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Transparent polymers, such as polymethylmethacrylate (PMMA) and polysulfone 

(PSF), contain absorbing chromophores as a part of their structure. The 

chromophoric groups are able to absorb UV energy and involved in the 

photochemical degradation reactions leading to the formation of hydroperoxides and 

chain scission. Superb properties of environmentally friendly cellulose esters 

encourage us to use them as an inhibitor for photochemical interaction in addition to 

the high-formation ability. Moreover, the absorption peak of indium oxide 

nanoparticles (nano-In2O3) at round 280 nm. contribute to curb the photochemical 

interaction in the polymer matrix. The present thesis aims to improve PMMA and 

PSF in order to protect themselves and covered surfaces from the impact of UV 

radiation by using three environmentally friendly cellulose esters and the nano-

In2O3. Two sets of transparent nano-composites based on PMMA and PSF  were 

prepared separately with cellulose acetate butyrate (CAB), cellulose acetate 

propionate (CAP) and cellulose acetate phthalate (CAT) added with nano-In2O3 

using a twin screw extruder in various percentage concentrations. 

 

 

The preparation process was divided into two stages; the first was preparing 

transparent samples from PMMA and PSF separately with CAB, CAP and CAT. The 

second was adding nano-In2O3 to selected blend concentrations. Scans over UV and 

visible spectra for all highly transparent samples were made from 220 nm. to 800 

nm. using a spectrophotometer. The results showed that the absorbance peak in the 

ultraviolet region for pure PMMA at 226 nm and for pure PSF at 268 nm, whilst the 

transmittance peak in the visible range for pure PMMA at 798 nm and for PSF at 

712 nm. The results also showed that the increase in CAB, CAP and CAT 

percentage concentrations in blends reduce UV rays’ absorbance while maintaining a 

high transmittance.  The selection of specific concentrations PMMA/10%CAB, 

PMMA/10%CAP, PMMA/1%CAT, PSF/0.2%CAB, PSF/0.2% CAP and PSF/0.1% 

CAT represents less absorbance value within UV damage threshold for PMMA and 

PSF. The effect of nano-In2O3 percentage concentrations on the absorbance and 

transmittance spectrum for PMMA and PSF was done using a spectrophotometer. 
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The results demonstrated that PMMA/0.05%/nano-In2O3 and PSF/0.02%/nano-In2O3 

have maximum UV absorbance with high transmittance. Morphological and 

structural characterizations of selected samples were studied by means of Scanning 

Electron Microscopy (SEM) and Differential Scanning Calorimetry (DSC). The 

SEM results showed single phase for PMMA blends and composite surfaces, while 

PSF blends surfaces showed a size reduction in all blend and composite samples. 

The DSC results indicated that all samples are miscible. The thermogravimetry 

analysis (TGA) was used to characterize thermal behavior of the samples. The 

results indicated that pure PMMA degraded in three steps while pure PSF degraded 

in two steps. The TGA analyses also indicated that all CAB, CAP and CAT blends 

with PMMA and PSF have good thermal stability and adding nano-In2O3 

maintained the thermal stability for all samples. The dynamic mechanical Analysis 

(DMA) showed that the storage modulus and loss modulus of PMMA significantly 

increased by the incorporation of nano-In2O3. Finally, the samples 

PMMA/10%CAB/0.05% In2O3 and PSF/0.2%CAP/0.02% In2O3 are the best overall 

properties in this work. 
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Dua set komposit Nano lutsinar, yang berasaskan Polimetilmetakrilat (PMMA) dan 

polisulfon (PSF), mengandungi chromophores sebagai sebahagian daripada struktur 

mereka. Kumpulan-kumpulan chromophoric dapat menyerap tenaga UV dan terlibat 

dalam tindak balas fotokimia degradasi yang membawa kepada pembentukan 

hydroperoxides dan rantaian scission. Ciri-ciri luar biasa yang dimiliki oleh ester 

