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WITH OSCILLATORY SOLUTIONS 
 
 

By 
 
 

MOHAMMED MAHMOOD SALIH 
 

August 2016 
 
 

Chairman : Professor Fudziah Binti Ismail, PhD 
Faculty : Science 
 
 
New phase-fitted and amplification-fitted Runge-Kutta methods (RK) based on the 
existing Runge-Kutta methods of order four and five were derived to solve second 
order ordinary differential equations with oscillatory solutions. The new method has 
the property of zero phase-lag and zero dissipation. The effects of phase-fitted and 
amplification-fitted relations are tested over a large interval on homogeneous and non-
homogeneous problems which have oscillatory solutions and the numerical results 
proved that the new methods are more accurate compared to the existing methods. 
Then, the first order Fuzzy Differential Equations (FDEs) are solved using the RK 
methods with phase-fitted and amplification-fitted and the numerical results show that 
the methods are more accurate than the existing methods. 
 
The technique of phase-fitted and amplification-fitted is then extended to diagonally 
implicit Runge-Kutta methods (DIRK) for solving second order ordinary differential 
equations (ODEs) with oscillatory solution. We derived the phase-fitted and 
amplification-fitted fourth DIRK method based on the fourth order existing DIRK 
methods. Numerical results show that the DIRK with phase-fitted and amplification-
fitted is more accurate and efficient for solving oscillatory problems. 
 
In the next part of the thesis, we derived the order conditions of Runge-Kutta Nystrom 
method purposely for solving linear second order ordinary differential equations. 
Based on the order conditions we derived the new fifth order four-stage and sixth order 
five-stage explicit Runge-Kutta-Nyström methods for linear ordinary differential 
equations (LODEs). Then the methods are phase-fitted and amplification-fitted so that 
they will have zero-dispersion and zero-dissipation. The fifth order four-stage RKN 
method for LODEs has the property of First Same As Last (FSAL). Numerical results 
proved that the methods with phase-fitted and amplification-fitted are much more 
efficient than the existing methods with the same algebraic order.  
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Next we used the RKN methods for solving Hyperbolic partial differential equations 
(PDEs) that is the second order wave equations. We very well know that the second 
order PDEs can be converted to second order linear ODEs using the methods of lines. 
Thus we applied the RKN methods for LODEs to solve the resulting second order 
linear ODEs. Numerical results show that the RKN methods for LODEs are accurate 
and reliable for solving the second order wave equation. 
 
As a conclusion, in this thesis, we have derived phase-fitted and amplification-fitted 
RK and RKN methods for solving first and second order oscillatory problems.  The 
phase-fitted and amplification-fitted RK method is also applied to first order fuzzy 
differential equations (FDEs). The non fitted RKN method for LODEs is also used for 
solving  hyperbolic partial differential equations. Numerical results show that all the 
methods are more accurate then the existing methods in the secientific literature. 
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SUAI-FASA DAN SUAI-AMPLIFIKASI JENIS KAEDAH RUNGE-KUTTA 
UNTUK MENYELESAIKAN MASALAH BERAYUN BAGI  

PERSAMAAN PEMBEZAAN LINEAR 
 
 

Oleh 
 
 

MOHAMMED MAHMOOD SALIH 
 

Ogos 2016 
 
 

Pengerusi : Profesor Fudziah Binti Ismail, PhD 
Fakulti : Sains 
 
 
Kaedah Baru Runge-Kutta (RK) yang di suai-fasa dan suai-amplifikasi berdasarkan 
kaedah Runge-Kutta yang sedia ada peringkat keempat dan kelima diterbitkan untuk 
menyelesaikan persamaan pembezaan biasa dengan penyelesaian berayun. Kaedah 
baru ini mempunyai sifat serakan sifar dan lesapan sifar. Kesan hubungan suai-fasa 
dan suai- amplifikasi diuji untuk selang yang lebih besar keatas masalah homogen dan 
tak homogen yang mempunyai penyelesaian berayun dan keputusan berangka 
membuktikan bahawa kaedah baru tersebut adalah lebih tepat berbanding dengan 
kaedah yang sedia ada. Kemudian, Persamaan Pembezaan Kabur (PPK) Peringkat 
pertama diselesaikan dengan menggunakan kaedah RK dengan suai-fasa dan suai-
amplifikasi tersebut dan keputusan berangka menunjukkan bahawa kaedah ini adalah 
lebih tepat daripada kaedah yang sedia ada. 
 
Seterusnya teknik suai-fasa dan suai-amplifikasi diperluaskan pula kepada kaedah 
Runge-Kutta Pepenjuru tersirat (RKPT) untuk menyelesaikan persamaan pembezaan 
biasa (PPB) peringkat pertama dengan penyelesaian berayun. Kami terbitkan kaedah 
suai-fasa dan dan suai-amplifikasi berdasarkan kaedah RKPT peringkat empat yang 
sedia ada. Keputusan berangka menunjukkan bahawa kaedah RKPT dengan suai-fasa 
dan dan suai-amplifikasi adalah lebih tepat untuk menyelesaikan masalah berayun. 
 
Dalam bahagian seterusnya tesis ini, kami terbitkan syarat peringkat kaedah Runge-
Kutta Nystrom khas untuk menyelesaikan persamaan pembezaan biasa linear 
peringkat kedua. Berdasarkan syarat peringkat tersebut, kami terbitkan kaedah tak 
tersirat Runge-Kutta-Nystrom baharu peringkat kelima tahap-empat dan  peringkat 
keenam tahap-lima untuk menyelesaikan persamaan pembezaan biasa linear (PPBL) 
peringkat kedua. Kemudian kaedah ini telah di suai-fasa dan suai-implifikasi agar 
ianya mempunyai serakan sifar dan lesapan sifar.  Kaedah RKN peringkat kelima 
tahap-empat untuk PPBL ini mempunyai ciri yang pertama sama dengan yang terakhir 
(PSDA). Keputusan berangka membuktikan bahawa kaedah baharu dengan suai-fasa 
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dan suai-implifikasi ini adalah lebih cekap berbanding kaedah sedia ada dengan 
peringkat aljabar yang sama.  
 
