UNIVERSITI PUTRA MALAYSIA

LIGHTNING-INDUCED TRANSIENT EFFECTS IN HYBRID PV–WIND SYSTEM AND ITS MITIGATIONS

ZMNAKO MOHAMMED KHURSHID

FK 2018 119
LIGHTNING-INDUCED TRANSIENT EFFECTS IN HYBRID PV–WIND SYSTEM AND ITS MITIGATION

By

ZMNAKO MOHAMMED KHURSHID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

August 2018
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

LIGHTNING-INDUCED TRANSIENT EFFECTS IN HYBRID PV–WIND SYSTEM AND ITS MITIGATION

By

ZMNAKO MOHAMMED KHURSHID

August 2018

Chairman : Associate Professor Hashim Hizam, PhD
Faculty : Engineering

Lightning strikes cause current injection into the hybrid PV–wind system at the point of contact. Overvoltage generated due to lightning travels along the system where it can affect expensive equipment in the hybrid PV–wind system. The literature review examines related previous works and identifies the gaps created by earlier works that have focused only on the problems associated with the lightning effects on the PV and WT systems either theoretically or experimentally. Studies also have focused on a single type of RE source and not on hybrid systems. The current study fills the gap concerning the lightning-induced transient effect on a 4.1 MW grid-connected hybrid PV–wind system and the mitigation of the lightning effect using the Power Systems Computer Aided Design (PSCAD) software. The system consists of a 2 MW PV farm, a 2.1 MW wind farm, battery system and loads which are all connected to a 33 kV grid along with a 0.480 kV AC bus and a boost interfacing transformer. In addition, the Heidler function was modelled to generate different lightning currents using the software mentioned above.

In this research, transient effects simulation and analysis due to direct lightning strikes to the system were conducted, three points of the hybrid system were selected to observe the transient overvoltage when each point was subjected to lightning strokes separately. The simulation results were obtained for different lightning current waveforms such as 8/20 µs, 10/350 µs, negative first stroke, negative subsequent stroke and positive stroke with and without lightning protection system (LPS) in several simulation cases. In addition, surge protective devices (SPDs) have been developed based on the European Commission for Electrotechnical Standardization (CENELEC) standard with the most appropriate ratings for the threat level and the equipment/component specification of the hybrid system to investigate mitigation of the lightning transient to an acceptable level. The results showed that the connected
SPDs to the system can successfully clamp the generated transient overvoltages due to lightning for all simulation cases, except the SPDs connected at the DC side of PV system fail to clamp the generated overvoltage in the case with 5% of positive stroke lightning current. On the basis of the simulation results, the recommendations have been proposed to developers of lightning protection. The research objectives were achieved through simulation and analysis, findings of this research can be a useful guideline towards the application of a lightning protection standard for the hybrid PV–wind system.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN FANA ARUHAN-KILAT DI DALAM SISTEM HIBRID PV-ANGIN DAN PENGURANGAN

Oleh

ZMNAKO MOHAMMED KHURSHID

Ogos 2018

Pengerusi: Profesor Madya Hashim Hizam, PhD
Fakulti: Kejuruteraan

Dalam kajian ini, simulasi dan analisis kesan-kesan fana disebabkan oleh kilat terus kepada sistem telah dijalankan, tiga titik sistem hibrid tersebut telah dipilih untuk memerhatikan Voltan lampau fana apabila setiap titik tertakluk kepada kilat secara berasingan. Hasil simulasi diperoleh untuk bentuk gelombang arus kilat yang berbeza seperti 8/20 μs, 10/350 μs, sambaran pertama negatif, sambaran seterusnya negatif dan sambaran positif dengan dan tanpa sistem perlindungan kilat (LPS) di dalam beberapa kes simulasi. Dì samping itu, peranti pelindung pusuan (SPD) telah dibangunkan berdasarkan piawaian Suruhanjaya Eropah bagi Pemiawaian Elektroteknik (CENELEC) dengan penilaian yang paling sesuai untuk tahap ancaman dan spesifikasi peralatan/komponen sistem hibrid untuk menyiasat pengurangan kesan
sementara kilat ke suatu tahap yang boleh diterima. Hasilnya menunjukkan bahawa SPD yang bersambung ke sistem itu dapat berjaya mengatasi voltan sementara yang dijana disebabkan oleh kilat bagi semua kes simulasi, kecuali SPD yang disambungkan di sebelah DC sistem PV gagal untuk mengatasi voltan lampau yang dijana dalam kes 5% arus sambaran kilat positif. Berdasarkan keputusan simulasi, saranan telah dicadangkan kepada pemaju perlindungan kilat. Objektif penyelidikan telah dicapai melalui simulasi dan analisis, penemuan penyelidikan ini boleh menjadi garis panduan yang berguna ke arah penggunaan piawaian perlindungan kilat untuk sistem hibrid PV-angin.
ACKNOWLEDGEMENTS

