UNIVERSITI PUTRA MALAYSIA

PRODUCTIVITY AND PROXIMATE ANALYSES OF SPIRULINA (ARTHROSPIRA PLATENSIS) IN DIFFERENT FLOATING WATER-BASED PHOTOBIOREACTOR DESIGNS

MOHAMED AMAR NAQQUIDDIN BIN ABDUL KADER

FS 2016 6
PRODUCTIVITY AND PROXIMATE ANALYSES OF SPIRULINA (ARTHROSPIRA PLATENSIS) IN DIFFERENT FLOATING WATER-BASED PHOTOBIOREACTOR DESIGNS

By

MOHAMED AMAR NAQQIUDDIN BIN ABDUL KADER

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

July 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

PRODUCTIVITY AND PROXIMATE ANALYSES OF SPIRULINA (ARTHROSPIRA PLATENSIS) IN DIFFERENT FLOATING WATER-BASED PHOTOBIOREACTOR DESIGNS

By

MOHAMED AMAR NAQQIUDDIN BIN ABDUL KADER

July 2016

Chairman : Hishamuddin Omar, PhD
Faculty : Science

Various concepts of photobioreactor (PBR) have been discovered scientists around the world. Though, only definite photobioreactor designs would be suitable for growing microalgae in a certain geographical climate outdoor condition. This study focused on developing simple floating water-based photobioreactor (PBR) without any computerized controlled systems. The aim of this study was to identify the chronology in developing best design overall for a photobioreactor. Major part of the design involved the aspect of the structure materials, shape and rigidness, whereas minor parts of the photobioreactors design includes the aeration placement, agitation or mixing, coloration corresponding to the high light intensity, temperature control, the size of the openings for the free exchange of gas and support for stable float on the water. Experiments performed would indicate these simple floating photobioreactors whether there are either significant or insignificant effects on the productivity of Arthrospira platensis (Spirulina) compared to the simple land based PBR especially under tropical climate.

In outdoor condition in Malaysia, the weather patterns are extremely unexpected. Weather patterns that usually occurs can be categorized into three namely, first, humid or wet weather that have a high frequency of rain; mixed weather which has average frequency of rain occurrence, overcast with thick cloud layer and also relatively have high light intensity; finally, dry weather having less rain, often exposed to high temperatures and bright sunlight.

Floating photobioreactor (PBR) has been designed in two distinct rigid shapes (Octagonal and Cylindrical) built using recycled water bottles, Polyethylene terephthalate (PET). While another form of simple floating PBR was designed more flexible as floating enclosure and was custom made from
High Density Polyethylene (HDPE) materials. Simple land based PBR was prepared with High-density Polyethylene (HDPE) plastic bag, (25cm x 50cm). For every minor modification, 10 days of *A. platensis* cultivation inside all PBRs were conducted with daily monitoring of growth parameters. The expected outcome from this experiment shall anticipate that floating PBRs would give higher yield in terms of biomass dry weight and specific growth rate of cultured *A. platensis* in comparison of land based PBR. In any case, developing and third world countries could use simple floating PBRs for commercial applications instead of investing on impractical and complicated photobioreactor designs.

For proximate analyses, the average total protein content (%) of *A. platensis* cultured in Cylindrical and Octagonal PBR under dry weather condition was higher significantly ($p < 0.05$) at 61.18±0.45 and 60.58±0.62 than other PBRs respectively. Total carbohydrate content (%) of *A. platensis* cultured in Cylindrical PBR (dry weather condition) was significantly ($p < 0.05$) higher at 26.71±1.43. While the lowest lipid content recorded in Flexible PBR, 0.66 ± 0.579% respectively. Highest scored by Cylindrical PBR, 7.883±0.28 under mix weather condition.

The study indicated simple floating photobioreactor system for practical commercial cultivation system. Water based cultivation system has been seen promising compared to land based cultivation system. Several advantages were determined as more dry biomass and productivity of Spirulina were achieved compared to common practice of land based cultivation system. Moreover, this simple enclosed floating photobioreactor system may be an economical starter approach for modern farmers in order to maintain high quality, cleanliness and purity of Spirulina.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PRODUKTIVITI DAN ANALISIS PROKSIMA SPIRULINA (ARTHROSPIRA PLATENSIS) YANG DIKULTUR DALAM PELBAGAI REKA BENTUK FOTOBIOREAKTOR YANG TERAPUNG BERASASKAN AIR