Seterusnya kami menggunakan kaedah RKN yang telah diterbitkan untuk 
menyelesaikan persamaan pembezaan separa (PPS) hiperbolik iaitu persamaan 
gelombang peringkat kedua. Kita sedia ketahui bahawa persamaan pembezaan separa  
peringkat kedua boleh diubah kepada persamaan pembezaan biasa linear  peringkat 
kedua dengan menggunakan kaedah garis. Oleh itu kami gunakan kaedah RKN untuk  
PPBL bagi menyelesaikan persamaan pembezaan yang terhasil. Keputusan berangka 
menunjukkan bahawa kaedah RKN untuk PPBL adalah lebih jitu bagi menyelesaikan 
persamaan gelombang peringkat kedua. 
 
Kesimpulannya, dalam tesis ini, kami telah menerbitkan kaedah RK dan RKN dengan 
suai-fasa dan suai-amplifikasi untuk menyelesaikan masalah berayun peringkat 
pertama dan kedua masing-masingnya. Kaedah RK dengan suai-fasa dan suai-
amplifikasi juga digunakan untuk untuk menyelesaikan persamaan pembezaan kabur 
peringkat pertama. Kaedah RKN tanpa suai-fasa untuk PPBL juga digunakan untuk 
menyelesaikan persamaan pembezaan separa hiperbola. Keputusan berangka 
menunjukkan bahawa semua kaedah ini adalah lebih jitu dari kaedah sedia ada dalam 
literatur saintifik. 
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CHAPTER  1 
 
 

INTRODUCTION 
 
 

Ordinary differential equations (ODEs) are equations that involve an unknown 
function with independent variable and one or more of its derivatives. ODEs arise in 
many contexts of engineering and science such as fluid dynamics, radioactive decay 
and population growth. 
 
 
Many theoretical and numerical studies for such equations have appeared in literature. 
The analytical way to solve ODEs is via application of integration technique. 
However, the anti-derivatives for most realistic systems of ODEs are difficult or 
impossible to find. Thus, numerical methods for ODEs have attracted considerable 
attention. 
 
 
The initial value problems (IVPs) of special second order ODEs are defined as 
follows: 
 

′′ݕ ൌ ݂ሺݔ, ,ሻݕ ଴ሻݔሺݕ ൌ ,଴ݕ ଴ሻݔሺ′ݕ ൌ  ሺ1.1ሻ																						଴′ݕ
 
 
where ݂: ܴ ൈ ܴ → ܴ௡, ,଴ݕ	݀݊ܽ ଴′ݕ ∈ ܴ

௡. The solution of (1.1) exhibits a pronounced 
oscillatory character. One way to solve oscillatory problems is by Runge-Kutta 
methods. In this study, we are focusing on solving problem (1.1) by using RK methods 
and RKN methods for oscillating problems. 
 
 
1.1 Ordinary Differential Equations 
 
Any research on ordinary differential equations gives a number of methods for 
explicitly finding solutions to first-order initial-value problems (IVPs). In practice, 
however, few of the problems originating from the study of physical phenomena can 
be solved exactly. 
 
 
The n-th order ODEs can be written as: 
 

ሺ௡ሻݕ ൌ ݂൫ݔ, ,ݕ … , ݊	where		ሺ௡ିଵሻ൯,ݕ ൌ 2,3,4 
 
with initial conditions: 
 

ሺܽሻݕ ൌ ݕ	and	଴ݕ
ሺ௜ሻሺܽሻ ൌ ,௜ߟ 0 ൏ ݅ ൏ ݊ െ 1, ݔ ∈ ሾܽ, ܾሿ 

 
while the first order ODEs can be written as: 
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ݕ݀
ݔ݀

ൌ ݂൫ݔ, ,ሻ൯ݔሺݕ ሺܽሻݕ ൌ ݔ		for			଴ݕ ∈ ሾܽ, ܾሿ																							ሺ1.2ሻ 

 
 
In (1.2), the quantity being differentiated, y is named as the dependent variable, while 
the quantity with respect to which y is differentiated, x is named as independent 
variable. 
 
 
Below, we state the existence and uniqueness theorem for finding the solution to the 
first order IVPs. 
 
 
Theorem 1.1: (Existence and Uniqueness) 
 
Let ݂ሺݔ, ,ݔሻ be defined and continuous for all points ሺݕ  ሻ in the region D defined byݕ
ܽ ൑ ݔ ൑ ܾ,െ∞ ൏ ݕ ൏ ∞, where a and b are finite, and let there exists a constant L 
such that for any ݔ ∈ ሾܽ, ܾሿ and any two numbers ݕଵ	and	ݕଶ, 
 

|݂ሺݔ, ଵሻݕ െ ݂ሺݔ, |ଶሻݕ ൑ ଵݕ|ܮ െ  |ଶݕ
 
 
This condition is known as Lipschitz condition. Then there exists exactly one function 
 :ሻ with the following three propertiesݔሺݕ
 

i. ݕሺݔሻ is continuous and differentiable for ݔ ∈ ሾܽ, ܾሿ, 
ii. ݕᇱ ൌ ݂൫ݔ, ,ሻ൯ݔሺݕ ݔ ∈ ሾܽ, ܾሿ, 
iii. ݕሺܽሻ ൌ  .ߟ
 
 

The proof is given by Henrici (1962). 
 
 
Basically, the numerical methods for ODEs are classified as one-step method and 
multistep method. One-step method requires the information from only one previous 
point ݔ௡  to find the approximation at the mesh point ݔ௡ାଵ . On the other hand, 
multistep method requires the usage of information from more than one previous 
points to find the next approximation. 
 