All praises to Allah who gave me the ability, capacity, health, and sanity to reach this level of education. Peace and blessings of Allah be upon our beloved Prophet Muhammad.

I am heartily thankful to my chairperson of the supervisory committee, Prof. Dr. Hashim Hizam, and supervisory committee member Prof. Dr. Chandima Gomes, for their valuable guidance, patience and constant encouragement throughout my study. I am deeply grateful to have such a wonderful team of supervisors. I also wish to acknowledge and commend the Department of Electrical and Electronics Engineering staffs and technicians who have provided me with the place and equipment to do the study. I am highly thankful to my family and my brothers for their support, patience, endurance, and perseverance during my absence being away for my study.

I am also grateful to all my friends both in Malaysia and Kurdistan who are too many to be mentioned individually here. They contributed morally and psychologically in my moments during the hurdles of this study.
I certify that a Thesis Examination Committee has met on 28 August 2018 to conduct the final examination of Zmnako Mohammed Khurshid Abda on his thesis entitled "Lightning-Induced Transient Effects in Hybrid PV-Wind System and its Mitigation" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Noor Izzri bin Abdul Wahab, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Jasronita bt Jasni, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Hazlee Azil bin Illias, PhD
Professor Jr.
University of Malaya
Malaysia
(External Examiner)

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 September 2018
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Hashim Hizam, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Chandima Gomes, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ______________________ Date: ______________

Name and Matric No: Zmnako Mohammed Khurshid, GS45919
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of Chairman of Supervisory Committee: Associate Professor Dr. Hashim Hizam

Signature:
Name of Member of Supervisory Committee: Professor Dr. Chandima Gomes
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF NOTATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 1
1.3 Objectives of the Research 2
1.4 Scope of the Work 3
1.5 Significance of the Research 3
1.6 Thesis Layout 3

2 LITERATURE REVIEW

2.1 Introduction 5
2.2 Lightning 5
2.3 Overview of PV Energy 8
 2.3.1 Hybrid PV System 9
 2.3.2 PV Module 10
 2.3.3 DC–DC Converter 11
 2.3.4 Energy Storage 11
 2.3.5 DC–AC Inverter 11
2.4 Overview of Wind Energy 12
 2.4.1 WT Generator 12
 2.4.2 WT Transformer 14
2.5 Global Lightning Protection Codes and Standards 14
 2.5.1 Lightning Protection Codes and Standards in the U.S. 14
 2.5.2 Lightning Protection Codes and Standards in Other Nations 15
 2.5.3 CENELEC, CIGRE, and IEC Standards 15
 2.5.4 Risk Evaluation According to IEC EN 62305-2 16
2.6 Overview of Previous Lightning Studies on PV and Wind Systems 17
 2.6.1 Lightning Studies based on Theoretical and Simulation Works 18
 2.6.2 Lightning Studies based on Experimental Works 18
2.7 SPD 22
2.7.1 Spark Gaps 22
2.7.2 GDTs 23
2.7.3 SAD 24
2.7.4 MOVs 24

2.8 Surge Arrester Models 25
2.8.1 Physical Model 25
2.8.2 IEEE Model 25
2.8.3 Pinceti–Gianettoni Model 26
2.8.4 Fernandez–Diaz Model 27

2.9 Summary 28

3 METHODOLOGY 29
3.1 Introduction 29
3.2 Modelling of Hybrid PV-wind System 31
3.2.1 Modelling of PV Farm 33
3.2.2 Modelling of Voltage Source Inverter (VSI) 34
3.2.3 Modelling of Battery System 41
3.2.4 Modelling of Wind Farm 43
3.2.5 Modelling of Load 47