Oleh

MOHAMED AMAR NAQQIUDDIN BIN ABDUL KADER

Julai 2016

Pengerusi : Hishamuddin Omar, PhD
Fakulti : Sains

Pelbagai konsep fotobioreaktor (PBR) telah ditemui ahli-ahli sains di seluruh dunia. Akan tetapi, reka bentuk fotobioreaktor yang sesuai sahaja dapat meningkatkan pertumbuhan mikroalga dalam keadaan iklim geografi tertentu. Kertas kerja ini memberi tumpuan kepada pembangunan fotobioreaktor (PBR) terapung berasaskan air yang mudah tanpa memerlukan sistem berkomputer yang rumit untuk mengawalnya. Tujuan kajian ini adalah untuk mengenalpasti susur galur reka bentuk yang paling ringkas dan terbaik secara keseluruhan bagi sesebuah fotobioreaktor. Reka bentuk sesebuah fotobioreaktor majoritinya melibatkan aspek struktur, bentuk fizikal dan ketegarannya, manakala aspek-aspek yang lain yang perlu ditekankan termasuk peredaran kultur yang konsisten, warna yang sesuai untuk reflex cahaya pada tahap yang tinggi, kawalan suhu kultur, saiz bukaan bagi pertukaran bebas gas dan sokongan bagi pengapungan stabil atas air. Ujian yang telah dilaksanakan akan memberi sedikit sebanyak pendedahan bahawa fotobioreaktor terapung dengan ringkas berasaskan air ini sama ada memberi impak yang jelas atau kurang kepada produktiviti Arthrospira platensis (Spirulina) berbanding dengan sistem pengkulturan mudah berasaskan darat terutamanya yang diuji sepenuhnya di bawah iklim tropika.

Corak cuaca kawasan lapangan di Malaysia pada kebiasaannya tidak dapat dijangkakan. Corak cuaca yang kebiasaannya berlaku boleh dikategorikan kepada tiga iaitu pertamanya, cuaca yang lembap yang mempunyai kekerapan yang tinggi turunnya hujan; keduanya cuaca yang bercampur yang mempunyai kekerapan kejadian hujan, mendung dengan lapisan awan yang tebal dan juga mempunyai limpahan cahaya matahari yang agak tinggi dan; akhirnya, cuaca kering yang kurang turunnya hujan, menghadapi kenaikan suhu yang tinggi dan mempunyai keamatan cahaya matahari yang terang.
Fotobioreaktor terapung (PBR) yang ringkas telah direka dalam dua bentuk tegar yang berbeza (PBR yang bersegi dan yang mempunyai bentuk silinder) dibina menggunakan bekas botol air, Polyethylene terephthalate (PET). Manakala satu lagi bentuk PBR terapung yang ringkas direka lebih fleksibel seperti bentuknya sampulan plastik terapung yang mana bahannya diperbuat dari Polyethylene Berketumpatan Tinggi (HDPE). Pengkulturan berasaskan darat pula menggunakan PBR yang telah direka ringkas dengan hanya menggunakan beg plastik Polyethylene yang berkepadatan tinggi (HDPE), (25cm x 50cm). Untuk setiap eksperimen yang dijalankan, A. platensis melalui pengkulturan selama 10 hari dalam semua fotobioreaktor dengan pemantauan parameter pertumbuhan harian secara teliti. Hasil yang diharapkan dari eksperimen ini akan memberi ilmu pengetahuan yang lebih mendalam sama ada system fotobioreaktor terapung yang ringkas ini dapat membuahkan hasil yang lebih atau kurang dalam jangkaan berat kering dan bagaimanakah jangkaan seterusnya pula pada kadar pertumbuhan bagi A. platensis jika dibandingkan dengan sistem pengkulturan berasaskan darat. Sehubungan dengan itu, negara-negara membangun dan negara dunia ketiga perlu mengambil peluang yang sedia ada menggunakan sistem fotobioreaktor terapung yang ringkas ini untuk aplikasi komersial dan juga perlu berhenti melaburkan masa dan wang untuk mereka bentuk fotobioreaktor yang tidak praktikal dan terlalu rumit.