selulosa yang turut bersifat mesra alam menggalakkan kita untuk menggunakannya 

sebagai perencat bagi interaksi fotokimia sebagai tambahan kepada keupayaan-

pembentukan tinggi. Selain itu, puncak penyerapan nanopartikel indium oksida 

(nano In2O3) pada pusingan 280 nm. membendung interaksi fotokimia dalam matriks 

polimer. Kajian bertujuan untuk meningkatkan PMMA dan HPG sebagai langkah 

melindungi diri mereka dan permukaan dilindungi daripada kesan sinaran UV 

dengan menggunakan tiga ester selulosa mesra alam dan nano-In2O3. Dua set 

komposit Nano lutsinar berdasarkan PMMA dan PSF telah disediakan secara bebas 

dengan selulosa asetat butyrate (CAB), selulosa asetat propionat (CAP) dan selulosa 

asetat phthalate (CAT) ditambah dengan nano In2O3 menggunakan penitis skru 

berkembar dalam pelbagai peratusan kepekatan. 

 

 

Proses penyediaan telah dibahagikan kepada dua peringkat; peringkat yang pertama 

ialah penyediaan sampel telus dari PMMA dan PSF berasingan dengan CAB, CAP 

dan CAT. Peringkat yang kedua ialah menambah nano In2O3 kepada kepekatan 

campuran yang dipilih. Imbasan lebih UV dan spektrum yang boleh dilihat untuk 

semua sampel sangat telus dibuat daripada 220 nm. hingga 800 nm menggunakan 

spektrofotometer. Hasil kajian menunjukkan bahawa puncak keserapan di rantau 

ultraviolet untuk PMMA tulen adalah pada 226 nm. dan untuk PSF tulen adalah pada 

268 nm, manakala puncak pemindahan dalam julat yang boleh dilihat untuk PMMA 

tulen ialah pada 798 nm dan untuk PSF ialah pada 712 nm. Keputusan juga 

menunjukkan bahawa peningkatan dalam kepekatan CAB, CAP dan peratusan CAT 

dalam campuran mengurangkan kuantiti sinar UV ' walaupun mengekalkan kadar 

pemindahan yang tinggi. Pemilihan kepekatan tertentu PMMA / 10% CAB, PMMA / 

10% CAP, PMMA / 1% CAT, PSF /% CAB 0.2, PSF / 0.2% CAP dan PSF / 0.1% 
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CAT mewakili kurang nilai kuantiti dalam kerosakan UV ambang untuk PMMA dan 

PSF. Kesan kepekatan peratusan nano In2O3 pada kuantiti dan pemindahan spektrum 

untuk PMMA dan PSF telah dilakukan dengan menggunakan spektrofotometer. 

Keputusan menunjukkan bahawa PMMA / 0.05% / nano In2O3 dan PSF / 0.02% / 

nano In2O3 mempunyai kuantiti UV maksimum dengan kadar pemindahan yang 

tinggi. Sampel akhir telah disediakan dari semua kepekatan. Morphological yang 

dipilih dan pencirian struktur sampel yang dipilih telah dikaji dengan cara 

menggunakan Scanning Electron Microscopy (SEM) dan Differential Scanning 

Calorimetry (DSC). Keputusan SEM menunjukkan fasa tunggal untuk campuran 

PMMA dan permukaan komposit, manakala PSF telah menggabungkan permukaan 

menunjukkan pengurangan saiz dalam semua gabungan dan sampel komposit. 

Keputusan DSC menunjukkan bahawa semua sampel terlarut boleh bercampur. 