3.3 Modelling of Lightning Current Using Heidler Function 47

3.4 Description of Case Study 49
3.4.1 Hybrid System at Steady-state Condition 50
3.4.2 Transient Effects Analysis on Hybrid System without LPS 50
3.4.3 Design LPS based on CENELEC Standard 54
3.4.4 Transient Effects Analysis on Hybrid System with LPS 62
3.4.5 Transient Effects Analysis with Different Load Value 62

3.5 Validation 62
3.6 Summary 65

4 RESULTS AND DISCUSSION 66
4.1 Introduction 66
4.2 Simulation Result of Hybrid System at Steady-state Condition 66
4.3 Simulation Results of Transient Effects Analysis of Hybrid System 68
4.3.1 Case 1 : 8/20 µs Standard Lightning Waveform 68
4.3.2 Case 2 : 10/350 µs Standard Lightning Waveform 76
4.3.3 Case 3 : Negative First Stroke 82
4.3.4 Case 4 : Negative Subsequent Stroke 92
4.3.5 Case 5 : Positive Stroke 93
4.4 Simulation Results of Different SPD Tests Connected at WT Side 95
4.4.1 Case 1 : Parallel MOV Surge Arrester Test 95
4.4.2 Case 2 : Parallel MOV and Spark Gap Test 98
4.5 Simulation Results of Transient Effects Analysis with Different Load Value 102
4.6 Recommendations to Lightning Protection Developers 102
4.7 Validation Results 103
5 CONCLUSION AND FUTURE WORK 107
5.1 Conclusion 107
5.2 Contribution 108
5.3 Future Work 108

REFERENCES 109
APPENDICES 119
BIODATA OF STUDENT 144
LIST OF PUBLICATIONS 145
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Tabulated values of lightning current parameters taken from CIGRE (Standard, 2006a)</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of lightning studies based on theoretical and simulation works</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of lightning studies based on experimental works</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Characteristics of different types of surge arresters</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Parameters of a PV system</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Parameters of inverters</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>Parameters of wind farm modelling</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Parameters of SPDs used in the system</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>I–V characteristics of 2.3 kV SPDs on AC system side</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>I–V characteristics of 4 kV surge arresters on DC side of PV system</td>
<td>57</td>
</tr>
<tr>
<td>3.7</td>
<td>Data of surge arresters 1, 2 and 3</td>
<td>62</td>
</tr>
<tr>
<td>3.8</td>
<td>Model parameters of arresters</td>
<td>63</td>
</tr>
<tr>
<td>3.9</td>
<td>I–V characteristics of surge arrester 1</td>
<td>63</td>
</tr>
<tr>
<td>3.10</td>
<td>I–V characteristics of surge arrester 2</td>
<td>63</td>
</tr>
<tr>
<td>3.11</td>
<td>I–V characteristics of surge arrester 3</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Observed transient overvoltage and current at different points of the system due to 8/20 µs lightning current without LPS</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Observed transient overvoltage and current at different points of the system due to 8/20 µs lightning current with LPS</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Observed energy and current through arresters due to 8/20 µs lightning current</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Observed transient overvoltage and current at different points of the system due to 10/350 µs lightning current without LPS</td>
<td>80</td>
</tr>
</tbody>
</table>
4.5 Observed transient overvoltage and current at different points of the system due to 10/350 µs lightning current with LPS

4.6 Observed energy and current through arresters due to 10/350 µs lightning current

4.7 Observed transient overvoltage and current at different points of the system due to negative first-stroke lightning current without LPS

4.8 Observed transient overvoltage and current at different points of the system due to negative first-stroke lightning current with LPS