 
Many differential equations which appear in practice are systems of second order IVPs 
(1.1) in which the derivative does not appear explicitly. Such a system can be 
transformed into first order differential equations of doubled dimension by 
considering the vector ሺݕ,  ᇱሻ as the new variable. In this study, we are focusing onݕ
solving special second order equation (1.1) for which it is known in advance that their 
solution is oscillating. Consider the second order linear differential equation: 
 

ᇱᇱݕ ൌ  ሺ1.3ሻ																																																																											ݕܣ
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where A is a continuous real-valued function. A solution of (1.3) is said to be 
oscillatory if it has arbitrarily large zeros, and otherwise it is said to be nonoscillatory. 
Equation (1.3) is called oscillatory if all its solutions are oscillatory. 
 
 
When dealing with the oscillatory problems of (1.1), we need to consider the 
dispersion (phase-lag) and dissipation (amplification error) properties of the methods 
developed. 
 
 
1.2 Fuzzy Differential Equations  
 
In many cases of the modeling of real world problem, knowledge or information about 
the behavior of the physical system is often incomplete, uncertain or vague. For 
example, values of parameter, functional relationship or initial conditions, may not be 
accurate. These uncertainties have to be considered for obtaining a more realistic 
model.  Fuzzy Differential Equations (FDEs) are utilized for the purpose of the 
modeling of uncertainty and processing vague or incomplete information in 
mathematical models.  
 
 
Most of the problems in science and engineering require the solution of a Fuzzy 
Differential Equation (FDE) which are satisfied in Fuzzy initial conditions. Due to the 
large potential of FDEs involved in various fields, a lot of research has been focused 
in this area. Sometimes it is too complicated to obtain the exact solution of (FDE) 
which models the science and engineering problems, hence numerical methods are 
used. 
 
 
Below, we state some definitions and theorems for FDEs. 
 
 
Definition 1.2.1: 
 
An arbitrary fuzzy number is represented by ordered pair of functions 

ቀݑሺߙሻ, ሻቁߙሺݑ , 0 ൑ ߙ ൑ 1, satisfying the following requirements: 

 
 ݑሺߙሻ is a bounded left continuous nondecreasing function over [0,1]. 
 ݑሺߙሻ is a bounded left continuous nonincreasing function over [0,1]. 
 ݑሺߙሻ ൑ ,ሻߙሺݑ 0 ൑ ߙ ൑ 1. 
 
 
Definition 1.2.2: 
 
Let I be a real interval. A mapping ݕ: ܫ →  is called a fuzzy process and its α-level ܧ
set is denoted by: 
 

ሾݕሺݐሻሿఈ ൌ ቂݕఈሺݐሻ, ሻቃݐఈሺݕ , ݐ ∈ ,ܫ ߙ ∈ ሺ0,1ሿ																																			ሺ1.4ሻ 
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Definition 1.2.3: 
 
Let ܴி denote the class of fuzzy numbers and let ݔ, ݕ ∈ ܴி. If there exists ݖ ∈ ܴி such 
that ݔ ൌ ݕ ൅  then z is called the Hukuhara difference of x and y and it is denoted ,ݖ
by ݔ ⊝  .ݕ
 
Note: the " ⊝ " sign stands always for Hukuhara difference and ݔ ⊝ ݕ ് ݔ ൅ ሺെ1ሻݕ. 
 
 
Definition 1.2.4: 
 
Let ݂: ሺܽ, ܾሻ → ܴி and ݔ଴ ∈ ሺܽ, ܾሻ. We say that f is Hukuhara differentiable at ݔ଴, if 
there exists an element ݂ᇱሺݔ଴ሻ ∈ ܴி, such that for all ݄ ൐ 0 sufficiently small: 
 
 ∃݂ሺݔ଴ ൅ ݄ሻ ⊝ ݂ሺݔ଴ሻ, ݂ሺݔ଴ሻ ⊝ ݂ሺݔ଴ െ ݄ሻ and the limits: 
 

lim
௛→଴

݂ሺݔ଴ ൅ ݄ሻ⊝ ݂ሺݔ଴ሻ

݄
ൌ lim

௛→଴

݂ሺݔ଴ሻ ⊝ ݂ሺݔ଴ െ ݄ሻ
݄

ൌ ݂ᇱሺݔ଴ሻ																							ሺ1.5ሻ 

 
 
Theorem 1.2.1: 
 

Let ܨ: ሺܽ, ܾሻ → ܴி be Hukuhara differentiable and denote ሾܨሺݐሻሿఈ ൌ ቂܨఈሺݐሻ, ܨ
ఈ
ሺݐሻቃ. 

Then the boundary functions ܨఈሺݐሻ and ܨ
ఈ
ሺݐሻ are differentiable and: 

 

ሾܨ′ሺݐሻሿఈ ൌ ቂ൫ܨఈ൯
ᇱሺ௧ሻ
, ሺܨ

ఈ
ሻ′ሺݐሻቃ , ߙ ∈ ሾ0,1ሿ																																									ሺ1.6ሻ 

 
The proof is given by Kaleva (2006). 
 
 
Definition 1.2.5: 
 
Let us consider the fuzzy initial value problem (FIVP): 
 

ᇱݕ ൌ ݂ሺݐ, ,ሻݕ ଴ሻݐሺݕ ൌ  ሺ1.7ሻ																																																																				଴ݕ
 
 
where ݂: ሾݐ଴, ଴ݐ ൅ ሿߙ ൈ ܴி → ܴி and ݕ଴ ∈ ܴி. Then the theorem (1.2.1) shows us a 
way how to translate FIVP (1.7) into a system of ODEs. 
 