Untuk analisis proksima, purata jumlah kandungan protein (%) daripada A. platensis yang dikulturkan dalam PBR berbentuk silinder dan oktagon di bawah keadaan cuaca kering adalah lebih tinggi dengan ketara ($p < 0.05$) masing-masing pada 61.18 ± 0.45 dan 60,58 ± 0,62 daripada PBR yang lain. Jumlah kandungan karbohidrat (%) daripada A. platensis yang dikulturkan dalam PBR yang berbentuk silinder (keadaan cuaca kering) adalah ketara ($p < 0.05$) lebih tinggi pada 26.71 ± 1.43. Manakala kandungan lipid (%) yang paling rendah telah dicatatkan melalui PBR fleksibel iaitu 0.66 ± 0,579. PBR berbentuk silinder pula telah merekodkan bacaan lipid yang tertinggi, 7,883 ± 0.28 di bawah keadaan cuaca yang bercampur.

Kajian menunjukkan sistem fotobioreaktor terapung ringkas ini menepati ciri-ciri praktikal untuk digunakan sebagai sistem pengkulturan moden yang komersial. Sistem pengkulturan berasaskan air dilihat lebih berpotensi berbanding dengan sistem pengkulturan yang berasaskan darat. Beberapa kelebihan telah dapat dikenalpasti daripada analisis berat kering dan produktiviti Spirulina tersebut yang dilihat telah meningkat pencapaian berbanding dengan sistem biasa pengkulturan berasaskan darat. Selain itu, sistem tertutup fotobioreaktor terapung yang ringkas ini adalah satu-satunya permulaan sebagai satu pendekatan ekonomi yang baru bagi petani moden supaya dapat mengekalkan kualiti dan kebersihan Spirulina yang tinggi.
ACKNOWLEDGEMENTS

From the very beginning, this thesis report has been wonderfully transformed me and my writings throughout tough difficult experiences. Nothing can be given to return the favors from numerous important people worth to be mentioned here for their great contribution supporting me in finishing this thesis writings.

Firstly thanks to my parent, Abdul Kader Bin Hj. Mohamed and Zohra Beebe Binti Abdul Kader. My younger sisters, Nurfatimatul Sairah, Nur An Umillah and Nurhalimatus Saadiah for believing in me. Million thanks to all of you and to my close friends and relatives that have been continuously pushing me and always be part of my journey creating my own life from the inside out. A special thanks to my beloved wife, Maifuzatul Shafiqah Binti Muhammad Yusof for being by my side regardless of quite a lot moments of hard times, keeping me focused on what truly matters. Not to mention the supports and courage from my father and mother-in-law, Muhammad Yusof Bin Marakar, Fatimah Binti Ismail; the younger sibling-in-law, Khatib, Hafifah and Uwais. Your strengths and smiles have kept me with positive energy coming from your eyes and the answer is always clear. In shaa Allah.

I would like to take this opportunity to acknowledge the advice and guidance of Dr. Hishamuddin B. Omar, my main supervisor for this project. He managed to supervise my dissertation and generally kept me on track. Your gentle spirits and willingness to guide me so completely, contributed mightily to creating the space, time, energy essential in completing this project. I also thank the lab staffs for their guidance and suggestions, friends under same supervision in this lab, Norsalwani and Hafidh Ali Almahrouqi for all their advice and encouragement. A word of thanks also goes to the Head of Department, Prof Ahmad Ismail, Dr. Rusimah Nulit, Dr. Shahrizim Zulkifly, Dr. Syaizwan Zahmir Zulkifli and to all other department lecturers and members. Without their encouragements, I would not have finished the degree. Thank you.
I certify that a Thesis Examination Committee has met on 26 July 2016 to conduct the final examination of Mohamed Amar Naqqiuddin bin Abdul Kader on his thesis entitled "Productivity and Proximate Analyses of Spirulina (Arthrospira platensis) in Different Floating Water-Based Photobioreactor Designs" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Nor Azwady bin Abd Aziz, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Rusea Go, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Abu Hena Mustafa Kamal, PhD
Senior Lecturer
Faculty of Agriculture and Food Sciences
Universiti Putra Malaysia (Bintulu Campus)
(Internal Examiner)

P.T Kalaichelvan, PhD
Professor
University of Madras
India
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 August 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor Philosophy.