4.9 Observed energy and current through arresters due to negative first-stroke lightning current

4.10 Summary results of different SPD connections at WT side

4.11 Residual voltage to varistors with 8/20 µs 10 kA current impulse based on ATP

4.12 Absorbed energy by varistors with 8/20 µs 10 kA current impulse based on ATP

4.13 Residual voltage to varistors with 8/20 µs 10 kA current impulse based on PSCAD

4.14 Absorbed energy by varistors with 8/20 µs 10 kA current impulse based on PSCAD
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of cloud-to-ground lightning flashes: (a) downward negative lightning, (b) downward positive lightning, (c) upward positive lightning and (d) upward negative lightning</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Parameters of lightning current waveshape</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of PV systems</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Simplified block diagram of a hybrid system</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Processes in an irradiated solar cell</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Buck–boost converter</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>Dominant WT technologies</td>
<td>13</td>
</tr>
<tr>
<td>2.8</td>
<td>Typical wind energy stand-alone system</td>
<td>14</td>
</tr>
<tr>
<td>2.9</td>
<td>Risk components for a solar power plant</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Induced voltage for flashes to a natural LPS</td>
<td>17</td>
</tr>
<tr>
<td>2.11</td>
<td>Spark gap surge arrester</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>GDT arrester</td>
<td>23</td>
</tr>
<tr>
<td>2.13</td>
<td>Physical model</td>
<td>25</td>
</tr>
<tr>
<td>2.14</td>
<td>IEEE model</td>
<td>26</td>
</tr>
<tr>
<td>2.15</td>
<td>Pinceti–Gianettoni model</td>
<td>27</td>
</tr>
<tr>
<td>2.16</td>
<td>Fernandez–Diaz model</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of research design and methodology</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Classification of main modelling parts of hybrid PV–wind system</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>4.1 MW hybrid grid-connected system</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Modelling design of 2 MW PV farm</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Modelling circuit of a two-level three-phase inverter</td>
<td>35</td>
</tr>
</tbody>
</table>
3.6 PLL block and Clarke and Park transformations applied to the VSI three-phase voltage
3.7 Flow chart of inverter control system
3.8 PI controller
3.9 Control circuit of VSI using Clark and Park transformation
3.10 abc axis reference voltage calculated by using inverse Clark and Park transformations
3.11 Modulator to generate IGBT signals
3.12 Power storage system with a bidirectional DC–DC converter
3.13 200 V battery pack circuit
3.14 DC–DC buck–boost converter circuit
3.15 Upper-level manual controller
3.16 Modelling design of 2.1 MW wind farm
3.17 WT model to produce required torque
3.18 2.1 MW induction generator modelling of wind farm
3.19 RLC variable load
3.20 Heidler function using PSCAD
3.21 Classification of case study
3.22 8/20 μs and 10/350 μs 100 kA standard lightning current waveforms
3.23 Negative first stroke, negative subsequent stroke and positive stroke with 95% value
3.24 Negative first stroke, negative subsequent stroke and positive stroke with 50% value
3.25 Negative first stroke, negative subsequent stroke and positive stroke with 5% value
3.26 Lightning striking points at hybrid system
3.27 SPD installation on hybrid system according to CENELEC standard
3.28 I–V characteristic curves of 4 and 2.3 kV surge arresters
3.29 I–V characteristics of surge arresters in PSCAD: (A) 4 kV and (B) 2.3 kV

3.30 SPD test circuit using PSCAD

3.31 10/350 µs 25 kA lightning current waveform

3.32 Clamping voltage of 2.3 kV class 1 SPD

3.33 Clamping voltage of 4 kV class 1 SPD

3.34 Hybrid system with connection of surge arresters according to standards

3.35 IEEE model for surge arrester 1 with PSCAD

3.36 Pinceti–Gianettoni model for surge arrester 1 with PSCAD

3.37 8/20 µs 10 kA lightning current waveform

4.1 Output power, voltage and current at steady-state condition: (A) PV farm, (B) wind farm, (C) entire 4.1 MW grid-connected hybrid system

4.2 Direction of transient overvoltage at wind farm without LPS

4.3 Direction of transient overvoltage at wind farm without LPS

4.4 Direction of transient overvoltage at PV farm with LPS

4.5 Observed transient overvoltage and current at different points of the system due to 8/20 µs 100 kA lightning current when it strikes at (A) DC side of PV farm, (B) load side, (C) WT side, without LPS

4.6 Transient overvoltage, current and arrester’s energy of the system due to 8/20 µs 100 kA lightning current when it strikes at (A) DC side of PV farm, (B) load side, (C) WT side, with LPS