Analisis termogravimetri (TGA) telah digunakan untuk mencirikan kelakuan terma 

sampel. Keputusan analisis menunjukkan bahawa PMMA tulen berkurangan dalam 

tiga langkah sementara PSF tulen berkurangan dalam dua langkah. TGA analisis 

juga menunjukkan bahawa semua CAB, CAP dan CAT campuran dengan PMMA 

dan PSF mempunyai kestabilan haba yang baik, terutamanya dengan menambah 

nano In2O3 bagi mengekalkan kestabilan haba untuk semua sampel. Mekanikal 

Analisis dinamik (DMA) menunjukkan bahawa penyimpanan modulus dan 

kehilangan modulus PMMA meningkat dengan ketara. Secara keseluruhannya, 

sampel PMMA/10%CAB/0.05% In2O3 dan PSF/0.2%CAP/0.02% In2O3 

meuunjukkan sifat uvggul dalam projek ini. 
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CHAPTER 1 

INTRODUCTION 

1.1 Transparent Polymers 

In a world full of different types of polymers it is perhaps the transparent ones that 
give the greatest benefit to our lives because it is involved in numerous applications 
(from eye glasses to solar concentrating lenses for spacecraft power and propulsion 
systems) (Edwards et al., 2000). It has now become indispensable in all areas of life. 
The structure of transparent polymers does not differ significantly from non-
transparent (opaque) polymers, that only transparent polymers are often amorphous 
and the blends mostly miscible. There are about 120 types of transparent polymers 
most of them are acrylic with transmittance more than 90% and refractive index of 
1.5-1.6. Polysulfone as one of transparent polymers that has a refractive index 1.63 
and transmittance of about 80% (Seymour and Carraher, 1984). The most common 
transparent polymer is PMMA and polycarbonate (PC). In order to apply polymers 
in optical uses, they must have different refractive indices (Prasad, 2012). As a result 
of their functional performance polymers transparency is affected by UV radiation 
and weather conditions leading to a decrease in transparency (photolysis) because of 
oxidative degradation that lead to molecular chain scission (Hamdy et al, 2016; Sun 
et al., 2016).  

1.2 Thermal Behavior of Polymers 

The thermal transitions in polymers are slightly different and more complex than 
non-organic. First, the molecules are large enough to be suitably called polymers and 
do not exist in the gaseous state and they decompose rather than boil. Second, 
polymer consists of a mixture of molecules possessing different chain lengths 
(different molecular weights), so the transition from solid to liquid form of a 
polymer is rather diffuse and occurs over a temperature range between 2 and 10 °C 
depends on the polydispersity of the polymer. Third, the polymers become very 
viscous fluids (viscoelastic form) in the melting.  

The molecular motion in a polymer is promoted by its thermal energy and opposed 
by the cohesive forces between structural pieces along the chain in addition to 
neighboring chains. These cohesive forces and, as a result, thermal transitions in 
polymers rely on polymer structure. In this regard, Polymeric materials are 
characterized by two major types of transition temperatures, the glass transition 
temperature (Tg) and the crystalline melting temperature (Tm). 

The transition from the hard (brittle glass) to a softer (rubbery) state in amorphous 
polymers occurs through a temperature range called the glass transition temperature 
(Tg) and in the case of a partially crystalline polymer the transformation occurs only 
in the amorphous regions whilst the crystalline zones remain unchanged and act as 
reinforcing elements so the polymer be hard and tough. If heating is continued, the 
polymer crystalline zones initiate melting. The equilibrium crystalline melting point 
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(Tm) for polymers will be the temperature at which the last crystalline starts melting. 
It is noteworthy that the value of (Tm) depends on the degree of crystallinity and size 
distribution of crystallites (Ebewele, 2000; Odian, 2004). 

1.2.1  The Glass Transition Temperature (Tg) 
 

The glass transition temperature term observes in linear amorphous polymers, such 
as poly methylmethacrylate or polystyrene. It occurs at well-known temperatures. 
When the bulk material is heated to temperatures above the glass transition 
temperature (Tg) turns from brittle and glassy to soften like rubber or liquefy 
depending on their degree of cross-linking and/or molecular weight. In the case of 
semi crystalline materials (polypropylene, polyethylene) Tg is much lower than 
melting point and represents the temperature range in which on cooling the 
brittleness increases noticeably (Rieger, 2001). 
 