 
Definition 1.2.6: 
 

Let ሾݕሺݐሻሿఈ ൌ ቂݕఈሺݐሻ, ሻቃݐఈሺݕ . If ݕሺݐሻ  is Hukuhara differentiable then ሾݕ′ሺݐሻሿఈ ൌ

ቂቀݕఈቁ ′ሺݐሻ, ሺݕఈሻ′ሺݐሻቃ. So equation (4.4) translates into the following systems of ODEs: 
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ە
ۖ
۔

ۖ
ݕሺሺۓ

ఈሻ′ሺݐሻሻ ൌ ݂ఈሺݐ, ,ሻݐఈሺݕ ሻሻݐఈሺݕ

ሺ൫ݕఈ൯
ᇱ
ሺݐሻ ൌ ݂

ఈ
ሺݐ, ,ሻݐఈሺݕ ሻሻݐఈሺݕ

଴ሻݐఈሺݕ ൌ ଴ݕ
ఈ

଴ሻݐఈሺݕ ൌ ଴ݕ
ఈ

																																																	ሺ1.8ሻ 

 
where: 
 

ሾ݂ሺݐ, ሻሿఈݕ ൌ ቂ݂ఈ ቀݐ, ,ఈݕ ఈቁݕ , ݂
ఈ
ሺݐ, ,ఈݕ  ሺ1.9ሻ																																							ఈሻቃݕ

 
 
Definition 1.2.7: 
 
The Seikkala derivative ݕ′ሺݐሻ of a fuzzy process y (defined by equation (1.9)) is 
defined by: 
 

ሾݕ′ሺݐሻሿఈ ൌ ቂሺݕఈሻ′ሺݐሻ, ሺݕఈሻ′ሺݐሻቃ , 0 ൏ ߙ ൑ 1																																		ሺ1.10ሻ 
 
 
Remark 1.2.1: 
 
If ݕ: ܫ →  is Seikkala differentiable and its Seikkala derivative y’ is integrable over ܧ
[0,1], then: 
 

ሻݐሺݕ ൌ ଴ሻݐሺݕ ൅ න ሺ1.11ሻ																																																											ݏሻ݀ݏᇱሺݕ
௧

௧బ

 

 
for all values of ݐ଴, ,଴ݐ where ݐ ݐ ∈  .ܫ
 
 
1.3 Partial Differential Equations 

 
Many problems in applied science, physics, and engineering can be modeled as partial 
differential equations (PDEs), that is differential equation which involves more than 
one independent variable. 
 
 
A PDE for the function ݑሺݔଵ, … ,  :௡ሻ is an equation of the formݔ
 

݂ ቆݔଵ, … , ,௡ݔ ,ݑ
ݑ߲
ଵݔ߲

, … ,
ݑ߲
௡ݔ߲

,
߲ଶݑ

ଵݔଵ߲ݔ߲
, … ,

߲ଶݑ
௡ݔ௡߲ݔ߲

, …ቇ ൌ 0																					ሺ1.12ሻ 

 
 
Below we listed some of the common partial differential equations: 
 
Elliptic equations:  
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 The PDE involves ݑ௫௫ሺݔ, ሻݕ ൅ ,ݔ௬௬ሺݑ ሻݕ  is an elliptic equation. The particular 
elliptic equation we will consider in this thesis is known as the Poisson equation: 
 

߲ଶݑ
ଶݔ߲

ሺݔ, ሻݕ ൅
߲ଶݑ
ଶݕ߲

ሺݔ, ሻݕ ൌ ݂ሺݔ,  ሺ1.13ሻ																																																			ሻݕ

 
 
This equation arise in the study various time-independent physical problems such as 
the steady-state distribution of heat in a plane region, the potential energy of a point 
in a plane acted on by gravitational forces in the plane and two dimensional steady-
state problems involving incompressible fluids. 
 
 
Parabolic equations: 
 
Another type of PDE is the parabolic partial differential equation of the form: 
 

ݑ߲
ݐ߲
ሺݔ, ሻݐ െ ଶߙ

߲ଶݑ
ଶݔ߲

ሺݔ, ሻݐ ൌ 0																																																ሺ1.14ሻ 

 
 
The PDE concerns the flow of heat along a rod of length l, which has a uniform 
temperature within each cross-sectional element. The parameter ߙ is determined by 
the heat conductivity of the rod. 
 
 
Hyperbolic equations: 
 
The hyperbolic equation is the one-dimensional wave equation. Suppose an elastic 
string of length l is stretched between two supports at the same horizontal level. 
 
 
If the string is set to vibrate in a vertical plane, the vertical displacement ݑሺݔ,  ሻ of aݐ
point x at time t satisfies the PDE: 
 

ଶߙ
߲ଶݑ
ଶݔ߲

ሺݔ, ሻݐ െ
߲ଶݑ
ଶݐ߲

ሺݔ, ሻݐ ൌ 0				for	0 ൏ ݔ ൏ 1		and		0 ൏  ሺ1.15ሻ																																	ݐ

 
 
1.4 Runge-Kutta (RK) methods 
 
An s-stage explicit Runge-Kutta method can be expressed by the following relations: 
 

௡ାଵݕ ൌ ௡ݕ ൅ ݄෍ܾ௜݇௜																																																																			

௦

௜ୀଵ

ሺ1.16ሻ 
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where 

݇௜ ൌ ݂ ቌݔ௡ ൅ ܿ௜, ௡ݕ ൅ ݄෍ܽ௜௝ ௝݇

௜

௝ୀଵ

ቍ																																														ሺ1.17ሻ 

 
 

The method is used for the computation of the approximation of ݕ௡ାଵ, when ݕ௡ is 
known. The method shown above can also be presented using the Butcher table below: 
 
 

Table 1.1 : Butcher Table 
 

ܿଶ ܽଶଵ    

ܿଷ ܽଷଵ ܽଷଶ   

. . . .  