Members of the Supervisory Committee were as follows:

Hishamuddin Omar, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Shahrizim Zulkifly, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Syaizwan Zahmir Zulkifli, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice-chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: __________________________ Date: __________________________

Name and Matric No: Mohamed Amar Naqqiuddin Bin Abdul Kader, GS35352
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee: Dr. Hishamuddin Omar

Signature: ____________________________
Name of Member of Supervisory Committee: Dr. Shahrizim Zulkifly

Signature: ____________________________
Name of Member of Supervisory Committee: Dr. Syaizwan Zahmir Zulkifli
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Introduction
 1.2 Objectives
 1.2.1 General objective
 1.2.2 Specific objectives

2. **LITERATURE REVIEW**
 2.1 About microalgae
 2.2 Microalgae uses and functions
 2.2.1 Research on microalgae production
 2.2.2 Nutritional values
 2.2.3 Medicinal values and food supplement
 2.2.4 Microalgae as renewable fuel source
 2.2.5 Microalgae as bioremediation agent
 2.3 Microalgae as potential solution for present and future world crisis
 2.4 Brief history of microalgae cultivation
 2.5 Present microalgae cultivation
 2.5.1 *Arthrosira platensis* (Spirulina)
 2.6 Cultivation conditions
 2.6.1 Weather pattern
 2.6.2 Microclimate
 2.7 Factors affecting growth
 2.7.1 Light intensity
 2.7.2 Temperature
 2.7.3 pH
 2.7.4 Nutrients
 2.8 Cultivation method
 2.8.1 Open system – open ponds
 2.8.2 Closed system – enclosed photobioreactor designs
 2.8.3 Different photobioreactor system currently in used
 2.9 Photobioreactor limitations
 2.9.1 Mixing and aeration
 2.9.2 Materials
2.9.3 Light 27
2.9.4 Gases exchange 32
2.9.5 System management 33
2.10 Research and commercial algae cultivation in Malaysia 34

3. GENERAL METHODOLOGY 35
3.1 Experimental site 35
3.2 Experimental design 35
3.3 Weather classification and study duration 35
3.3.1 Weather condition scale 37
3.4 Source of Arthrospira platensis 37
3.5 Maintenance of Stock Culture 37
3.6 Culture media 38
3.6.1 Kosaric medium 38
3.7 Culture monitoring of Arthrospira platensis 38
3.7.1 Physico-chemical parameters and weather conditions 38
3.7.2 Determination of biomass concentration by optical density 39
3.7.3 Cell dry weight determination 39
3.7.4 Chlorophyll a content 39
3.8 Productivity and Specific Growth Rate 40
3.9 Photobioreactor preparation (major design) 41
3.9.1 Land based photobioreactor (mixing variation) 41
3.9.2 Water-based octagonal and cylindrical floating photobioreactor (Rigid) 42
3.9.3 Water-based flexible floating enclosure photobioreactor 42
3.9.4 Design inspection 43
3.10 Proximate analyses 43
3.10.1 Total protein 44
3.10.2 Total lipid 44
3.10.3 Total carbohydrate 44
3.11 Harvesting and sample handling 45
3.12 Samples preservation 45
3.13 Data analysis 45

4. PRELIMINARY OBSERVATION AND DEVELOPMENT OF 47
4.1 Introduction 47
4.2 Materials and Methods 48
4.2.1 Setting up simple floating photobioreactor 48
4.2.2 Quality and specific criteria assessment 49
4.2.3 Methods of buoyant attachment 50
4.2.4 Methods of fabricating simple floating photobioreactor 52
4.2.5 Methods of positioning simple floating photobioreactor 53
4.2.6 Methods of installing simple gases exchange outlet 54
4.3 Results 56
7.3.2 Total carbohydrate content (%) of cultured Spirulina in different simple floating photobioreactor design under different weather conditions 125

7.3.3 Total lipid content (%) of cultured Spirulina in different simple floating photobioreactor design under different weather conditions 126

