
 
 

UNIVERSITI PUTRA MALAYSIA 
 

 
 

REPRODUCING KERNEL HILBERT SPACE METHOD FOR COX 
PROPORTIONAL HAZARD MODEL 

 

 
 
 
 
 
 
 
 
 
 

NUR’AZAH BINTI ABDUL MANAF 
 
 
 
 
 
 
 
 
 
 
 

FS 2016 7 
 

 
 
 
 
 



© C
OPYRIG

HT U
PM

 

 

 

 
 

 

REPRODUCING KERNEL HILBERT SPACE METHOD FOR COX 

PROPORTIONAL HAZARD MODEL 

 

 

 

 

 

 

 

 

 

 

 

By 

 

NUR’AZAH BINTI ABDUL MANAF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 

in Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

 

 

May 2016 



© C
OPYRIG

HT U
PM

 

COPYRIGHT 

 

All material contained within the thesis, including without limitation text, logos, 

icons, photographs and all other artwork, is copyright material of Universiti Putra 

Malaysia unless otherwise stated. Use may be made of any material contained within 

the thesis for non-commercial purposes from the copyright holder. Commercial use 

of material may only be made with the express, prior, written permission of 

Universiti Putra Malaysia. 

 

Copyright © Universiti Putra Malaysia 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

i 

 

Abstract of this thesis presented to the Senate of Universiti Putra Malaysia in 

Fulfillment of the requirement for the degree of Doctor of Philosophy 

 

REPRODUCING KERNEL HILBERT SPACE METHOD FOR COX 

PROPORTIONAL HAZARD MODEL 

 

By 

 

NUR’AZAH BINTI ABDUL MANAF 

 

May 2016 

 

Chair: Associate Professor Mohd. Rizam Bin Abu Bakar, PhD 

Faculty: Science 

 

Numerous researchers are enthusiastic about statistical modeling to estimate the 

survival for patients. Usually, the information obtained from the survival data in 

biomedical sciences includes the age, race, health conditions, disease free time and 

the survival times of patients. Apart from developing the survival data models, 

estimations on the hazard functions are being done to estimate the chance of survival 

or the time from diagnosis to failure or death of the patients. 

It is expected from the result of analysis that using the proposed reproducing kernel 

method to develop survival models will be helpful in predicting the relapse time or 

death of patients and will contribute to intense understanding on the connection 

between reproducing kernels and survival data, which on exploitation will lead to 

more applications especially in solving related problems in statistics of several areas. 

Reproducing kernel Hilbert spaces (RKHS) has been used in the statistics literature 

for many years.  This research explores the mathematical aspects and properties of 

reproducing kernel Hilbert space. The purpose of this research is to review the basic 

facts and the importance of RKHS that contribute to the kernel method and its 

application in statistics by analyzing the effect of kernel method on survival data.  

We propose a new reproducing kernel Hilbert space (RKHS) and prove that the 

kernel obtained satisfy the properties of RKHS. The task is to extend the Cox 

proportional hazard model by using the new reproducing kernel obtained and apply 

the kernel method to randomly selected survival data sets. The new kernel we 

construct will be used in the score function ( )f x  of the representer theorem for the 

hazard model. As for the methodology, we obtain the partial differentials of the risk 

or loss function to fit the hazard model. We find optimal values of parameters of the 

score function  f(x) by using the Newton-Raphson method, which requires setting up 

the related function to be minimized. Then, we apply the kernel method to the 

survival data. Finally, we propose an algorithm of minimization of the loss function 

in the general Cox model. This algorithm is used to determine the vector ia  that 

enables us to find the optimal parameters of ( )f x which is simplified as 
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1

( ) ( , )
n

i i

i

f x a K x x


 . The survival of patients is estimated through the observation of 

the exponential values, exp(f(x)) the of model.  The )(xf  values will affect the risk 

or failures of the patients. Simulations with different number of covariates will be 

performed using the proposed kernel K(Ax, By) = <Ax, By>. The simulations are 

done to investigate the effects of different number of covariates on the prediction of 

overall survival of patients. 