Many physical properties like mechanical damping, heat capacity, coefficient of 
thermal expansion, electrical properties and refractive index change profoundly at Tg 
because they depend on the relative degree of freedom of molecular motion within 
polymeric materials and each property can be used to monitor the point at which Tg 
occurs (Nicholson, 2012; Rieger, 2001). The rheological definition of glass transition 
is that the glass transition occurs when the viscosity is 1012 Pa.s. 
 
The Tg depends on the cooling rate because glass transition is kinetic property. 
When the cooling rate (normal cooling rate in glass studies 10K/min) increases, glass 
transition would occur at a high temperature; when the cooling rate decreases, glass 
transition would occur at low temperature (Zhang, 2008). 
 
The most common methods for determining the glass transition temperature are 
Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC) and 
Dynamic Mechanical Analysis (DMA) (Rieger, 2001).  

1.2.2  The Crystalline Melting Point (Tm) 
 

Melting includes a change from the crystalline solid state to the liquid form. For low 
molecular weight materials, melting represents a first order thermodynamic 
transition characterized by discontinuities in the primary thermodynamic factors of 
the material system such as specific volume (density), heat capacity, transparency 
and refractive index. Melting happens when the change in free energy of the process 
is zero. 
 
The crystalline polymers do not have clear melting points. This is because they are 
effectively mixtures, including components from a range of relative molar masses, 
each component of which melt at different temperature. Thus, low relative molar 
mass homopolymers melt at lower temperatures than high relative molar mass 
species. The size of the crystallites also influences the range of the melting 
temperature, as smaller and less perfect crystallites melt before large ones when the 
temperatures are heating up. 
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There are two other factors which influence the value of the temperature range over 
which melting takes place: 

• First is the presence of co-monomer in the polymer, involving
copolymerization, this factor reducing the melting point by shortening the
crystallisable series length within the individual polymer molecules.

• Second is the presence of solvent trace or solvent plasticizer in the polymer,
this factor dose so by increasing the relative mobility of the polymer
molecules in the material, so reducing the necessary energy to take them into
the liquid phase (Nicholson, 2012).

1.3  Polymer melt 

Polymers can be illustrious by their properties, especially the change that occurs 
after heating, which relates to their change in stiffness and damping. Each polymer 
has individual physical properties that will set their use in practice. It is important to 
be able to determine the nature of an unknown polymer for many reasons. The first 
is to be able to determine the quality and dependability of a manufacturing process, 
to see that the final product is of a steady composition with time. The second is to 
match up polymers from different origins, of apparently similar groups. Finally, it is 
often important to be able to determine the nature of a plastic of unknown origin 
(Faria et al., 2007). 

The melt blending is a complex procedure which includes melting of pellets, 
dispersive mixing, distributive mixing, and droplet cohesion. Dispersive mixing is a 
procedure in which the size of a dispersed phase decreases because of applied 
stresses, even as distributive mixing includes homogenization of the dispersed phase 
inside a matrix. Figure 1.2 shows how dispersed phase morphology creates 
throughout melt compounding. At first, pellets of the minor component melt and a 
thin film of the dispersed phase is structured on the surfaces of the mixing equipment 
because of shear forces. This film is precarious and creates holes as a consequence of 
interfacial unsteadiness, structuring a lace-like formation of thin filaments which at 
last separation into droplets. Without a compatibilizer at the phase interface a coarser 
morphology is formed because of droplets cohesion of, whilst a better dispersion is 
gotten with a compatibilizer (Cheerarot, 2012; Ryan, 1998; Scott and Macosko, 
1995). 

Figure 1.1: Diagram depicting morphology progress of the dispersed phases 
through melt mixing of immiscible polymers (Ryan, 1998). 

3 
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1.4  Polymer Blends and Copolymers 

1.4.1  Polymer Blends 

Polymer blends are physical mixtures of two or more polymers (these polymers 
could be homopolymers or copolymers). It has been estimated that ~ 30% of all 
polymers are solid in mixed form. Attention on these materials has been increased 
firstly from the ability to develop mechanical properties. The phase behavior of 
polymer blend systems is a function of temperature, pressure and concentration. The 
huge majority of polymer blends has been found to be multiphase - either completely 
immiscible or multiphase with some limited mixing. This is mostly the result of the 
small combinatorial entropy of blending for the disparate polymer chains. The 
remaining part is a single phase, melt-miscible mixtures (Cheng, 2002; Ibrahim and 
Kadum, 2010). 