7.4 Discussion 127

8. GENERAL DISCUSSION 130
8.1 Introduction 130
8.2 Important factors in developing photobioreactor system 132

9. SUMMARY, CONCLUSION AND RECOMMENDATIONS 136

BIBLIOGRAPHY 139
APPENDICES 162
BIODATA OF STUDENT 165
LIST OF PUBLICATIONS 166
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temperature recorded highest, lowest and daily based variation in Malaysia.</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Weather conditions (wet, mix and dry) described in scales (1-10).</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Specific criteria description for quality assessment of simple floating photobioreactor.</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Major issues on the simple floating photobioreactor were described with the suggested solutions during the trial sessions.</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>Quality scores assessed with final methods applied for all designed simple floating photobioreactor based on actual experiment.</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>Materials used for photobioreactor designs.</td>
<td>63</td>
</tr>
<tr>
<td>7</td>
<td>Highest productivity (g L$^{-1}$ d$^{-1}$) in different simple photobioreactors: Octagonal, Cylindrical, Land, and Flexible floating photobioreactors (PBR) during wet, mix and dry weather condition.</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>Photobioreactor Capacity (Scaled Up Estimation).</td>
<td>113</td>
</tr>
<tr>
<td>9</td>
<td>Major Equipment Cost (MEC).</td>
<td>113</td>
</tr>
<tr>
<td>10</td>
<td>Total estimated production costs for the conceptually designed photobioreactor system.</td>
<td>114</td>
</tr>
<tr>
<td>11</td>
<td>The estimation of cost-benefit analysis for Octagonal PBR.</td>
<td>117</td>
</tr>
<tr>
<td>12</td>
<td>Comparative estimation of cost benefits analyses.</td>
<td>118</td>
</tr>
<tr>
<td>13</td>
<td>Contrast comparison of reactor cost.</td>
<td>120</td>
</tr>
<tr>
<td>14</td>
<td>Proximate composition of A. platensis (% dry weight) in different climate conditions.</td>
<td>129</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Average precipitation in depth (mm per year) from year 2011 to 2015.</td>
</tr>
<tr>
<td>2</td>
<td>Northeast monsoon and southwest monsoon season current flow.</td>
</tr>
<tr>
<td>3</td>
<td>Photobioreactors made of DURAN® glass tubing, Borosilicate (Pyrex) glass.</td>
</tr>
<tr>
<td>4</td>
<td>Low Density Polyethylene (LDPE) films.</td>
</tr>
<tr>
<td>5</td>
<td>Flexible plastic film photobioreactor.</td>
</tr>
<tr>
<td>6</td>
<td>Clear acrylic plastic.</td>
</tr>
<tr>
<td>7</td>
<td>Clear polyvinyl chloride (PVC).</td>
</tr>
<tr>
<td>8</td>
<td>Large scale fluorescent lamps fitted photobioreactor.</td>
</tr>
<tr>
<td>9</td>
<td>LED based lighting system for photobioreactor.</td>
</tr>
<tr>
<td>10</td>
<td>Optical fiber supplied for photobioreactor.</td>
</tr>
<tr>
<td>11</td>
<td>Prepared land based photobioreactor design.</td>
</tr>
<tr>
<td>12</td>
<td>Simple flexible enclosure floating photobioreactor (PBR) design.</td>
</tr>
<tr>
<td>13</td>
<td>Buoyant attachments using A) iron wire, B) only with rafia strings.</td>
</tr>
<tr>
<td>14</td>
<td>Buoyant attachments using A) hard iron wire, B) small diameter thin iron wire to tie altogether.</td>
</tr>
<tr>
<td>15</td>
<td>Joining two parts of PET bottle (5 L).</td>
</tr>
<tr>
<td>16</td>
<td>Positioning the photobioreactor. A: Top tied. B: Bottom tied to heavy rocks.</td>
</tr>
<tr>
<td>17</td>
<td>Installing two PET bottles (500 mL) for gases exchange outlet on the floating photobioreactor.</td>
</tr>
<tr>
<td>18</td>
<td>Biomass dry weight of Arthrospira platensis during 10 cultivation days in Octagonal PBR (R1, R2, R3, R4) and Cylindrical PBR (T1, T2, T3).</td>
</tr>
</tbody>
</table>
Joining two parts of PET bottles using (A) hot glue, (B) normal epoxy glue.

Joining two parts of PET bottles using (A) epoxy and mosquito net; (B) epoxy and clothes.

Joining two parts of PET bottles using (A) plastic wrapper and epoxy; (B) clear silicone glue, white coating and polyurethane epoxy.

Cross sectional diagram of aeration/mixing flows positioned for bottom aeration.

Cross sectional diagram of aeration/mixing flows positioned for top aeration.

Prepared flexible enclosure floating photobioreactor (PBR).

Prepared rigid water based floating photobioreactors

Prepared colored floating photobioreactors

Prepared gases exchange outlets

Light intensity and absorbance of *A. platensis* grown with bottom bubble aeration supplied using (AS-air stone & WAS-without air stone) in different simple photobioreactors

Light intensity and absorbance of *A. platensis* grown with top bubble aeration supplied using (AS-air stone & WAS-without air stone) in different simple photobioreactors

Light intensity and dry weight (g L\(^{-1}\)) of *A. platensis* grown with bottom bubble aeration supplied using (AS-air stone & WAS-without air stone) in different simple photobioreactors

Light intensity and dry weight (g L\(^{-1}\)) of *A. platensis* grown with top bubble aeration supplied using (AS-air stone & WAS-without air stone) in different simple photobioreactors

pH of grown *A. platensis* with bottom bubble aeration supplied using (AS-air stone & WAS-without air stone) in different simple photobioreactors (PBR)
pH of grown *A. platensis* with top bubble aeration supplied using (AS-air stone & WAS-without air stone) in different simple photobioreactors

