Field Programmable Gate Arrays (FPGA). Verilog Hardware 
Description Language (Verilog HDL) and VHDL Languages are used to 
program the algorithms into the FPGA. FFT algorithms will be implemented 
for up to 4096 points to measure the high load processing capability. The 
results show that for the 4096 points FFT, the radix-4 is the best trade-off in 
term of speed, resources and power consumption, which requires only 36% 
of the power required by the 4069 points radix-8 FFT and 58% of the power 
required by the 4069 points radix-2 FFT. On another hand, for the hardware 
resources, the result shows that the 4096 points radix-4 FFT used 30% of 
hardware resources furthermore; radix-8 FFT uses approximately 45%, in 
the meanwhile radix-2 require 20% only. For speed, the results shows that a 
4096 points radix-4 FFT is 70% faster than 4096 points radix-2 FFT and 62% 
slower than 4096 points radix-8 FFT. While the radix-2 may be preferred, 
when it comes to power saving because it only need to consume 28% less 
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than radix-4 and 41% less than radix-8. Radix-8 is better when speed is the 
most important factor; it is notably 80% faster than radix-2 and 60% than 
radix-4.
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IMPLEMENTASI PEMPROSES TRASFORMASI FOURIER PANTAS BAGI 
INPUT TINGGI ATAS TATASUSUNAN LOGIK BOLEH ATURCARA 
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ZAID ALI ABBAS 
 
 

Ogos 2018 
 
 

Pengerusi  : Nasri bin Sulaiman, PhD 
Fakulti : Engineering 
 
 
Dalam beberapa tahun yang lalu, transformasi Fourier pantas (FFT) terbukti 
menjadi kaedah yang cekap dalam menyelesaikan transformasi Fourier 
diskret (DFT) dengan jumlah operasi yang rendah. FFT banyak digunakan 
dalam aplikasi, seperti teknik pemprosesan imej, penghantaran data 
rangkaian (XDSL, WiMAX, dan WLAN), pembahagian frekuensi orthogonal 
multipleks (OFDM), pemprosesan isyarat digital (DSP) dan pelbagai aplikasi 
yang memerlukan pemprosesan data input tinggi (1024 dan lebih tinggi). 
 
 
Penggunaan kuasa dan saiz yang rendah adalah kepentingan utama dalam 
FFT input yang tinggi. Oleh itu, penyelidikan ini bertujuan untuk mengkaji 
penggunaan kuasa, penggunaan sumber perkakasan dan kelajuan untuk 
radix-(2, 4 dan 8) pemproses FFT menggunakan peranti dan persekitaran 
yang sama untuk menyiasat prestasi masing-masing. Senibina berasaskan 
memori yang dipilih untuk digunakan untuk pemproses FFT, disebabkan oleh 
pengurangan jumlah “kupu-kupu” dan rotator, kerana mereka digunakan 
semula untuk pelbagai peringkat FFT, telah dilaksanakan atas tatasusunan 
logik boleh aturcara medan Cyclone II, Bahasa Penerangan Perkakasan 
Verilog (Verilog HDL) dan Bahasa VHDL digunakan untuk memprogram 
algoritma ke atas FPGA. Algoritma FFT akan dilaksanakan sehingga 4096 
mata untuk mengukur keupayaan pemprosesan beban tinggi.  
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Keputusan menunjukkan bahawa untuk 4096 mata FFT, radix-4 adalah 
terbaik dari segi kelajuan, sumber dan penggunaan kuasa, yang 
memerlukan hanya 36% daripada kuasa yang diperlukan oleh 4096 mata 
radix-8 FFT dan 58% daripada kuasa yang diperlukan oleh 4096 mata radix-
2 FFT. Selain itu, bagi sumber perkakasan, keputusan menunjukkan bahawa 
4096 mata radix-4 FFT menggunakan sumber perkakasan 30% yang 
digunakan oleh 4096 mata radix-8 FFT manakala radix-2 hanya memerlukan 
20%. Dari segi kelajuan, hasil menunjukkan 4096 mata radix-4 FFT 70% 
lebih cepat daripada 4096 mata radix-2 FFT dan 62% lebih lambat daripada 
4096 mata radix-8 FFT. Sedangkan radix-2 mungkin lebih diterima, apabila 
ia berkaitan dengan penjimatan kuasa kerana hanya memerlukan 28% 
kurang daripada radix-8 dan 41% kurang daripada radix-4. Radix-8 lebih baik 
apabila kelajuan adalah yang paling penting, terutamanya 80% lebih cepat 
daripada radix-2 dan 60% daripada radix-4. 
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CHAPTER 1 