4.7 8/20 µs and 10/350 µs 100 kA standard lightning current waveforms

4.8 Observed transient overvoltage and current at different points of the system due to 10/350 µs 100 kA lightning current when it strikes at (A) DC side of PV farm, (B) load side, (C) WT side, without LPS

4.9 Transient overvoltage, current and arrester’s energy of the system due to 10/350 µs 100 kA lightning current when it strikes at (A) DC side of PV farm, (B) load side, (C) WT side, with LPS
4.10 Observed transient overvoltage and current at different points of the system due to 95% of negative first stroke lightning current when it strikes at (A) DC side of PV farm, (B) load side, (C) WT side, without LPS

4.11 Transient overvoltage, current and arrester’s energy of the system due to 95% of negative first stroke lightning current when it strikes at (A) DC side of PV farm, (B) load side, (C) WT side, with LPS

4.12 Observed transient overvoltage and current at different points of the system due to 50% of negative first stroke lightning current when it strikes at (A) DC side of PV farm, (B) load side, (C) WT side, without LPS

4.13 Transient overvoltage, current and arrester’s energy of the system due to 50% of negative first stroke lightning current when it strikes at (A) DC side of PV farm, (B) load side, (C) WT side, with LPS

4.14 Observed transient overvoltage and current at different points of the system due to 5% of negative first stroke lightning current when it strikes at (A) DC side of PV farm, (B) load side, (C) WT side, without LPS

4.15 Transient overvoltage, current and arrester’s energy of the system due to 5% of negative first stroke lightning current when it strikes at (A) DC side of PV farm, (B) load side, (C) WT side, with LPS

4.16 Parallel MOV Surge arrester connection at WT side

4.17 Observed transient overvoltage, current and arrester’s energy at different points of the system due to (A) 10/350 µs lightning waveform, (B) 5% of negative first stroke, (C) 5% of positive stroke when striking at WT side with parallel MOV surge arrester connection