We have constructed a new reproducing kernel RKHS and obtained partial 

differentials of the loss function. The kernel method is expected to be efficient for 

problems involving data with a large number of covariates. The findings of this 

research will encourage future exploration of the use of kernel method in the 

prediction of survival times or failures in many areas such as science, engineering 

and economics. 
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memenuhi keperluan untuk ijazah Doktor Falsafah 

 

KAEDAH INTI PENJANAAN SEMULA RUANG HILBERT UNTUK 

MODEL BAHAYA BERKADARAN COX 

 

Oleh 

 

NUR’AZAH BINTI ABDUL MANAF 

 

Mei 2016 

 

Pengerusi : Profesor Madya Mohd. Rizam Bin Abu Bakar, PhD 

Fakulti: Sains 

 

Ramai penyelidik telah menunjukkan minat dalam pemodelan statistik untuk 

mandirian bagi pesakit. Maklumat yang diperoleh daripada data mandirian dalam 

bidang sains bioperubatan termasuk keadaan kesihatan pesakit seperti tahap tumor, 

masa bebas penyakit dan masa hidup. Selain membina model data mandirian, 

anggaran mengenai fungsi bahaya kini dilakukan untuk menganggarkan peluang 

untuk terus hidup atau masa dari diagnosis kegagalan atau kematian pesakit kanser. 

Adalah dijangka dari hasil analisis bahawa penggunaan kaedah inti penjanaan semula 

untuk membina model mandirian akan membantu dalam ramalan masa berulang atau 

kematian pesakit dan akan menyumbang kepada pemahaman mendalam terhadap 

hubungan antara inti penjanaan semula dan data mandirian, yang mana dengan 

eksploitasinya akan mendorong kepada lebih banyak aplikasi terutama dalam 

menyelesaikan masalah berkaitan statistik bagi  beberapa bidang. 

Inti penjanaan semula ruang Hilbert (RKHS) telah digunakan dalam kesusasteraan 

statistik selama beberapa tahun. Penyelidikan ini meneroka aspek matematik dan 

sifat-sifat RKHS. Kajian ini mengkaji semula fakta-fakta asas dan kepentingan 

RKHS yang menyumbang kepada kaedah kernel dan aplikasinya dalam statistik 

dengan menganalisis kesan kaedah kernel terhadap data mandirian.  

Kami mencadangkan inti penjanaan semula ruang Hilbert yang baharu dan 

membuktikan bahawa inti yang diperolehi memuaskan sifat RKHS. Tugas utama 

adalah memperluaskan model bahaya berkadaran Cox dengan menggunakan inti 

penjanaan semula yang baharu diperolehi dan menggunakan kaedah kernel ke atas 

data mandirian yang dipilih secara rawak. Kernel baharu yang kami bina akan 

digunakan di dalam fungsi skor ( )f x  dalam teorem perwakilan bagi model bahaya. 

Pengkaedahannya adalah memperolehi pembezaan separa fungsi risiko atau fungsi 

kerugian untuk disesuaikan dengan model bahaya yang digunakan. Kami mencari 

nilai-nilai optimum bagi parameter fungsi skor ( )f x dengan menggunakan kaedah 

Newton-Raphson yang memerlukan pembentukan fungsi berkaitan untuk 

diminimumkan dan Seterusnya, kami menggunakan kaedah kernel untuk data 
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mandirian. Akhir sekali, kami mencadangkan algoritma untuk meminimumkan 

fungsi bahaya model umum Cox. Algoritma ini digunakan untuk menentukan vector 

ia  yang membolehkan kita untuk mencari parameter optimum bagi  ( )f x  yang 

dipermudahkan sebagai 
1

( ) ( , )
n

i i

i

f x a K x x


 . Mandirian pesakit dianggar melalui 

pemerhatian nilai-nilai eksponen bagi model.  Nilai-nilai )(xf  akan memberi kesan 

kepada risiko atau kegagalan pesakit. Simulasi dengan beberapa bilangan kovariat 

akan dilaksanakan dengan inti kernel K(Ax, By) = <Ax, By> yang dicadang. Simulasi 

dilakukan untuk menyiasat kesan the bilangan kovariat yang berbeza terhadap 

ramalan mandirian pesakit. 

Kami telah menjana satu inti inti penjanaan semula ruang Hilbert (RKHS) dan 

memperolehi pembezaan separa fungsi kerugian. Kaedah kernel ini berkesan untuk 

masalah yang melibatkan data dengan bilangan kovariat yang besar. Hasil kajian ini 

akan menggalakkan penerokaan masa depan penggunaan kaedah kernel dalam 

ramalan masa hidup atau kegagalan dalam banyak bidang seperti sains, kejuruteraan 

dan ekonomi.  
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CHAPTER 1 

 

INTRODUCTION 

 

Many researchers have shown interest in statistical modeling of survival for patients. 

Information obtained from the survival data in biomedical sciences includes the 

patients’ health conditions such as the stage of the tumor, disease free time and the 

survival time. Besides developing the survival data models, estimations on the hazard 

functions are being done to estimate the chance of survival or the time from 

diagnosis to failure or death of the cancer patients. 