ܿ௦ ܽ௦ଵ ܽ௦ଶ . ܽ௦,௦ିଵ 

 ܾଵ ܾଶ . ܾ௦ 

 
 
where the coefficients ܿଶ, … . . , ܿ௦ must satisfy the equations: 
 

ܿ௜ ൌ෍ܽ௜௝,			݅ ൌ 2, … . , ሺ1.18ሻ																																																												ݏ

௜ିଵ

௝ୀଵ

 

 
 

1.4.1 Algebraic Order Condition for RK method 
 
General order conditions for RK method can be attained from direct expansion of 
Taylor series by using Local Truncation Error (LTE). The s-stage up to order six RK 
methods are given as follows: 
 

෍ܾ௜						:1	ݎ݁݀ݎ݋ ൌ 1																																																															ሺ1.19ሻ 

 

෍ܾ௜ܿ௜						:2	ݎ݁݀ݎ݋ ൌ
1
2
																																																											ሺ1.20ሻ 

 

							:3	ݎ݁݀ݎ݋
1
2
	෍ܾ௜ܿ௜

ଶ ൌ
1
6
																																																					ሺ1.21ሻ 

 

								:4	ݎ݁݀ݎ݋
1
6
	෍ܾ௜ܿ௜

ଷ ൌ
1
24
																																																	ሺ1.22ሻ 
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																									෍ܾ௜ܽ௜௝ ௝ܿ ൌ
1
24
																																																			ሺ1.23ሻ 

	

								:5	ݎ݁݀ݎ݋
1
24
	෍ܾ௜ܿ௜

ସ ൌ
1
120

																																										ሺ1.24ሻ 

 

																									
1
4
෍ܾ௜ܿ௜ܽ௜௝ ௝ܿ ൌ

1
120

																																					ሺ1.25ሻ 

 

																									
1
2
	෍ܾ௜ܽ௜௝ ௝ܿ

ଶ ൌ
1
120

																																							ሺ1.26ሻ 

 

								:6	ݎ݁݀ݎ݋
1
120

	෍ܾ௜ܿ௜
ହ ൌ

1
720

																																										ሺ1.27ሻ	

	

								
1
20
	෍ܾ௜ܿ௜

ଶܽ௜௝ ௝ܿ ൌ
1
720

																																		ሺ1.28ሻ	

	

								
1
10
	෍ܾ௜ܿ௜ܽ௜௝ ௝ܿ

ଶ ൌ
1
720

																																		ሺ1.29ሻ	

	

								
1
6
	෍ܾ௜ܽ௜௝ ௝ܿ

ଷ ൌ
1
720

																																					ሺ1.30ሻ	

	

								෍ܾ௜ܽ௜௝ ௝ܽ௞ܿ௞ ൌ
1
720

																																						ሺ1.31ሻ	

	
	
where the coefficients may be made dependent by imposing the Butcher conditions 
(1963): 
 

෍ܾ௜ܽ௜௝ ൌ ௝ܾ൫1 െ ௝ܿ൯, ݆ ൌ 2,3, … , ሺ1.32ሻ																																							ݏ

௦

௜ୀଵ

 

 
 

Additionally, if ܾଶ ൌ 0, we have: 
 

෍ܽ௜௝ ௝ܿ ൌ
ܿ௜
ଶ

2
, ݅ ൌ 3,4, … , ሺ1.33ሻ																																							ݏ

௜ିଵ

௝ୀଵ

 

 
 
These valuable relations actually reduce the total number of conditions arising in 
higher orders. So, the conditions (1.34) and (1.35) are supplemented by extra 
simplifying relations. 
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1.4.2 Local Truncation Error for RK method 
 
Dormand (1996) proposed that having achieved a particular order of accuracy. The 
best strategy for practical purposes would be choosing the free RK parameters is to 
minimize the error norm: 
 

ሺ௣ାଵሻܣ ൌ ฮ߬ሺ௣ାଵሻฮ
ଶ
ൌ ඩቌ෍ ௝߬

ሺ௣ାଵሻ

௡೛శభ

௝ୀଵ

ቍ

ଶ

																											ሺ1.34ሻ 

 
 
The error coefficients up to order six for RK methods are as follows: 
 

ଵ߬						:1	ݎ݁݀ݎ݋
ሺଵሻ ൌ෍ܾ௜ െ 1																																																															ሺ1.35ሻ 

 

ଵ߬						:2	ݎ݁݀ݎ݋
ሺଶሻ ൌ෍ܾ௜ܿ௜ െ

1
2
																																																											ሺ1.36ሻ 

 

ଵ߬							:3	ݎ݁݀ݎ݋
ሺଷሻ ൌ

1
2
	෍ܾ௜ܿ௜

ଶ െ
1
6
																																																					ሺ1.37ሻ 

 

ଵ߬								:4	ݎ݁݀ݎ݋
ሺସሻ ൌ

1
6
	෍ܾ௜ܿ௜

ଷ െ
1
24
																																																	ሺ1.38ሻ 

 

																									߬ଶ
ሺସሻ ൌ෍ܾ௜ܽ௜௝ ௝ܿ െ

1
24
																																																			ሺ1.39ሻ 

	

ଵ߬								:5	ݎ݁݀ݎ݋
ሺହሻ ൌ

1
24
	෍ܾ௜ܿ௜

ସ െ
1
120

																																										ሺ1.40ሻ 

 

																								߬ଶ
ሺହሻ ൌ 	

1
4
෍ܾ௜ܿ௜ܽ௜௝ ௝ܿ െ

1
120

																																					ሺ1.41ሻ 

 

																								߬ଷ
ሺହሻ ൌ 	

1
2
	෍ܾ௜ܽ௜௝ ௝ܿ

ଶ െ
1
120

																																							ሺ1.42ሻ 

	

ଵ߬								:6	ݎ݁݀ݎ݋
ሺ଺ሻ ൌ

1
120

	෍ܾ௜ܿ௜
ହ െ

1
720

																																										ሺ1.43ሻ	

	

								߬ଶ
ሺ଺ሻ ൌ

1
20
	෍ܾ௜ܿ௜

ଶܽ௜௝ ௝ܿ െ
1
720

																																		ሺ1.44ሻ	

	

								߬ଷ
ሺ଺ሻ ൌ

1
10
	෍ܾ௜ܿ௜ܽ௜௝ ௝ܿ

ଶ െ
1
720

																																		ሺ1.45ሻ	

	

							߬ସ
ሺ଺ሻ ൌ 	

1
6
	෍ܾ௜ܽ௜௝ ௝ܿ

ଷ െ
1
720

																																					ሺ1.46ሻ	
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								߬ହ
ሺ଺ሻ ൌ෍ܾ௜ܽ௜௝ ௝ܽ௞ܿ௞ െ