Polymer blends consist of 30 – 40% of polymer products, and gradually more 
employed in the new materials design. Among the reasons that led to blends to be of 
considerable interest are: 

• Adaptability in detail end product properties.

• Synergistic arrangements of blend ingredients to optimize the properties, such as
improving mechanical, optical, thermal and electrical properties. 

• Low investment cost of novel materials design and low cost.

Most profitable blends consist of two polymers and a small amount of a third 
compatibilizing polymer (typically copolymer). Polymer blends are combination of 
independent molecular distributions, which can vary in molecular weight MW and 
structure of functional groups.  

Several techniques have been utilized to distinguish single and multi-phase character 
in polymer blends. Optical clarity is frequently used as a first indication, in the 
absence of crystallinity; a single-phase material is expected to be optically clear 
while a multi-phase mixture should be opaque. Optical and electron microscopy 
techniques are used often in an attempt to find out phase structure in polymer blends 
and block copolymers. The dependence on the atomic force microscopy (AFM) will 
help to characterize the phase-separated structure of phase separated blends and 
copolymers. Measurement of the location and number of Tg by thermal analysis 
techniques is the most common approach to evaluate phase behavior in a particular 
temperature range in polymer blends. In a binary mixture, if two Tg’s are observed 
at the same temperatures as those of the component polymers, means that the 
polymers are completely immiscible. A single Tg between the components indicates 
miscibility. The intervals of Tg in miscible polymers are frequently broadened 
compared to those of the components, as a result of a distribution of local 
surroundings. There is also two Tg’s but shifted inwards from the components. This 
is generally taken to indicate multiphase behavior with some mixing between the 
components. A partially miscible blend as well can happen in polymer blends 
(Cheng, 2002; Ibrahim and Kadum, 2010). 
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Many expressions have been used to predict Tg of miscible mixtures.  The Fox-Flory 
equation, primarily derived for random copolymers, is probably the most widely 
used (Cheng, 2002; Ibrahim and Kadum, 2010). 

Attempts have also been made to connect the experimentally derived (Tg)s of 
miscible blends to intermolecular interactions (Ibrahim and Kadum, 2010; Kwei et 
al., 1987; Lu and Weiss, 1992). 

1.4.2  Copolymers 

Copolymers are macromolecules that are created from two or more different 
monomer units. The basic arrangements of the building blocks are determined by 
relative monomer reactivities and the synthetic procedures used. Different chemical 
units can be arranged in random, blocky or alternating fashion. The most common 
block copolymers are: diblocks (where relatively long segments of monomers A and 
B are connected at one end); triblock copolymers (the An-Bin-An type); and 
multiblock copolymers ([A-A . . . . . . A-B-B . . . . . . B]x ). The alternating and 
random copolymers frequently show a single phase structure, conversely high 
molecular weight (block and graft copolymers) often exhibits phase separated 
morphology. However, microphase separation can watch, because of the 
interconnectivity of the kinds, as opposed to separation of large scale, that found in 
the great bulk of polymer blends. 

Thermoplastic elastomers are an important class of materials that are frequently 
derived from tri or multi-block arrangements. These polymers are consisting of a 
comparatively high concentration of soft (molecule) (blocks that are amorphous and 
have low Tg) besides two or more hard (molecule). The hard molecules provide 
physical crosslinks (reinforcement) and are either amorphous with Tg > room 
temperature or crystalline with a melting point above room temperature (Styrene-
butadiene-styrene triblock copolymers) (Cheng, 2002). 