4.18 Parallel MOV and spark gap SPDs at WT side

4.19 Observed transient overvoltage, current and arrester’s energy at different points of the system due to (A) 10/350 µs lightning waveform, (B) 5% of negative first stroke, (C) 5% of positive stroke when striking at WT side with parallel MOV and spark gap arrester connection
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Association</td>
</tr>
<tr>
<td>ATP</td>
<td>Alternative Transient Program</td>
</tr>
<tr>
<td>CENELEC</td>
<td>European Commission for Electrotechnical Standardization</td>
</tr>
<tr>
<td>CIGRE</td>
<td>International Council on Large Electric Systems</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DFIG</td>
<td>Doubly-Fed Induction Generator</td>
</tr>
<tr>
<td>DLP</td>
<td>Dynamic Lightning Protection</td>
</tr>
<tr>
<td>EMTDC</td>
<td>Electromagnetic Transient Direct Current</td>
</tr>
<tr>
<td>EMTP</td>
<td>Electro-Magnetic Transients Program</td>
</tr>
<tr>
<td>EPRI</td>
<td>Electric Power Research Institute</td>
</tr>
<tr>
<td>ESE</td>
<td>Early Streamer Emitter</td>
</tr>
<tr>
<td>FDTD</td>
<td>Finite Difference Time Domain</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>GB</td>
<td>GigaByte</td>
</tr>
<tr>
<td>GDT</td>
<td>Gas Discharge Tubes</td>
</tr>
<tr>
<td>GHz</td>
<td>GigaHertz</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulate Gate Bipolar Transistor</td>
</tr>
<tr>
<td>ILPA</td>
<td>International Lightning Protection Association</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standards</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunications Union</td>
</tr>
<tr>
<td>JISC</td>
<td>Japan Industrial Standards Commission</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>LPS</td>
<td>Lightning Protection System</td>
</tr>
<tr>
<td>MCOV</td>
<td>Maximum Continuous Operating Voltage</td>
</tr>
<tr>
<td>MOV</td>
<td>Metal Oxide Varistor</td>
</tr>
<tr>
<td>MPPT</td>
<td>Maximum Power Point Tracking</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
</tr>
<tr>
<td>P & O</td>
<td>Perturb and Observe</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase Locked Loop</td>
</tr>
<tr>
<td>PSCAD</td>
<td>Power System Computer Aided Design</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>RAM</td>
<td>Random-Access Memory</td>
</tr>
<tr>
<td>RE</td>
<td>Renewable Energy</td>
</tr>
<tr>
<td>SAD</td>
<td>Silicon Avalanche Diode</td>
</tr>
<tr>
<td>SPD</td>
<td>Surge Protective Device</td>
</tr>
<tr>
<td>STC</td>
<td>Standard Test Condition</td>
</tr>
<tr>
<td>TV</td>
<td>Television</td>
</tr>
<tr>
<td>US</td>
<td>United State</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply</td>
</tr>
<tr>
<td>VSI</td>
<td>Voltage Source Inverter</td>
</tr>
<tr>
<td>WT</td>
<td>Wind Turbine</td>
</tr>
</tbody>
</table>
LIST OF NOTATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Celsius</td>
</tr>
<tr>
<td>µF</td>
<td>Microfarad</td>
</tr>
<tr>
<td>µs</td>
<td>Microsecond</td>
</tr>
<tr>
<td>A</td>
<td>Ampere; Turbine Swept Area</td>
</tr>
<tr>
<td>C</td>
<td>Capacitor</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>Cₚ</td>
<td>Coefficient Performance of the Turbine</td>
</tr>
<tr>
<td>d</td>
<td>Length of Arrester Column</td>
</tr>
<tr>
<td>E</td>
<td>Energy</td>
</tr>
<tr>
<td>EN</td>
<td>European Standard</td>
</tr>
<tr>
<td>exp</td>
<td>Exponential</td>
</tr>
<tr>
<td>F</td>
<td>Frequency</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>I</td>
<td>Current</td>
</tr>
<tr>
<td>i</td>
<td>Peak Value of Lightning Current</td>
</tr>
<tr>
<td>I₀</td>
<td>Maximum Peak Current</td>
</tr>
<tr>
<td>I-V</td>
<td>Current-Voltage</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>kA</td>
<td>Kilo Ampere</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>K_i</td>
<td>Integral Gain</td>
</tr>
<tr>
<td>K_p</td>
<td>Proportional Gain</td>
</tr>
<tr>
<td>kV</td>
<td>Kilo Volt</td>
</tr>
<tr>
<td>kW</td>
<td>Kilo Watt</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>L</td>
<td>Inductance</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mH</td>
<td>Millihenry</td>
</tr>
<tr>
<td>ms</td>
<td>Millisecond</td>
</tr>
<tr>
<td>MW</td>
<td>Mega Watt</td>
</tr>
<tr>
<td>n</td>
<td>Steepness Factor; Number of Parallel Columns of Metal Oxide Disks</td>
</tr>
<tr>
<td>ns</td>
<td>Nanosecond</td>
</tr>
<tr>
<td>N-type</td>
<td>Negative Charge of the Electron</td>
</tr>
<tr>
<td>Θ</td>
<td>Phase Angle</td>
</tr>
<tr>
<td>P</td>
<td>Active Power</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional-Integral Controller</td>
</tr>
<tr>
<td>P-type</td>
<td>Positive Charge of the Hole</td>
</tr>
<tr>
<td>pu</td>
<td>Per Unit</td>
</tr>
<tr>
<td>Q</td>
<td>Reactive Power</td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
</tr>
<tr>
<td>r</td>
<td>Wind Turbine Rotor Blade Radius</td>
</tr>
<tr>
<td>RLC</td>
<td>Resistor, Inductor, And Capacitor</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>T</td>
<td>Mechanical Torque from Wind Turbine</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>Uc</td>
<td>Maximum Continuous Operating Voltage</td>
</tr>
<tr>
<td>U_p</td>
<td>Protection Level</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>V_{max}</td>
<td>Threat Level</td>
</tr>
<tr>
<td>V_n</td>
<td>Arrester Rated Voltage</td>
</tr>
</tbody>
</table>
\(V_r \) Residual Voltage
\(W \) Watt
\(W/R \) Energy Dissipation
\(\eta \) Peak Current Correction Factor
\(v \) Wind Speed
\(\pi \) Pi
\(\rho \) Air Density
\(\tau_1 \) Rise Time Constant
\(\tau_2 \) Decay Time Constant
\(\Omega \) Ohm
\(\omega \) Rotor Angular Speed in Rad/Sec
\(\beta \) Blade Pitch Angle
CHAPTER 1

