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Lightning strikes cause current injection into the hybrid PV–wind system at the point 
of contact. Overvoltage generated due to lightning travels along the system where it 
can affect expensive equipment in the hybrid PV–wind system. The literature review 
examines related previous works and identifies the gaps created by earlier works that 
have focused only on the problems associated with the lightning effects on the PV and 
WT systems either theoretically or experimentally. Studies also have focused on a 
single type of RE source and not on hybrid systems. The current study fills the gap 
concerning the lightning-induced transient effect on a 4.1 MW grid-connected hybrid 
PV–wind system and the mitigation of the lightning effect using the Power Systems 
Computer Aided Design (PSCAD) software. The system consists of a 2 MW PV farm, 
a 2.1 MW wind farm, battery system and loads which are all connected to a 33 kV 
grid along with a 0.480 kV AC bus and a boost interfacing transformer. In addition,
the Heidler function was modelled to generate different lightning currents using the 
software mentioned above. 

In this research, transient effects simulation and analysis due to direct lightning strikes 
to the system were conducted, three points of the hybrid system were selected to 
observe the transient overvoltage when each point was subjected to lightning strokes 
separately. The simulation results were obtained for different lightning current 
waveforms such as 8/20 µs, 10/350 µs, negative first stroke, negative subsequent 
stroke and positive stroke with and without lightning protection system (LPS) in 
several simulation cases. In addition, surge protective devices (SPDs) have been 
developed based on the European Commission for Electrotechnical Standardization 
(CENELEC) standard with the most appropriate ratings for the threat level and the 
equipment/component specification of the hybrid system to investigate mitigation of 
the lightning transient to an acceptable level. The results showed that the connected 
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SPDs to the system can successfully clamp the generated transient overvoltages due 
to lightning for all simulation cases, except the SPDs connected at the DC side of PV 
system fail to clamp the generated overvoltage in the case with 5% of positive stroke 
lightning current. On the basis of the simulation results, the recommendations have 
been proposed to developers of lightning protection. The research objectives were 
achieved through simulation and analysis, findings of this research can be a useful 
guideline towards the application of a lightning protection standard for the hybrid PV–
wind system.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

KESAN FANA ARUHAN-KILAT DI DALAM SISTEM HIBRID PV-ANGIN 
DAN PENGURANGAN 

Oleh

ZMNAKO MOHAMMED KHURSHID 

Ogos 2018

Pengerusi : Profesor Madya Hashim Hizam, PhD
Fakulti : Kejuruteraan

Sambaran kilat menyebabkan suntikan arus ke dalam sistem hibrid PV-angin di titik 
sentuhan.  Voltan lampau yang dihasilkan oleh kilat berjalan di sepanjang sistem di 
mana ia boleh menjejas peralatan mahal di dalam sistem hibrid PV-angin. Kajian 
kepustakaan mengkaji kerja-kerja berkaitan yang lalu dan mengenal pasti jurang-
jurang yang dihasilkan oleh karya-karya terdahulu yang hanya memberi tumpuan pada 
masalah-masalah yang berkaitan dengan kesan kilat ke atas sistem PV dan WT baik 
secara teori atau eksperimen. Kajian juga telah menumpukan pada satu jenis sumber 
RE dan bukan pada sistem-sistem hibrid.  Kajian semasa ini mengisi jurang mengenai 
kesan sementara yang disebabkan oleh kilat pada sistem hibrid PV-angin yang 
terhubung-grid 4.1 MW dan pengurangan kesan kilat menggunakan perisian Reka 
Bentuk Bantuan Komputer Sistem Kuasa (PSCAD). Sistem ini terdiri dari ladang  PV 
2 MW, sebuah ladang angin 2.1 MW, sistem bateri dan beban yang semuanya 
disambungkan ke grid 33 kV  bersama dengan bas AC 0.480 kV dan satu transformer 
penambah antara muka. Di samping itu, fungsi Heidler telah dimodelkan untuk 
menghasilkan arus kilat yang berbeza menggunakan perisian yang disebutkan di atas.  