1.5  Composites 

A composite material is a macroscopic combination of two or more different 
materials, having detectible interface between them. Composites are used in 
electrical, thermal, structural properties and environmental applications. Current 
composite materials are ordinarily optimized to get a particular balance of properties 
for a given range of applications. Therefore, composites normally have a fiber or 
particle that is stronger and stiffer than the continuous matrix phase. Different types 
of reinforcements as well have good thermal and electrical conductivity. 

1.5.1  Composites Classification 

Generally, composites are classified in two different levels: 

• The first level is usually based on the matrix ingredient. The main composite
is comprised of organic-matrix composites (OMCs), ceramic-matrix
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composites (CMCs) and metal-matrix composites (MMCs). Normally, OMCs 
supposed to include two classes of composites: polymer-matrix composites 
(PMCs) and carbon-matrix composites (CCMC) (typically referred to as 
carbon-carbon composites). Commonly, CCMC are formed from PMCs by 
involving the extra steps of carbonizing and condensation the original 
polymer matrix. 
 

• The second level is based on the reinforcement from particulate 
reinforcements, continuous fiber laminated composites, whisker 
reinforcements and woven composites as shown in Figure1.2 (Zweben, 
1998). Generally, the substantial volume fraction of the reinforcement is 
about ~10% or more to provide a useful increase in properties. Thus, 
particulate reinforced composites include those reinforced by spheres, flakes, 
rods and many other forms of approximately equal axes. The whisker 
reinforcements, with an aspect ratio typically between 20 and 100, are often 
considered together with particulates in MMCs. Mutually, these are sorted as 
a discontinuous reinforcements, because the reinforcing phase is intermittent 
for the lower volume fractions typically used in MMCs. While continuous 
fiber reinforced composites include reinforcements having lengths much 
bigger than their cross sectional dimensions and a large amount of them 
include fibers that are similar in size (length) to a general dimensions of the 
composite part. Each layer of a continuous fiber composite usually has a 
specific fiber orientation direction as in Figure 1.3. 

 
 There is also filled structure. The filler particles are included for the purpose of cost 
decrease more willingly than reinforcement, these composites, generally, not 
considered as a particulate composite (Miracle and Donaldson, 2003; Zweben, 
1998). 

 
Figure 1.2: Common fiber reinforcement forms (Zweben, 1998). 

1.6  Nanomaterials and Nanostructures 
 

Nanomaterials (NM) are generally regarded as materials with a minimum of external 
dimension that measures less than 100 nm. or with internal structures measuring not 
as much of 100 nm. They possibly will be in the form of particles, tubes, rods or 
fibers. The nanomaterials that have the similar composition as known bulk form 
materials possibly will have different physic-chemical properties than the similar 
materials in bulk form, and may act in a different way if they enter the body.  
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1.6.1  Nanomaterials Classification 

The production of materials and devices with new properties by method of 
controlling their microstructure on the atomic level has turned into a rising 
interdisciplinary field comprising of solid state physics, biology, chemistry and 
material science. The materials and devices included could be classified into the 
following three groups: The first group includes materials and devices with reduced 
dimensions in the shape of isolated, substrate-supported or embedded nanometer 
extent particles, thin wires or thin films. The second group includes materials and 
devices in which the nanometer extent microstructure is limited to a thin surface area 
of a bulk material, and the third category of bulk solids with a nanometer extent 
microstructure (Gleiter, 2000; Zweben, 1998). 

One of the essential consequences of the materials science is the knowledge that 
most properties of solids rely on the microstructure. A decrease in the spatial 
dimension, or imprisonment of particles or semi-particles in a specific 
crystallographic direction inside the structure normally leads to changes in physical 
properties of the system in that direction. Therefore an additional classification of 
nanostructured materials and systems basically relies on the number of dimensions 
which exist within the nanometer range: zero dimensional structures, like nano-pores 
and nano-particles, one dimension, possessing only one dimension in the nanometer 
scale, and thus are as lamellae. Graphene and clays are known as being nano-layered 
particles. Two dimensions, the particles have two dimensions in the nanometer range 
and the third dimension is larger, their structure is extended. Cellulose nano-
whiskers and carbon nanotubes are typical examples of this group. Three 
dimensions, when the particles have three nanoscale dimensions they are named ISO 
dimensional nanoparticles like spherical silica nanoparticles Figure 1.4 (Cheerarot, 
2012; Pokropivny, 2007): 