1
720

																																						ሺ1.47ሻ	

 
 
1.4.3 Analysis of Absolute Stability for RK method 
 
Consider the standard test problem of differential equation:  
 

ᇱݕ ൌ ݂ሺݐ, ሻݕ ൌ ௡ሻݔሺݕ		݀݊ܽ		ݕߣ ൌ  ሺ1.48ሻ																								௡ݕ
 
 
which has the true solution: 
 

ሻݔሺݕ ൌ  ሺ1.49ሻ																																																									௡݁ఒሺ௫ି௫೙ሻݕ
 
 
Applying the test equation (1.48) to the RK formula (1.16) and by setting ݒ ൌ  we ,݄ߣ
obtain: 
 

௡ାଵݕ ൌ ܴሺݒሻݕ௡,					݁ݎ݄݁ݓ	|ܴሺݒሻ| ൏ 1																									ሺ1.50ሻ 
 

௡ାଵݕ ൌ ሾ1 ൅ ܫሺ்ܾݒ െ  ሺ1.51ሻ																																			௡ݕሻିଵሿܣݒ
 
 
where ܾ ൌ ܾ௜  and ܣ ൌ ܽ௜௝, ݅, ݆ ൌ 1,… ,  ሻ isݒare parameters of RK method and ܴሺ ݏ
said to be the stability polynomial. The stability polynomial for RK method of order 
p is: 
 

ܴሺݒሻ ൌ 1 ൅ ݒ ൅
ଶݒ

2!
൅
ଷݒ

3!
൅
ସݒ

4!
൅ ⋯൅

௣ݒ

!݌
																	ሺ1.52ሻ 

 
 
1.5 Runge-Kutta-Nyström (RKN) methods 
 
Nyström (1925) introduced RK methods for second order ODEs which has been called 
RKN methods. The form of s-stage RKN method of order p is: 
 

௡ାଵݕ ൌ ௡ݕ ൅ ᇱ௡ݕ݄ ൅ ݄ଶ෍ܾ௜݇௜

௦

௜ୀଵ

																																							 

	

௡ାଵ′ݕ ൌ ௡ݕ ൅ ݄෍ തܾ
௜݇௜																																											ሺ1.53ሻ

௦

௜ୀଵ

 

 
where 

݇௜ ൌ ݂ ൭ݔ௡ ൅ ܿ௜݄, ௡ݕ ൅ ܿ௜݄ݕᇱ௡ ൅ ݄ଶ෍ܽ௜௝ ௝݇

௦ିଵ

௜ୀଵ

൱	, ݅ ൌ 1,2, … ,  ሺ1.54ሻ															ݏ
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1.5.1 Algebraic Condition for RKN method 
 
The order condition for RKN methods can be attained from direct expansion of the 
Taylor series by using the local Truncation Error (LTE). The order conditions for RKN 
methods up to order six obtained from Dormand (1996) are given as follows: 
 
for y: 

෍ܾ௜						:2	ݎ݁݀ݎ݋ ൌ
1
2
																																																			ሺ1.55ሻ 

 

෍ܾ௜ܿ௜						:3	ݎ݁݀ݎ݋ ൌ
1
6
																																																ሺ1.56ሻ 

 

							:4	ݎ݁݀ݎ݋
1
2
	෍ܾ௜ܿ௜

ଶ ൌ
1
24
																																							ሺ1.57ሻ 

 

								:5	ݎ݁݀ݎ݋
1
6
	෍ܾ௜ܿ௜

ଷ ൌ
1
120

																																			ሺ1.58ሻ 

 

																									෍ܾ௜ܽ௜௝ ௝ܿ ൌ
1
120

																																				ሺ1.59ሻ 

 

								:6	ݎ݁݀ݎ݋
1
24
	෍ܾ௜ܿ௜

ସ ൌ
1
720

																																ሺ1.60ሻ 

 

																									
1
2
	෍ܾ௜ܿ௜ܽ௜௝ ௝ܿ ൌ

1
720

																									ሺ1.61ሻ 

 

																									
1
2
	෍ܾ௜ܽ௜௝ ௝ܿ

ଶ ൌ
1
720

																												ሺ1.62ሻ 

 
for y’: 
 

෍						:1	ݎ݁݀ݎ݋ തܾ
௜ ൌ 1																																																		ሺ1.63ሻ 

 

෍						:2	ݎ݁݀ݎ݋ തܾ
௜ܿ௜ ൌ

1
2
																																														ሺ1.64ሻ 

 

							:3	ݎ݁݀ݎ݋
1
2
	෍ തܾ

௜ܿ௜
ଶ ൌ

1
6
																																								ሺ1.65ሻ 

 

								:4	ݎ݁݀ݎ݋
1
6
	෍ തܾ

௜ܿ௜
ଷ ൌ

1
24
																																					ሺ1.66ሻ 

 

																									෍ തܾ
௜ܽ௜௝ ௝ܿ ൌ

1
24
																																				ሺ1.67ሻ 

	

								:5	ݎ݁݀ݎ݋
1
24
	෍ തܾ

௜ܿ௜
ସ ൌ

1
120

																														ሺ1.68ሻ 
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1
4
෍ തܾ

௜ܿ௜ܽ௜௝ ௝ܿ ൌ
1
120

																										ሺ1.69ሻ 

 

																									
1
2
	෍ തܾ

௜ܽ௜௝ ௝ܿ
ଶ ൌ

1
120

																												ሺ1.70ሻ 

	

								:6	ݎ݁݀ݎ݋
1
120

	෍ തܾ
௜ܿ௜
ହ ൌ

1
720

																												ሺ1.71ሻ	

	

								
1
20
	෍ തܾ

௜ܿ௜
ଶܽ௜௝ ௝ܿ ൌ

1
720

																						ሺ1.72ሻ	

	