 

1.1 Background 

Information was mainly delivered through the analog system in the past. 
However, advancement in digital signal processing has confirmed that many 
advantages regarding cost and performance are offered by technology over 
analog solutions. Discrete Fourier Transform (DFT) plays an important role 
in Orthogonal Frequency Division Multiplexing (OFDM) based 
communication systems in modern digital signal processing (DSP) and 
telecommunication(Chiueh & Tsai, 2008). The DFT is often used in linear 
filtering. A broad range of applications including video broadcasting, digital 
audio, the quantum mechanism(Ibrahim et al., 2016), image 
reconstruction(Jain, 1989), asymmetric digital subscriber loop (ADSL) has 
linear filtering. Rather unaffordable computation is needed by even the finite 
DFT signal to be completed. Specifically, N2 complex multiplications are 
required for DFT direct calculation of an input signal of length N. according 
to Colley and Tukey, fast Fourier transform (FFT) will be calculated in O 
(logrN) operations. In this operations, N refers to the length of the transform 
and r shows FFT decomposing radix(Cooley & Tukey, 1965; Saenz et al., 
2015). In the field of Digital Signal Processing, FFT is regarded as a popular 
algorithm and is operated widely in digital communication particularly OFDM 
systems(S. He & Torkelson, 1998b; Oppenheim et al., 1989). The original 
contribution of Cooley and Tukey received considered attention and a large 
number of researchers attempt to extend and enhance their original work. 

In many telecommunication systems and digital signal processing, FFT has 
become a key component. In OFDM, higher orders FFTs are needed for the 
purpose of increasing transmission efficiency. According to measuring 
storage system, higher data start with kilobyte (KB) equal to 1,024 bytes. The 
desire of consumer for high speed untethered access to multimedia together 
with entertainment services in recent years, has inspired and lead to 
wideband wireless communication system’s growth(Daniels & Heath Jr, 
2007). In physical layer of this standard, high throughput FFT/IFFT (Inverse 
fast Fourier transform) is considered as one of the main components which 
is indispensable for frequency-domain equalization together with orthogonal 
frequency division multiplexing modulation(Chiueh & Tsai, 2008). Different 
applications including video broadcasting, OFDM systems, speech 
processing, WLAN and image processing need high throughput 
FFT(Mookherjee et al.). 
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On the other hand, it is greatly used in the DSP field because of FPGA 
technology. Its architecture is flexible. It can be configured based on the 
project need of the user to calculate definite algorithms skillfully(Ibrahim et 
al., 2016).  It is the best choice for FFT processors due to its low cost together 
with high capacity and performance. Traditionally, DSP chips or application 
Specific integrated circuits were utilized for design solutions. Nowadays, a 
great number of scholars shift to Field-programmable Gate Arrays (FPGA). 

FPGA has different advantages over other technologies. They have the 
processing power for handling high-speed DSP. The capability of FPGA in 
performing repetitive operations in parallel propose a performance benefit to 
the instruction driven, DSP chips’ sequential processing. They are a proper 
alternative to ASIC (Application-specific integrated circuit ) due to their low-
cost design cycles in comparison with ASIC which need large financial 
investments to be produced and updated. Moreover, unprecedented design 
flexibility is provided by them. Designers are provided with a platform in which 
they are able to assess their design decisions in terms of power, size, and 
throughput through their programmability(Wolf, 2004). Moreover, this feature 
enables them to get the most effective solution based on the system needs. 
The performance of FPGA is pushed upward because of advancement in the 
technology. Different improvements including implanted multipliers and RAM 
(Random-access memory) logic has lead to the simplification of the hardware 
implementation of DSP algorithm, which allows the digital information’s 
transfer and transport. 