INTRODUCTION

1.1 Background

Grid-connected hybrid systems which are based on renewable energy (RE), such as combined generations of wind turbine (WT) and photovoltaic (PV) power, have become increasingly popular. This popularity is due to the need to address environmental issues, the outlook of depletion of fossil fuel reserves and the world’s energy demands (Ghoddami, 2013). The significance of hybrid systems arises from several factors, such as the security of electricity supply to customers, reduced CO₂ emissions by introducing RE sources, liberalisation of the electricity market, increased power availability and reliability, improved power quality, grid support and great long-term potential for the development of sustainable energy (Massoud et al., 2009; Renewables, 2012). They can also overcome the disadvantage of intermittent power output in stand-alone RE source and provide constant power supply. These systems, however, have disadvantages, such as high installation costs compared with those of traditional technologies for power generation (Nehrir et al., 2011). Moreover, they are vulnerable to direct or indirect lightning strokes due to their installation location and their expanded surface in wide-open areas (Christodoulou et al., 2016). Lightning stroke is an impulsive transient variation which is unidirectional in polarity (either negative or positive) generated during a thunderstorm (Berger, 1975). This transient variation is occasionally related to thunder due to electric charges that pass through the lightning channel. The main lightning source is rainstorms which infrequently occur during snowstorms (Sabiha, 2010).

1.2 Problem Statement

Hybrid PV–wind systems are exposed to direct and indirect lightning discharge. The probability of the hybrid systems to be struck by lightning is higher than that of conventional power systems due to the larger layout of PV and wind farm installations contained in the systems. WTIs are also tall structures of more than 150 m in height and frequently placed at locations highly exposed to lightning. The International Electrotechnical Commission (IEC) standard for lightning protection recognises four sources of damage due to direct and indirect lightning flashes (Rodrigues et al., 2011; Pons & Tommasini, 2013). The travelling waves resulted from lightning flashes cause a temporary increase in voltage (overvoltage) within the systems. This overvoltage is a transitory phenomenon that plays a harasser roll over insulation of electrical systems and can affect other equipment connected to the hybrid systems, such as PV modules, inverters, batteries, control systems, distribution boards, induction generators, transformers and circuit breakers (Bak et al., 2008; Quintana, 2017).
Such frequent problems may cause a deterioration in the utilisation rate and interruption of power supply and thus increase power generation costs (Rodrigues et al., 2012). Various studies have been conducted on the lightning effects on PV and WT systems either theoretically or experimentally. However, the most of studies have focused on a single type of RE source, and researches on hybrid systems remain few, which more studies need to be conducted on such systems. Therefore, this study aims to fill the gap by analysing lightning-induced transient effects on a grid-connected hybrid PV–wind system, and mitigation of lightning effects is investigated by using PSCAD/EMTDC software. The primary step to reduce the harmful impacts of overvoltage is by determining the background of this phenomenon. The point where lightning current may possibly flow from a system without lightning-protective devices is then identified.

Many lightning protection standards are available for PV and wind systems. However, standards for hybrid systems remain unavailable. In this study, the European Commission for Electrotechnical Standardization (CENELEC) standard, which is available for PV systems, is applied to the hybrid system. The selection of SPDs is according to the said standard. Whether the selected SPDs are appropriate is investigated. In any case, the compliance with national and international standards is significant to ensure the effectiveness of protection measures and thus guarantee the safe operation of the installation and the quality of supplied energy (Pons & Tommasini, 2013). The overvoltage waveforms that appear in various parts of a hybrid electrical system are computed. The possibility of damage depends on the impulse-withstanding voltage of each component. Thus, vital information is provided to enable relevant engineers to select surge protective devices (SPDs) with the most appropriate ratings for a given point according to threat level, and the equipment/component specifications can determine the vulnerability level. The selection of SPDs for a given purpose depends on threat level (Vmax), component vulnerability, impulse-withstanding voltage, lightning magnitude, rise time, decay time, maximum energy and total released lightning discharge.