								
1
10
	෍ തܾ

௜ܿ௜ܽ௜௝ ௝ܿ
ଶ ൌ

1
720

																							ሺ1.73ሻ	

	

								
1
6
	෍ തܾ

௜ܽ௜௝ ௝ܿ
ଷ ൌ

1
720

																												ሺ1.74ሻ	

	

								෍ തܾ
௜ܽ௜௝ ௝ܽ௞ܿ௞ ൌ

1
720

																											ሺ1.75ሻ	

 
 
The Nyström row sum conditions that need to be satisfied are: 
 

෍ܽ௜௝ ൌ
ܿ௜
ଶ

2

௦

௜ୀଵ

,									݅ ൌ 1,… , 	ሺ1.76ሻ																																						ݏ

 
 
The simplifying assumption given by Butcher (2003) which is used in order to reduce 
the number of equations: 
 

ܾ௜ ൌ തܾ
௜ሺ1 െ ܿ௜ሻ																																																												ሺ1.77ሻ 

 
The First Same as Last (FSAL) property where the last stage is evaluated at the same 
point as the first stage of the next step is used to reduce function evaluation. For RKN 
method to be FSAL, it has to satisfy: 
 

ܿଵ ൌ 0, ܿ௦ ൌ 1	ܽ݊݀	ܽ௦௝ ൌ ௝ܾ, ݆ ൌ 1,… , ݏ െ 1																																ሺ1.78ሻ	
 
 
1.5.2 Local Truncation Error for RKN method 
 
We need to use the quantity (1.36) for y and the quantity (1.81) for y’ in order to find 
the norms of (LTE) coefficients for RKN method. The quantity for y’ is known as: 
 

ฮ߬′ሺ௣ାଵሻฮ
ଶ
ൌ ඩቌ෍ ߬′௝

ሺ௣ାଵሻ

௡೛శభ

௝ୀଵ

ቍ

ଶ

 ሺ1.79ሻ																																										௡′ݕ	ݎ݋݂	
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The error coefficients for RKN methods up to order six are: 
for y: 
 

ଵ߬						:2	ݎ݁݀ݎ݋
ሺଶሻ ൌ෍ܾ௜ െ

1
2
																																																			ሺ1.80ሻ 

 

ଵ߬						:3	ݎ݁݀ݎ݋
ሺଷሻ ൌ෍ܾ௜ܿ௜ െ

1
6
																																																ሺ1.81ሻ 

 

ଵ߬							:4	ݎ݁݀ݎ݋
ሺସሻ ൌ

1
2
	෍ܾ௜ܿ௜

ଶ െ
1
24
																																							ሺ1.82ሻ 

 

ଵ߬								:5	ݎ݁݀ݎ݋
ሺହሻ ൌ

1
6
	෍ܾ௜ܿ௜

ଷ െ
1
120

																																			ሺ1.83ሻ 

 

																									߬ଶ
ሺହሻ ൌ෍ܾ௜ܽ௜௝ ௝ܿ െ

1
120

																																				ሺ1.84ሻ 

 

ଵ߬								:6	ݎ݁݀ݎ݋
ሺ଺ሻ ൌ

1
24
	෍ܾ௜ܿ௜

ସ െ
1
720

																																ሺ1.85ሻ 

 

																								߬ଶ
ሺ଺ሻ ൌ 	

1
2
	෍ܾ௜ܿ௜ܽ௜௝ ௝ܿ െ

1
720

																									ሺ1.86ሻ 

 

																									߬ଷ
ሺ଺ሻ ൌ

1
2
	෍ܾ௜ܽ௜௝ ௝ܿ

ଶ െ
1
720

																												ሺ1.87ሻ 

 
for y’: 
 

ଵ′߬						:1	ݎ݁݀ݎ݋
ሺଵሻ ൌ෍ തܾ

௜ െ 1																																																				ሺ1.88ሻ 

 

ଵ′߬						:2	ݎ݁݀ݎ݋
ሺଶሻ ൌ෍ തܾ

௜ܿ௜ െ
1
2
																																																ሺ1.89ሻ 

 

ଵ′߬							:3	ݎ݁݀ݎ݋
ሺଷሻ ൌ

1
2
	෍ തܾ

௜ܿ௜
ଶ െ

1
6
																																								ሺ1.90ሻ 

 

ଵ′߬								:4	ݎ݁݀ݎ݋
ሺସሻ ൌ

1
6
	෍ തܾ

௜ܿ௜
ଷ െ

1
24
																																						ሺ1.91ሻ 

 

																									߬′ଶ
ሺସሻ ൌ෍ തܾ

௜ܽ௜௝ ௝ܿ െ
1
24
																																			ሺ1.92ሻ 

	

ଵ′߬								:5	ݎ݁݀ݎ݋
ሺହሻ ൌ

1
24
	෍ തܾ

௜ܿ௜
ସ െ

1
120

																														ሺ1.93ሻ 

 

																									߬′ଶ
ሺହሻ ൌ

1
4
෍ തܾ

௜ܿ௜ܽ௜௝ ௝ܿ െ
1
120

																										ሺ1.94ሻ 
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																									߬′ଷ
ሺହሻ ൌ

1
2
	෍ തܾ

௜ܽ௜௝ ௝ܿ
ଶ െ

1
120

																													ሺ1.95ሻ 

	

ଵ′߬						:6	ݎ݁݀ݎ݋
ሺ଺ሻ ൌ

1
120

	෍ തܾ
௜ܿ௜
ହ െ

1
720

																														ሺ1.96ሻ	

	

								߬′ଶ
ሺ଺ሻ ൌ

1
20
	෍ തܾ

௜ܿ௜
ଶܽ௜௝ ௝ܿ െ

1
720

																								ሺ1.97ሻ	

	

								߬′ଷ
ሺ଺ሻ ൌ

1
10
	෍ തܾ

௜ܿ௜ܽ௜௝ ௝ܿ
ଶ െ

1
720

																											ሺ1.98ሻ	

	