Figure 1.3: Schematic classification of nano – materials: (a) three – dimensional 
tructures;(b) two – dimensional; (c) one – dimensional; and (d) zero – 
dimensional structures (Pokropivny, 2007). 
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1.7  Polymer nanocomposites 

Polymer nanocomposite (PNC) is a mixture of composites and nano-sized materials, 
it consists of two types of materials, a host polymer and nano-size filler. Polymer 
based nano composite is getting an increasing interest because of substantial 
enhancements in the physical and chemical properties of the materials. The logic 
behind these properties enhancement is the small size of fillers and homogeneous 
dispersion on the nano-scale within a polymer matrix in addition to the length scale 
of interaction with the polymer segments. There is a high volume fraction of an 
interface area between the polymer matrix and the nanoparticles because of the small 
particle size (Vaia and Giannelis, 2001). Therefore, a small amount of nano-filler can 
improve the polymer properties by several orders of magnitude. Also, the molecular 
mobility and packing density of the segments in that interface quite different from 
those in the matrix polymer (Kotsilkova et al., 2005).  A few methods have been 
utilized to describe the structure and properties of PNCs like, X-ray diffraction 
(XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared 
Spectroscopy (FTIR) and transmission electron microscopy (TEM) (Chen et al., 
2009; Olmos et al., 2014). 

1.8  Polymer Degradation 

The ultraviolet region in optical spectrum is the most harmful part of sunlight owing 
to its high energy. The photon energy related to it is of the order (from 0.3 to 0.4 MJ) 
, which is in the range of C―C energy, ultraviolet radiation could cause C―C bonds 
break, ensuing a scission of the polymer chain. Other bonds like C―O and C―H 
might also break. PMMA absorbs up to 95% of the incident UV rays within the 
range of UVC 100–280. The most important feature of arbitrary scission in a 
polymer chain is a fast decrease in the MW. The changes that happen in the physical 
properties of a polymer in addition to MW leads to decrease in its mechanical 
properties and its ability to perform satisfactorily in a few applications (Abouelezz 
and Waters 1978, Mitsuoka et al., 1993; Yousif et al. 2015). The arbitrary scission 
leads to the disintegration of the chemical bond to generate free-radical. There may 
be more than one free-root in a composition (Abouelezz and Waters, 1978; Rabek 
and Fouassier, 1989). 

In PMMA, the number of scissions occurring in its chains relative to the number of 
quanta that absorbed by the chain and they recognized the proportionality constant as 
the quantum yield of chain scission (Abouelezz and Waters, 1978).   

It was found that at room temperature random main chain fracture in PMMA 
degradation happens with ultra-violet UV radiation, while at higher temperatures the 
reaction is one of chain depolymerization. The energy amount that absorbed for each 
main chain fracture is about 550 eV with ultraviolet radiation, so that less than 1% of 
the quanta absorbed are effectual. In recent times, the wavelength sensitivity in 
photodegradation of PMMA was studied by monochromatic radiation using the 
Okazaki Large Spectrograph (OLS). It was discovered that the limit wavelength of 
main chain scission is between 260-320 nm.  
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Furthermore, the number of main-chain scission which has a greater value in the 
case of the irradiation with 280 nm. (Mitsuoka et al., 1993; Torikai and Hasegawa, 
1998; Torikai et al., 1990). 

1.9  Refractive Index 

The refractive index (𝑛) of the medium is a number describing how fast the light 
travels through a specific medium relative to light speed in vacuum. Generally, the 
refractive index defined by: 

𝑛 =
𝑐
𝑣

(1.1) 

  where 𝑐 is the light speed in a vacuum, and 𝑣 is the light speed in the medium. 