Dalam kajian ini, simulasi dan analisis kesan-kesan fana   disebabkan oleh kilat terus 
kepada sistem  telah dijalankan, tiga titik sistem hibrid tersebut telah dipilih untuk 
memerhatikan voltan lampau fana apabila setiap titik tertakluk kepada kilat  secara 
berasingan. Hasil simulasi diperoleh untuk bentuk gelombang arus kilat yang berbeza 
seperti 8/20 μs, 10/350 μs, sambaran pertama negatif , sambaran seterusnya negatif 
dan sambaran positif dengan dan tanpa sistem perlindungan kilat (LPS) di dalam 
beberapa kes simulasi. Di samping itu, peranti pelindung pusuan (SPD) telah 
dibangunkan berdasarkan piawaian Suruhanjaya Eropah bagi Pemiawaian 
Elektroteknik (CENELEC) dengan penilaian yang paling sesuai untuk tahap ancaman 
dan spesifikasi peralatan/komponen sistem hibrid untuk menyiasat pengurangan kesan 
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sementara kilat ke suatu tahap yang boleh diterima. Hasilnya menunjukkan bahawa 
SPD yang bersambung ke sistem itu dapat berjaya mengatasi voltan sementara yang 
dijana disebabkan oleh kilat bagi semua kes simulasi, kecuali SPD yang 
disambungkan di sebelah DC sistem PV gagal untuk mengatasi voltan lampau yang 
dijanakan dalam kes 5% arus sambaran kilat positif. Berdasarkan keputusan simulasi, 
saranan telah dicadangkan kepada pemaju perlindungan kilat. Objektif penyelidikan 
telah dicapai melalui simulasi dan analisis, penemuan penyelidikan ini boleh menjadi 
garis panduan yang berguna ke arah penggunaan piawaian perlindungan kilat untuk 
sistem hibrid PV-angin.
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Grid-connected hybrid systems which are based on renewable energy (RE), such as 
combined generations of wind turbine (WT) and photovoltaic (PV) power, have 
become increasingly popular. This popularity is due to the need to address 
environmental issues, the outlook of depletion of fossil fuel reserves and the world’s 
energy demands (Ghoddami, 2013). The significance of hybrid systems arises from 
several factors, such as the security of electricity supply to customers, reduced CO2

emissions by introducing RE sources, liberalisation of the electricity market, increased 
power availability and reliability, improved power quality, grid support and great 
long-term potential for the development of sustainable energy (Massoud et al., 2009; 
Renewables, 2012). They can also overcome the disadvantage of intermittent power 
output in stand-alone RE source and provide constant power supply. These systems, 
however, have disadvantages, such as high installation costs compared with those of 
traditional technologies for power generation (Nehrir et al., 2011). Moreover, they are 
vulnerable to direct or indirect lightning strokes due to their installation location and 
their expanded surface in wide-open areas (Christodoulou et al., 2016). Lightning 
stroke is an impulsive transient variation which is unidirectional in polarity (either 
negative or positive) generated during a thunderstorm (Berger, 1975). This transient 
variation is occasionally related to thunder due to electric charges that pass through 
the lightning channel. The main lightning source is rainstorms which infrequently 
occur during snowstorms (Sabiha, 2010).

1.2 Problem Statement  

Hybrid PV–wind systems are exposed to direct and indirect lightning discharge. The 
probability of the hybrid systems to be struck by lightning is higher than that of 
conventional power systems due to the larger layout of PV and wind farm installations 
contained in the systems. WTs are also tall structures of more than 150 m in height 
and frequently placed at locations highly exposed to lightning. The International 
Electrotechnical Commission (IEC) standard for lightning protection recognises four 
sources of damage due to direct and indirect lightning flashes (Rodrigues et al., 2011; 
Pons & Tommasini, 2013). The travelling waves resulted from lightning flashes cause 
a temporary increase in voltage (overvoltage) within the systems. This overvoltage is 
a transitory phenomenon that plays a harasser roll over insulation of electrical systems 
and can affect other equipment connected to the hybrid systems, such as PV modules, 
inverters, batteries, control systems, distribution boards, induction generators, 
transformers and circuit breakers (Bak et al., 2008; Quintana, 2017).



© C
OP

UPM

2

Such frequent problems may cause a deterioration in the utilisation rate and 
interruption of power supply and thus increase power generation costs (Rodrigues et 
al., 2012). Various studies have been conducted on the lightning effects on PV and 
WT systems either theoretically or experimentally. However, the most of studies have 
focused on a single type of RE source, and researches on hybrid systems remain few,
which more studies need to be conducted on such systems. Therefore, this study aims 
to fill the gap by analysing lightning-induced transient effects on a grid-connected 
hybrid PV–wind system, and mitigation of lightning effects is investigated by using 
PSCAD/EMTDC software. The primary step to reduce the harmful impacts of 
overvoltage is by determining the background of this phenomenon. The point where 
lightning current may possibly flow from a system without lightning-protective 
devices is then identified. 