								߬′ସ
ሺ଺ሻ ൌ

1
6
	෍ തܾ

௜ܽ௜௝ ௝ܿ
ଷ െ

1
720

																																		ሺ1.99ሻ	

	

								߬′ହ
ሺ଺ሻ ൌ෍ തܾ

௜ܽ௜௝ ௝ܽ௞ܿ௞ െ
1
720

																																ሺ1.100ሻ	

 
 
1.6 Objectives of the Thesis 
 
In this study, we developed new and more efficient methods based on RK methods 
and RKN methods for solving oscillatory problems, first order fuzzy differential 
equations and second order PDE particularly the wave equation.  The main objectives 
of the thesis are: 
 

i. To derive phase-fitted and amplification-fitted explicit RK methods for the 
fourth order (classical) method and fifth order method of Zingg (1999) for 
linear ordinary differential equations (LODEs) for solving ordinary differential 
equations with oscillatory solutions. 

ii. To discover the effect of the phase-fitted and amplification-fitted of explicit 
RK methods on the first order fuzzy differential equations (FDEs). 

iii. To derive phase-fitted and amplification-fitted fourth order five-stage 
diagonally implicit RK method (DIRK4) proposed from Hairer et.al (2010) 
and phase-fitted and amplification-fitted fourth order four-stage diagonally 
implicit RK method proposed from Che Jawias et.al (2010) for ordinary 
differential equations with oscillatory solutions. 

iv. To derive fifth order four-stage and sixth order five-stage RKN methods for 
LODEs for solving ordinary differential equations with oscillatory solutions. 

v. To derive the phase-fitted and amplification-fitted RKN methods for LODEs 
for solving ordinary differential equations with oscillatory solutions. 

vi. To discover the effect of RKN methods for LODEs on hyperbolic partial 
differential equations (PDEs). 

 
 

1.7 Outline of Thesis 
 
In Chapter 1, a brief introduction on ordinary differential equations, fuzzy differential 
equations and partial differential equations are given. The development of numerical 
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methods, basic theory on algebraic order of RK method and RKN method and LTE 
for RK and RKN methods are also discussed in this chapter. 
 
 
Chapter 2 focused on the literature reviews on explicit RK methods, DIRK methods, 
RKN methods, (FDEs) and hyperbolic partial differential equations. 
 
 
In Chapter 3, we discuss the phase-fitted and amplification-fitted for explicit RK 
methods. We derive phase-fitted and amplification-fitted for fourth order classical RK 
method and phase-fitted and amplification-fitted for fifth order RK method for LODEs 
proposed from Zingg (1999). The stability region of the methods will be determined. 
The results of the new methods have been compared with the existing methods for 
solving LODEs. 
 
 
In Chapter 4, we used the methods derived in Chapter 3 for solving first order fuzzy 
differential equations (FDEs). The numerical results for method with phase-fitted and 
amplification-fitted have been compared with the method without phase-fitted and 
amplification-fitted for solving FDEs, which clearly shown the advantage of the 
method with phase-fitted and amplification-fitted. 
 
 
In Chapter 5, we derived the phase-fitted and amplification-fitted fourth order five-
stage diagonally implicit RK method proposed by Hairer et.al (2010) and fourth order 
four-stage diagonally implicit RK method for LODEs proposed by Che Jawias et.al 
(2010). The results of the new methods have been compared with the original methods 
without phase-fitted and amplification-fitted. 
 
 
In Chapter 6, we derived the order conditions of Runge-Kutta-Nyström method 
purposely for solving linear second order ordinary differential equations. Based on the 
order conditions we derived the new fifth order four-stage and sixth order five-stage 
explicit Runge-Kutta-Nyström methods for linear ordinary differential equations 
(LODEs). Then the methods are phase-fitted and amplification-fitted so that they will 
have zero-dispersion and zero-dissipation. The fifth order four-stage RKN method for 
LODEs has the property of First Same As Last (FSAL). Numerical results proved that 
the methods with phase-fitted and amplification-fitted are much more efficient than 
the existing methods with the same algebraic order.  
 
 
Chapter 7, focused on the application of RKN method for solving hyperbolic partial 
differential equations (PDEs) that is the second order wave equations. The PDE is first 
converted to a system of second order linear ODEs using the methods of lines. The 
resulting second order linear ODEs are then solved using the RKN method derived in 
Chapter 6. Numerical results show that the RKN methods for LODEs are accurate and 
reliable for solving the second order wave equation. 
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Finally, we summarized and conclude our studies in the last chapter that is Chapter 8. 
Future studies are also suggested in this chapter. 
 
 
1.8 Problem Statement 
 
Initial value problem (IVPs) for second order ODEs where the first derivative does 
not appear explicitly often arise in many scientific areas of engineering and applied 
science such as celestial mechanics, molecular dynamics and quantum mechanics. The 
solution of these IVPs often exhibits a pronounced oscillatory character and it is well 
known that it is always difficult to get the accurate numerical results if the initial value 
problems are oscillatory in nature. To address the problem we will focus on developing 
RK type methods with reduced phase-lag and dissipation errors. Phase-lag or 
dispersion error is the angle between the true and the approximated solution and 
dissipation is the distance of the approximate solution from the standard cyclic 
solution. The aim of this research is to derive methods with phase-fitted and 
amplification-fitted so that the methods have zero phase-lag and zero dissipation; 
hence they are suitable for solving oscillatory problems. 
 
 
1.9 Scope of Study 
 
The main purpose of this research is to solve the second order ordinary differential 
equations (1.1) in which the solutions exhibit a pronounced oscillatory character. In 
this study we are focusing on solving problem (1.1) by using Runge-Kutta methods 
and Runge-Kutta-Nyström methods for oscillatory problems with phase-fitted and 
amplification-fitted techniques. The research also includes numerical solutions of first 
order fuzzy differential equations by using the phase-fitted and amplification fitted 
explicit RK methods and numerical solutions of hyperbolic partial differential 
equations by using RKN methods for LODEs. 
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