Light intensity (µmol m$^{-2}$ s$^{-1}$) and temperature (°C): Morning (8-11am), Afternoon (11-2pm), Evening (2-5pm) for the 10 days of *A. platensis* cultivation with bottom and top aeration of (AS-air stone & WAS-without air stone) in different simple photobioreactors

Light intensity and absorbance of *A. platensis* grown in different simple floating photobioreactors (PBR) (O-Octagonal; C-Cylindrical; F-Flexible) for 10 days in three different weather conditions (Wet, Mixed and Dry).

Light intensity and dry weight (g L$^{-1}$) of *A. platensis* grown in different simple photobioreactors (PBR) (O-Octagonal; C-Cylindrical; F-Flexible) for 10 days in different weather condition (wet, mixed and dry).

Light intensity and chlorophyll a of *A. platensis* grown in different simple floating photobioreactors (PBR) (O-Octagonal; C-Cylindrical; F-Flexible) for 10 days in different weather conditions (wet, mixed and dry).

pH of grown *A. platensis* in different simple floating photobioreactors (PBR) (O-Octagonal; C-Cylindrical; F-Flexible) for 10 days under different weather conditions (Wet, Mixed and Dry).

Light intensity and absorbance of *A. platensis* grown with different colorations (B- Black; S- Silver; W- White; Control) in simple floating photobioreactors (PBR) (O-Octagonal and C-Cylindrical) for 10 days.

Light intensity and biomass dry weight (g L$^{-1}$) collected of *A. platensis* grown in different colored (B- Black; S-Silver; W- White; Control) simple floating photobioreactors (PBR) (O-Octagonal and C-Cylindrical) for 10 days.

Light intensity and chlorophyll a of *A. platensis* grown in different colored (B- Black; S-Silver; W- White; Control) simple floating photobioreactors (PBR) (O-Octagonal and C-Cylindrical).

pH of grown *A. platensis* in different colored (B- Black; S-Silver; W- White; Control) simple floating photobioreactors (PBR) (O-Octagonal; C-Cylindrical) for 10 days.
43 Light intensity (µmol m\(^{-2}\) s\(^{-1}\)) and temperature (°C); Morning (8-11am), Afternoon (11-2pm), Evening (2-5pm) for the 10 days of A. platensis cultivation in different colored (B- Black; S- Silver; W- White; Control-uncolored PBR) simple floating photobioreactors (PBR) (O-Octagonal; C-Cylindrical).

44 Light intensity and absorbance of A. platensis grown in different size of gaseous exchange area (A: > 500 cm\(^3\); B: < 500 cm\(^3\); C: 0 cm\(^3\)) of simple Octagonal floating photobioreactors (PBR) for 10 cultivation days.

45 Light intensity and biomass dry weight (g L\(^{-1}\)) of A. platensis grown in different size of gaseous exchange area (A: > 500 cm\(^3\); B: < 500 cm\(^3\); C: 0 cm\(^3\)) in simple Octagonal floating photobioreactors (PBR) for 10 days.

46 Light intensity and chlorophyll a of A. platensis grown in different size of gaseous exchange area (A: > 500 cm\(^3\); B: < 500 cm\(^3\); C: 0 cm\(^3\)) of simple Octagonal floating photobioreactors (PBR) for 10 days of cultivation.

47 Dissolved oxygen (mg L\(^{-1}\)) of A. platensis grown in different gaseous exchange area sizes (A: > 500 cm\(^3\); B: < 500 cm\(^3\); C: 0 cm\(^3\)) of simple Octagonal floating photobioreactors (PBR) for 10 cultivation days.

48 pH values of A. platensis grown in different gaseous exchange area sizes (A: > 500 cm\(^3\); B: < 500 cm\(^3\); C: 0 cm\(^3\)) of simple Octagonal floating photobioreactors (PBR) for 10 days of cultivation.

49 Total protein content (%) gained from different designed simple floating photobioreactors (F: Flexible; O: Octagonal; C: Cylindrical; Land based as reference) under wet, mix and dry weather conditions.

50 Total carbohydrate content (%) gained from different designed simple floating photobioreactors (F: Flexible; O: Octagonal; C: Cylindrical; Land based as reference) under wet, mix and dry weather conditions.