Several studies have been done on the survival data by using the reproducing kernels 

as mentioned by Aronszajn (1950), Hille (1972), Burbea (1976), Wahba (1998), 

Berlinet et al. (2003). It is expected from the result of analysis that using the 

proposed reproducing kernel method to develop survival models will be helpful in 

predicting the relapse time or death of patients and will contribute to intense 

understanding on the connection between reproducing kernels and survival data, 

which on exploitation will lead to more applications especially in solving related 

problems in statistics of several areas. 

 

1.1. Background 

 

The aim of this research is to use a reproducing kernel function in Hilbert space over 

the field of real numbers to estimate the hazard function for survival models. 

 

The mathematical aspects and properties of reproducing kernel in Hilbert space 

(RKHS) is explored in this research to understand basic facts and the importance of 

RKHS that contribute to the kernel method and its application in statistics are being 

reviewed.  It is known that kernel methods provide a framework for solving several 

profound issues in the theories of machine learning. A combination of kernel 

techniques, machine learning theory, and optimization algorithms contribute to the 

development of kernel-based learning methods. Some reproducing kernels used in 

survival analysis will be introduced to show the importance of reproducing kernel 

method in the area of science and statistics.The mathematical concepts of Newton-

Raphson method and the numerical methods for function optimization in statistics 

will be discussed. The function f(x) of the representer theorem that involves the 

reproducing kernels is obtained by generating the mathematical process behind this 

method. The process of finding the solution to the regularised least-squares problem 

via a system of linear equations is illustrated to explain the procedures to find the 

values of parameters involved in the kernel method.  

 

Several approaches to survival analysis using Cox’s proportional hazards regression 

modelling in the attempts to model the time until an event of interest has been 

reported in literature of survival analysis. Smith et al. (2000) stated that the robust 

nature of the Cox proportional hazard model allows close approximation of the result 

for the correct parametric model when comparing the hospitalization experiences of 
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two or more cohorts. In the research study the authors found a model which 

suggested an increase in risk among the exposed patients during hospitalization. The 

reproducing kernels are usually used to extend the Cox regression model and in the 

application to the survival data. Kernel Cox regression models were introduced by Li 

(2003) for relating expression profiles to censored survival data and applied to three 

types of cancer data sets. The simple natural inner product kernel ( , ) ,i j i jK x y x x  

was used in the research.   

 

The important facts related to reproducing kernels need to be explained before 

extending the discussion on the research.  

 

 

1.2 Kernels 

 

A kernel is a symmetric continuous function, :[ , ] [ , ]K a b a b  , so that 

),(),( xsKsxK   (Scholkopf, 2002). In order to further understand about 

reproducing kernels and its properties we need to know the basic concepts that 

contribute to kernel learning factors. Kolmogorov (1941) started to study the 

methods for representing kernels in linear spaces for a countable output domain. The 

method for representing kernels in linear spaces for general cases was developed by 

Aronszajn (1950). 

 

 

1.2.1  Positive Definite Matrix 

 

Definition 1.1 (Gentle, 2007) 

A p p  symmetric matrix A is said to be positive definite if, for all vectors px , 

the quadratic form Tx Ax  is positive, that is 

 

0, 0.Tx Ax x   

Suppose that 

11 12 1

21 22 2

1 2

p

p

ij

p p pp

a a a

a a a
A a

a a a

 
 
      
 
  

 is a positive definite matrix. Then, 

matrix A has the following properties (Gentle, 2007). 

1. The 

11 12 1

21 22 2

1 2

 submatrix 

r

r

r

r r rr

a a a

a a a
r r A

a a a

 
 
  
 
 
 

, where 1 r p   is also positive 

definite. 
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2. All the p eigenvalues of A, 
1 2, , , p   are positive. If all the eigenvalues of a 

matrix are positive, the matrix is also a positive definite matrix. 

 

3. A unique decomposition of A, TA LL exists, where L is a lower triangular 

matrix, that is 

11

21 22

1 2

0 0

0
ij

p p pp

l

l l
L L

l l l

 
 
      
 
  

. 

 The equation TA LL  gives the Cholesky Decomposition of A. 

4.  A unique decomposition of A, A SS exists, where S A  is the matrix square 

 root of A. 

 

5. A unique decomposition of A, TA VDV  exists, where  

1

2

1 2

0 0

0 0
( , , , )

0 0

p

p

D diag




  



 
 
  
 
 
  

 

 is the diagonal matrix composed of the eigenvalues of A, and V is the orthogonal 

matrix. 