1.2 Problem Statement 

Fast Fourier Transform has been studied for a number of years. It has been 
used in various orthogonal frequency division multiplexing systems including 
IEEE 802.11ad standard for 60-GHz communication system is ratified(C. 
Wang et al.), terrestrial digital video broadcasting(K. Chen & Li, 2008; Saleh 
et al., 2013) and large number of mission information from/to users in real 
time like UAV (unmanned aerial vehicle)(Porcello, 2013). The outstanding 
features of these applications are the high inputs data. 

For the seek of achieving efficient DFT, different FFT algorithms have been 
introduced. To achieve the required hardware resources and saving power 
in real-time applications, Different studies were conducted on the comparison 
of FFT algorithms, because the natural requirement of real-time applications 
is a hunger to high inputs data, however, there is no practical comparison 
between FFT algorithms in terms of high inputs.  
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To determine each algorithm (radix-2, radix-4, and radix-8) features under 
high inputs, and determine the best among these algorithms; this is done by 
measuring the system power, speed and hardware resource consumption. 

In order to manage the parameters boundaries, a certain consideration 
should be counted such as the amount of data limitations. Furthermore, any 
amount of data above 1024 considered high input data. This kind of 
parameters limits the system performance especially when these parameters 
are measured such as speed, system power consumption, and hardware 
complexity.  

1.3 Objectives of the research 

Designing an efficient FFT processor for high inputs is the main objective of 
this research. The following steps are proposed to achieve this objective: 

1- To design Radix-2, Radix-4, and Radix-8 memory based FFT algorithms 
on FPGA to examine the performance of high inputs data in terms of 
processor speed, power consumption, and hardware complexity. 

2- To investigate the most efficient FFT algorithm using FPGA processor that 
offers the best performance in terms of speed, resources, and power 
consumption. 

3- Identify the suitable systems required for the FFT algorithms and the 
suitable size for these systems. 

 
 
1.4 Research scope 

In this research, FFT processors will be designed based on memory-based 
architecture. However, the research will not propose new algorithms, rather 
compare the existing one, and implement them on FPGA. Any FFT can be 
perform in three stages. First stage decompose an N point time domain 
signal into N signals each containing a single point, second stage, find the 
spectrum of each of the N point signals. Finally, synthesize the N frequency 
spectra into single frequency spectrum. Figure shows the FFT flow 
diagram(Smith, 1997). 



© C
OPYRIG

HT U
PM

 
4 
 

 
 

Figure 1.1 : FFT flow diagram(Smith, 1997) 
 
 
Based on literature, most of the results for other researcher in the same filed, 
the power consumption range between (26) to (535) mWatts for the same 
number of points (4096). Meanwhile speed results range between (4093) to 
(150000) cycles. For hardware usage, it hard to specific certain range due to 
the vast of technologies been used to implement the algorithms from one 
researcher to others.   

The FFT processors designed for up to 4096 points. The word lengths 
applied are 16-bit and 8-bit for input data. The twiddle elements used 16-bit 
because twiddle factor length must be less than or equal to input data 
lengths.  

The speed of the processor is set to 50 MHZ, which is the maximum level of 
the Altera DE2C70 FPGA frequency. Since no external clocks are operated, 
FPGA PLLs are not used.  

System’s accuracy is measured through hardware implementation for real 
results.  The power is precisely calculated from algorithm operations. The 
power’s amount for operation is measured separately through applying Altera 
power function for accurate findings. 
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1.5 Thesis Outlines 

This research consists of five chapters including: 

Chapter 1: This chapter discusses the general background to the field of 
study following by discussion on problem statement and research objectives 
to solve the research problem. Finally, the scope of the study is discussed. 
 
Chapter 2: This chapter reviews the existing literature on the field of study. 
FFT architecture together with FFT algorithm will be discussed in this 
chapter. 
 
Chapter 3: the used methodology to address the research objectives of the 
study will be discussed in this chapter. It will begin with designing the FFT 
processor. Then, the FFT algorithms will be validated and implemented on 
the processor for various N-point values. Finally, the FFT output values are 
verified for deciding whether the system is working properly or not. 
 
Chapter 4: discussion of the results and findings of the study will be 
presented in this chapter. 
 
Chapter5: conclusion on the findings of the study together with some 
suggestion for future works will be discussed in this chapter.
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