51 Total lipid content (%) gained from different designed simple floating photobioreactors (F: Flexible; O: Octagonal; C: Cylindrical; Land based as reference) under wet, mix and dry weather conditions.

52 Flow diagram showing general description of the study.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°C</td>
<td>Degree</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µg day⁻¹</td>
<td>Microgram per day</td>
</tr>
<tr>
<td>µg g⁻¹</td>
<td>Microgram per gram</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>µmol L⁻¹</td>
<td>Micromolar per litre</td>
</tr>
<tr>
<td>µmol m⁻² s⁻¹</td>
<td>Micromolar per second metre square</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>Chloroform</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>Cr (III)</td>
<td>Trivalent chromium</td>
</tr>
<tr>
<td>Cr (VI)</td>
<td>Hexavalent chromium</td>
</tr>
<tr>
<td>CrO₄²⁻</td>
<td>Chromate</td>
</tr>
<tr>
<td>CrO₇²⁺</td>
<td>Dichromate</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>DW</td>
<td>Dry weight</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>g L⁻¹</td>
<td>gram per litre</td>
</tr>
</tbody>
</table>

xix
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>mg L(^{-1})</td>
<td>Milligram per litre</td>
</tr>
<tr>
<td>mg mL(^{-1})</td>
<td>Milligram per mililitre</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>Milimetre</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Na(_2)CO(_3)</td>
<td>Sodium carbonate</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>P</td>
<td>Phosphate</td>
</tr>
<tr>
<td>PBR</td>
<td>photobioreactor</td>
</tr>
<tr>
<td>ppm</td>
<td>Part per million</td>
</tr>
<tr>
<td>rpm</td>
<td>Round per minute</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>Se</td>
<td>Selenium</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Science Social</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>volume/volume</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Numerous studies have shown that microalgae benefit the environment by sequestering CO$_2$ and producing more O$_2$ while utilizing less water than normal crops (Kargupta et al., 2015). Microalgae have higher productivity compared to terrestrial crops per size of production in long term. Due to great diversity and simplicity of its form, the evolution and performance of microalgae is beyond prospect than the same process from terrestrial crops which may take some years (Hannon et al., 2010). From thousands of microalgae species existed, few hundred have been successfully cultured in laboratories and less than 100 species have been commercialized. The most common microalgae commercially produced are *Chlorella vulgaris*, *Dunaliella salina* and Spirulina (Spolaore et al., 2006). Of all the species cultured, Spirulina (*A. platensis*) is widely cultured in many geographical regions of the world because it lives in alkaline medium which make it less susceptible to contamination. Most Spirulina producing regions lies in semi arid area where climate are stable, less cloud cover, ample sunshine and receiving less rain (Vonshak et al., 1982). Malaysia on the other hand lies in the equator where it is believed to be less suitable for microalgae cultivation due to indistinct weather, frequent cloud covers and high precipitation which dilute growth medium.

Scientists have suggested cultivating microalgae as one of proficient ways to encounter escalating issues such as global warming and climate change which are among the most debated issues in the world presently. The magnitudes of these occurrences have profound effect to the global flora and fauna diversity whereby it could cause hundreds or thousands of species extinction. Global warming can alter atmospheric air and water circulation patterns which influence the weather patterns of air exchanges, rainfall distributions, wind speed, wind directions, precipitation, cloud covers and other variables (Barry and Chorley, 2009). Industrialization, forest destruction and other human activities are the major producer CO$_2$ and CH$_4$ which led to the formation of greenhouses gases causing global warming. The consequences of global warming are climate change producing phenomena like extreme weathers: tornadoes, huge typhoons, thunderstorms, flash floods, drought, acid rain, raising sea levels and more. Mitigation of global warming requires concerted efforts from major producer of greenhouse gas nation (Cop21paris, 2015). Although many nations have pledge to reduce greenhouse production, this will take time. Meanwhile scientific communities worldwide have provided numerous evidences pertaining to global warming.
including declining results caused by the atmosphere disturbance towards productivity of agriculture (Smith et al., 2015).

Published reports on cultivation in outdoor condition especially in Malaysia are scanty. Small scale culture studies of Spirulina in outdoor conditions in Malaysia have shown that Spirulina can be grown successfully despite of those limitations. *A. platensis* can be grown successfully in sheltered outdoor conditions achieving dry weight of 0.8 g L\(^{-1}\) in 8 days (Sukumaran et al., 2014). With suitable rain shelter, production of microalgae can commence successfully without any contamination from the surrounding and frequent rainfalls. Using conventional mode of cultivation, a Malaysian company, Algae International Sdn. Bhd. have patented a culturing system of Spirulina floating bed method (FBM) photobioreactor. However, the information on its performance was not published.