 

6. By properties 2 and 5, as TA VDV , 1V  ,  and 
1

0
p

i

i

D 


  , we have 

2
0T TA VDV V D V V D D     . 

 

7. By property 6, because 0A  , then A is non-singular which means that the 

inverse of A, A-1 exists such that 

 
1 1 1.AA A A    

 

 Subsequently, we can deduce that  

 

 
1

1 1T TA VDV VD V


   , 

 since 1 .TV V   

 

8. The inverse of a matrix A, 1A is also positive definite. 
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9. For px , 

1 1
min max .

T

i iTi p i p

x Ax

x x
 

   
   

 

It is known (Stewart, 1976) that positive definite matrices are related closely to 

positive-definite symmetric bilinear forms, and to inner products of vector spaces.  

Saitoh (1988) showed the connection between the positivity or positive matrix 

defined by Aronszajn (1950) and the positive semi-definiteness of all finite set kernel 

matrices. 

 

 

1.2.2 Positive Definite Kernels 

 

It is obvious that positive definite kernel is a generalization of a positive matrix in 

operator theory. It provides a framework to the construction of basic Hilbert spaces. 

 

Definition 1.2 

Let  ( , )i jL H H  be the bounded operators from iH  to jH  and  n n
H


  be a 

sequence of real Hilbert spaces. Then, a map A on ZZ   where  jiA ,  lies in  

),( ji HHL  is called a positive definite kernel if for all k > 0, the following positive 

definiteness condition hold (Hille, 1972): 

 

  0,,
,


 kjik

ij hhjiA  

where , .i i j jh H h H   

 

 

1.2.3 Gram Matrix 

 

Gram matrix is named after a Danish Mathematician Jorgen Pederson Gram 

(Hazewinkle, 2001). The Gram Matrix of a set of vectors 1 2, , , mx x x  in an inner 

product space is the Hermitian matrix of inner products, whose entries are given by 

 , ,ij i j i jK x x K x x   and is defined as following: 

 

Definition 1.3 

Given a function 2 2:  or :K X K X   and patterns 1 2, , , mx x x X . The 

m m  matrix K with elements  , ,ij i j i jK x x K x x   is called the Gram matrix or 

kernel matrix with respect to 1 2, , , mx x x . 

 

http://www.nationmaster.com/encyclopedia/Positive-semidefinite-matrix
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Given a real matrix A, the matrix TA A  is a Gram matrix (of the columns of A), while 

the matrix TAA  is the Gram matrix of the rows of A. Kernel functions are often 

represented by Gram matrices (Lanckriet, 2004). 

 

 

1.2.4 Cauchy-Schwarz Inequality for Kernels 

 

The Cauchy–Schwarz inequality is one of the most important inequalities in 

mathematics and is very useful inequality encountered in different settings, such as 

analysis, linear algebra, probability and statistical theory. It is an inequality which 

has a number of generalizations to solve problems. 

 

The Cauchy–Schwarz inequality for any vectors x and x of an inner product space is 

normally written stated as (Scholkopf, 2002): 

 

,x x x x  . 

 

Equivalently, in terms of inner product, the inequality can be written as 

2
, , ,x x x x x x   , 

which is known as the Cauchy-Schwarz inequality for kernels. 

 

 

1.3 Scope 

 

This research focused mainly on the reproducing kernel Hilbert space (RKHS) and 

the kernel method that will be applied to selected survival data. The properties of 

RKHS are being explored thoroughly in order to construct a new RKHS that will be 

used in the generalized Cox hazard model of the kernel method. The properties are 

verified upon constructing the new RKHS before it is used in the survival model. The 

important goal is to show that RKHS plays an important role as a tool in kernel 

method and its application to survival analysis. 

 

 

1.4 Problem Statements 

 

The use of the reproducing kernel Hilbert space (RKHS) is of interest because RKHS 

provides a base for adaptable function estimation and statistical modelling with 

direct, indirect and scattered data distributions. According to Li and Luan (2003), 

models based on RKHS are foundation for penalized likelihood estimation and 

regularization methods and can handle wide variety of data distributions and 

problems. In statistics, RKHS can be used to estimate the survival of patients’ data 

with many covariates. Solutions of optimization problems in RKHS are highly 

important tools in many fields of mathematical investigations for engineers, 

computer scientists and statisticians. 
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The reproducing kernels, the properties of RKHS and the kernel method are not 

commonly utilized by researchers in Malaysia. Several reproducing kernels in 

Hilbert space had been used extensively by international researchers but locally the 

researches on RKHS focus mostly on theoretical aspects and rarely used to solve 

problems in areas of applied mathematics, statistics and engineering. It is interesting 

being able to construct new functions based on the properties of existing functions 

and compare the result of solutions with the other commonly used functions. Once 

the new function is constructed, we should be able to apply the function in 

mathematical or statistical modelling to solve problems in several areas of research. 