Many lightning protection standards are available for PV and wind systems. However, 
standards for hybrid systems remain unavailable. In this study, the European 
Commission for Electrotechnical Standardization (CENELEC) standard, which is 
available for PV systems, is applied to the hybrid system. The selection of SPDs is 
according to the said standard. Whether the selected SPDs are appropriate is 
investigated. In any case, the compliance with national and international standards is 
significant to ensure the effectiveness of protection measures and thus guarantee the 
safe operation of the installation and the quality of supplied energy (Pons & 
Tommasini, 2013). The overvoltage waveforms that appear in various parts of a hybrid 
electrical system are computed. The possibility of damage depends on the impulse-
withstanding voltage of each component. Thus, vital information is provided to enable 
relevant engineers to select surge protective devices (SPDs) with the most appropriate 
ratings for a given point according to threat level, and the equipment/component 
specifications can determine the vulnerability level. The selection of SPDs for a given 
purpose depends on threat level (Vmax), component vulnerability, impulse-
withstanding voltage, lightning magnitude, rise time, decay time, maximum energy 
and total released lightning discharge.

1.3 Objectives of the Research 

The objectives of this study are as follows:

1) To simulate a hybrid PV–wind system for lightning effects analysis performance,  
2) to investigate the distribution of current and voltage in a hybrid PV–wind system 

due to direct lightning strikes, 
3) to examine the levels of mitigation of lightning-related effects on the hybrid PV–

wind system with the application of the recommendations given by the standard 
and determine whether they are appropriate, and 

4) to propose recommendations for extending the existing lightning protection 
standards on PV energy source to hybrid systems. 
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1.4 Scope of the Work 

The scope and limitation of this study are as follows:

1) The lightning-induced transient effects on a grid-connected hybrid PV–wind
system and its mitigation are implemented using PSCAD/EMTDC software. The 
system consists of a 2 MW PV farm, a 2.1 MW wind farm, a backup battery system 
and a 300 kW three-phase resistor–inductor–capacitor (RLC) load bank. The 
temperature and solar irradiation of PV models are fixed at 25 °C and 1000 W/m2,
respectively. A fixed-speed WT generator is used in the wind farm to convert 
mechanical power into electrical power at a constant wind speed of 12 m/s. 

2) The study is conducted for several simulation cases by using standard lightning 
impulses such as 8/20 µs and 10/350 µs, and also actual direct lightning current 
waveforms, such as negative first stroke, negative subsequent stroke and positive 
stroke. The lightning current waveforms are generated using Heidler function, and 
the transient overvoltage is evaluated at various parts of the system for each of 
those simulation cases. 

3) The hybrid system does not include transmission lines; therefore, the corona effect 
on the lightning channel is not considered.

1.5 Significance of the Research  

Lightning and its characteristic is significant to understand because it can only be 
diverted or intercepted to the path, if well-constructed and designed, which will reduce 
damage to hybrid PV–wind systems. Every year, lightning flashes cause damage to 
utility grids, including hybrid systems. Hybrid PV–wind systems comprise expensive 
components that cost a large amount of money in case of any damage due to lightning, 
especially in the large-scale power generation. Therefore, lightning protection for 
hybrid PV–wind systems based on the available standards for PV systems must be 
studied to design appropriate lightning protection measures for mitigating the transient 
effects of lightning strikes, considering that no standards are available for hybrid 
systems. This study helps to secure the operation of hybrid systems and ensure 
electrical power supply with reduced costs for customers.

1.6 Thesis Layout 

This thesis is organised into the following five chapters: Introduction, Literature 
Review, Methodology, Results and Discussions, and Conclusions and Future Works.

Chapter 1 presents the research background, problem statements, research objectives, 
scope of work, significance of the research and thesis layout.
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Chapter 2 provides the literature review. This chapter contains overviews on lightning, 
PV system and its different parts and configurations and wind energy. Overviews on 
global lightning protection codes and standards, previous studies on the lightning 
effects on PV and WT systems and different SPD types are also discussed.

Chapter 3 explains the research methodology. The model design of a hybrid PV–wind
system is implemented using PSCAD/EMTDC software. This chapter includes the 
modelling of PV farm, battery system, wind farm, load, lightning current and surge 
arrester. Case studies for simulation are also described.

Chapter 4 discusses the simulation results. Results are generated from the hybrid 
system at normal steady-state operation condition without lightning current injection. 
The simulation results of the transient effect across the system without LPS and the 
system with LPS are given. In addition, this chapter includes the proposed 
recommendation guidelines to lightning protection developers.

Chapter 5 concludes the study, and future research is suggested to investigate and 
mitigate the transient effects on the hybrid PV–wind system due to indirect lightning 
strikes.
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