Discovery of floating photobioreactor (PBR) offered better alternative in culturing microalgae rather than using land base culture system with rain sheltering. Most invented photobioreactor (PBR) for microalgae cultivation are designed to be land-based system. Land-based photobioreactor often designed to have bigger surface area for light exchange for photosynthetic process compared to water based. Scaling up land based photobioreactor would be very costly and have higher risk of contamination. The concept of floating photobioreactor in water area, such as big lakes, pools, ponds or reservoirs was later recommended alternatively for better production economically (Wiley et al., 2013). Large water bodies have thermal stability as such that the range of water temperature for open pond or sheltered raceway pond may not fluctuate extremely. Vast volume of water could act as a regulator to maintain temperature. However for land-based photobioreactor, additional cooling systems are incorporated in the design of photobioreactor system. Radiated heat from land surface and radiant heat absorbed by the PBR structures during daylight increased the temperature inside the PBR, therefore it is necessary to have cooling system or shelters covering land based PBR to balance the temperature back to optimal condition (Mehlitz, 2009). Every cultivation system design has different aspects to be reviewed in terms of maintenance, culture managements and suitability of the growing microalgae species with the system. Thus, the growth of microalgae differs depends to the design of the cultivation system. Types of mixing or aeration, sunlight illumination intensity, temperature regulations, air exchanges, coloration, transparency, buoyancy and structure materials are important variables that require serious consideration. Culture conditions inside PBR are one of the important factors for the microalgae growth and intracellular substance accumulation (Yoon et al., 2008). According to Teresa et al. (2010) these factors are divided into biotic, abiotic and operational factors. The examples of biotic factors are pathogens and competition by other microalgae. Meanwhile, abiotic factors are dissolved oxygen, CO\(_2\), pH, salinity, light intensity, temperature, nutrient concentration and toxic chemical buildup by the microalgae itself. Next, the operational
factors are described as energy to produce mixing, dilution rate, depth, harvest frequency and additions of fertilizer and bicarbonate. Enhancement of the basic requirements for *Spirulina* (*A. platensis*) such as nutrient assessment, salinity, and pH should be done to maximize the productivity.

Outdoor cultivation in foreign countries usually has high initial installation cost excluding the maintenance and management cost. The most familiar system, open channel raceway ponds were being used for microalgae cultivation in commercial scale. Although it is easy to construct and operate, open system have low productivity, require large space area and has high risk of contamination. Open channel raceway ponds are not practical in Malaysia because lands are limited, expensive plus frequent rains will cause dilution and contamination. Lack of capitals and technical expertise will make conventional PBR less viable preposition. However the discovery of simple floating photobioreactor/ floating bed method is an attractive preposition because of its design simplicity, cheap to operate, scalable and can operate in any sheltered water bodies. Nevertheless information on most aspect of this simple floating photobioreactor in Malaysian perspectives is lacking.

1.2 Objectives

1.2.1 General Objective

This paper will focus on finding suitable design of floating photobioreactor system which is simple, practical, low maintenance cost, handy and scalable.

1.2.2 Specific Objectives

1. To explore different design of simple floating photobioreactor in term of durability: size, shape, coloration, rigidity and flexibility; buoyancy, long lasting and tough materials; mixing, aeration; and the opening sizes of gases exchange area.

2. To determine the growth performance of *Arthrospira platensis* in terms of cell density, biomass dry weight and chlorophyll a content in different floating photobioreactor designs.

3. To measure the productivity rate of *A. platensis* and the bioeconomic of different floating photobioreactor designs.

4. To analyze the proximate analyses composition of grown *A. platensis* in different floating photobioreactor designs.
BIBLIOGRAPHY

Avila-Leon, I., Chuei Matsudo, M., Sato, S. and De Carvalho, J. C. M. (2012). Arthrospira platensis biomass with high protein content cultivated in

Burlew, J.S. (1953). Algal Culture from Laboratory to Pilot Plant. (pp. 357). Carnegie Institution of Washington, Washington, DC.,

146

Merchant, R.E., Carmack, C.A. and Wise, C.M. (2000). Nutritional supplementation with *Chlorella pyrenoidosa* for patients with

Richmond, A., Lichtenberg, E., Stahl, B. and Vonshak, A. (1990). Quantitative assessment of the major limitations on productivity of

United states atomic energy comm., division of technical information. (TID-7633) 237 pp.