The important task to obtain solutions for randomly selected data set is to obtain the 

appropriate algorithm and equations for a model. 

 

 

1.5 Research Objectives 

 

The research is conducted to achieve the following objectives: 

 

 To construct a new reproducing kernel. 

A new reproducing kernel Hilbert space is constructed and proven that the 

kernel obtained satisfies the properties of RKHS. The new kernel will be 

constructed using two diagonal matrices. We must show that the newly 

constructed kernel satisfy the positive definiteness and symmetry properties. 

 

 To find optimal values of parameters of the score function f(x). 

The mathematical procedures to find the optimal values of parameters for 

survival data will be explained. In order to find solution using the Newton-

Raphson method, we have to set up the related function to be minimized and 

obtain the partial differentials to fit the hazard model used in this research. 

 

 To apply the kernel method to the survival data. 

The Cox regression model is extended by using the new reproducing kernel 

and the kernel method is applied to the survival data. The new kernel we 

constructed will be used in the score function f(x) of the representer theorem 

of the hazard model. 

 

 To propose an algorithm to minimize the loss function in the general Cox 

model. 

The algorithm is used to determine the vector ia  that enables us to find the 

optimal parameters of f(x) which is simplified as 
1

( ) ( , )
n

i i

i

f x a K x x


 . The 

value of  f(x) will determine the value of exp( ( ))if x  which is the factor of 

the Cox proportional hazard model. 
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1.6 Outlines of Thesis 

 

The research work is started with the exploration of the RKHS and its properties. 

Upon understanding all aspects of reproducing kernel Hilbert space, a new RKHS is 

constructed and the properties that classify the kernel as RKHS is shown. Once the 

new kernel is constructed, an initial exploratory data analysis is performed by using 

the negative partial log likelihood function as the loss function. This process is done 

by minimizing the loss function to find the optimal parameter values of survival data 

for the kernel method. The Newton-Raphson method is used to solve the 

optimization problem. Survival data of HIV positive patients from a public hospital 

is used in the application of the new modified kernel method. The exponential values 

of the kernel model will be observed to estimate the survival of patients. 

 

This thesis is organized as follows: 

In Chapter 1, we introduce the research by stating the background. The important 

facts related to reproducing kernels are explained. We also highlighted the problem 

statements and objectives of the research. 

 

Literature review is discussed in Chapter 2. In this chapter, we will review the 

previous work done by researchers that are related to the reproducing kernel Hilbert 

space (RKHS), the Cox proportional hazard function, the utilization of kernel method 

in statistics and the application of kernel method in medical sciences. 
 

In Chapter 3, we provide the mathematical backgrounds and the fundamental tools in 

this research such as Hilbert space, reproducing kernel Hilbert space and its 

properties, survival analysis and Cox proportional hazard model. Several definitions, 

theorems and examples are included. 

 

In chapter 4, we will focus on the methodology of the research that will lead to the 

fulfillment of the objectives mentioned in Chapter 1. We begin the chapter with the 

construction of the new reproducing kernel. Then, we show that the new kernel 

satisfy the properties of the reproducing kernel Hilbert space: positive definite and 

symmetry. We then show the use of the new kernel in the link function 

1

( ) ( , )
n

i i
i

f x a K x x


  and extend to the Cox model. Subsequently, we will explain the 

procedures to obtain the partial differentials to enable us to find the optimal values of 

the parameters of the score functions. At the end of the chapter, we discuss the values 

of exp( ( ))f x  to estimate the survival time of the patients. 

  

In Chapter 5, we will show and discuss the results of the construction of the new 

kernel, the simplified equations, and obtain partial differentials of functions to find 

the optimal values of parameters for the Cox model. We compare the solutions we 

get from the application of the new kernel with the other kernels: linear kernel, 

quadratic kernel and Gaussian Radial Basis Function Gaussian RBF) kernel. 

 

In Chapter 6, we include the summary and general conclusions of the research. In 

this chapter, we suggest the construction of several new reproducing kernels in 

Hilbert space and gave recommendations for future research. Lastly, we recommend 

the application of kernel methods in area engineering, medical science, economics 

and finance. 
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