1.3 Objectives of the Research

The objectives of this study are as follows:

1) To simulate a hybrid PV–wind system for lightning effects analysis performance,
2) to investigate the distribution of current and voltage in a hybrid PV–wind system due to direct lightning strikes,
3) to examine the levels of mitigation of lightning-related effects on the hybrid PV–wind system with the application of the recommendations given by the standard and determine whether they are appropriate, and
4) to propose recommendations for extending the existing lightning protection standards on PV energy source to hybrid systems.
1.4 Scope of the Work

The scope and limitation of this study are as follows:

1) The lightning-induced transient effects on a grid-connected hybrid PV–wind system and its mitigation are implemented using PSCAD/EMTDC software. The system consists of a 2 MW PV farm, a 2.1 MW wind farm, a backup battery system and a 300 kW three-phase resistor–inductor–capacitor (RLC) load bank. The temperature and solar irradiation of PV models are fixed at 25 °C and 1000 W/m², respectively. A fixed-speed WT generator is used in the wind farm to convert mechanical power into electrical power at a constant wind speed of 12 m/s.

2) The study is conducted for several simulation cases by using standard lightning impulses such as 8/20 µs and 10/350 µs, and also actual direct lightning current waveforms, such as negative first stroke, negative subsequent stroke and positive stroke. The lightning current waveforms are generated using Heidler function, and the transient overvoltage is evaluated at various parts of the system for each of those simulation cases.

3) The hybrid system does not include transmission lines; therefore, the corona effect on the lightning channel is not considered.

1.5 Significance of the Research

Lightning and its characteristic is significant to understand because it can only be diverted or intercepted to the path, if well-constructed and designed, which will reduce damage to hybrid PV–wind systems. Every year, lightning flashes cause damage to utility grids, including hybrid systems. Hybrid PV–wind systems comprise expensive components that cost a large amount of money in case of any damage due to lightning, especially in the large-scale power generation. Therefore, lightning protection for hybrid PV–wind systems based on the available standards for PV systems must be studied to design appropriate lightning protection measures for mitigating the transient effects of lightning strikes, considering that no standards are available for hybrid systems. This study helps to secure the operation of hybrid systems and ensure electrical power supply with reduced costs for customers.

1.6 Thesis Layout

This thesis is organised into the following five chapters: Introduction, Literature Review, Methodology, Results and Discussions, and Conclusions and Future Works.

Chapter 1 presents the research background, problem statements, research objectives, scope of work, significance of the research and thesis layout.
Chapter 2 provides the literature review. This chapter contains overviews on lightning, PV system and its different parts and configurations and wind energy. Overviews on global lightning protection codes and standards, previous studies on the lightning effects on PV and WT systems and different SPD types are also discussed.

Chapter 3 explains the research methodology. The model design of a hybrid PV–wind system is implemented using PSCAD/EMTDC software. This chapter includes the modelling of PV farm, battery system, wind farm, load, lightning current and surge arrester. Case studies for simulation are also described.

Chapter 4 discusses the simulation results. Results are generated from the hybrid system at normal steady-state operation condition without lightning current injection. The simulation results of the transient effect across the system without LPS and the system with LPS are given. In addition, this chapter includes the proposed recommendation guidelines to lightning protection developers.

Chapter 5 concludes the study, and future research is suggested to investigate and mitigate the transient effects on the hybrid PV–wind system due to indirect lightning strikes.
REFERENCES

Breza, P. (2013). Modelling and simulation of a PV generator for applications on distributed generation systems. (Master of Science), Delft University of Technology.

CLC. (2013). Low-voltage surge protective devices (pp. 34): European Committee for Electrotechnical Standardization (CENELEC).

Ma, A. W. (2012). *Modeling and analysis of a photovoltaic system with a distributed energy storage system*. (Master of Science), Faculty of California Polytechnic State University, US, California.

Ngampradit, V. (2010). *Discussion on measured impulse sparkover voltage of gas discharge tubes (GDT)*. 30th International Conference on Lightning Protection (ICLP), Cagliari, Italy.