The refractive index used as a measure of the material purity and optical design. In 
the field of transparent polymers, studying refractive index of the material gives a 
clear picture of the behavior of the penetrating rays in the material. The refractive 
index of the homogeneous material is isotropic even the molecules are oriented 
randomly (Kuzyk, 2006).  

Practically, the refractive index measured directly by refractometer. Theoretically, it 
can find out from the optical band gap which obtained from the absorption curve 
edge of UV-VIS spectra. The absorption coefficient α can find from absorbance 

value  𝐴 = 𝑙𝑜𝑔 𝐼 𝐼�  using the relation (Asha et al., 2009):

𝛼(ℎѵ) = 2.303𝐴
𝑇� (1.2) 

where 𝑇 is the thickness of the sample, 𝐼  is the intensity of the incident beam and 𝐼 
is the intensity of the incident beam. The optical band gap determined from the curve 
tangent in the absorption edge for (αhѵ) against (hѵ). The empirical relation between 
the optical band gap and refractive index proposed for different compounds by 
Reddy (Reddy at al., 1998): 

𝑛 = �
12.417

𝐸𝑔 − 0.365
2

(1.3) 

 where Reddy equation is the modified form of Moss equation which proposed that 
the energy levels in a solid material are scaled down by the factor 1 𝑛4�   .  The Reddy
equation compatible with practical results than Moss equation (Kumar and Singh, 
2010). 
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1.10  Problem Statement 
 

One of the major problems experienced in transparent polymers is degradation 
emerging from its exposure to sunlight (Ultraviolet radiation), which leads to 
changes in material color, surface glimmering and the cracks appearance of a 
surface. As a result, reduces the lifetime of the product. This issue up to some 
transparent polymers, such as PMMA and PSF, contain strongly absorbing 
chromophores as an integral part of their structure. The chromophores are capable to 
absorb UV ray energy and involve in the photochemical degradation reactions that 
occur via free radical mechanisms, leading to the formation of hydroperoxides and 
chain scission of the polymer. There are many researches which are based on 
blending the polymer as a solution of its problems. So choosing to blend PMMA and 
PSF with UV inhibitors in order to minimize photochemical interaction.  
 
Unusual optical and thermal properties of eco-friendly cellulose esters motivate us to 
use them as an inhibitor for photochemical interaction in addition to the high-
formation ability. Moreover, indium oxide nanoparticles (nano-In2O3) show a strong 
absorption below 450 nm with an absorbance  peak at round 288 nm, it may 
contribute to curb the photochemical interaction with the polymer matrix (Maensiri 
et al., 2008a). 

1.11  Objectives 
 

The goal of the present thesis is to improve two important transparent polymers 
(Polymethylmethacrylate-PMMA and Polysulfone-PSF) in order to protect 
themselves and covered surfaces from the impact of ultraviolet radiation by using 
some environmentally friendly cellulose esters with nanomaterial. The objectives of 
this thesis: 
 
1. To study the effect of adding different percentage concentrations of cellulose 

acetate derivatives (cellulose acetate butyrate CAB - cellulose acetate propionate 
CAP - cellulose acetate phthalate CAT) on absorbance and transmittance 
spectrum of PMMA and PSF blends separately in order to select less absorbency 
within ultraviolet region and high transmittance in the visible region, with taking 
into consideration the transparency of samples. 
 

2. To analyze bi-composite samples PMMA/nano-In2O3 and PSF/nano-In2O3 using 
UV-VIS spectrum and select maximum absorbance. Then, formulate tri-
composite samples which consist of selected PMMA/cellulose acetate 
derivatives and PSF/cellulose acetate derivatives individually with the addition 
of the selected concentrations of nano-In2O3. 
  

3. To study the morphologe of all selected samples beside pure PMMA and pure 
PSF in addition to study the mechanical, thermal and thermo-mechanical 
properties of all selected samples in addition to pure PMMA and pure PSF. 
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1.12  Thesis Layout 

The thesis consists of five chapters of chapter one provides an introduction of the 
concepts and terminology as stated in the thesis with the problem statement and 
aims. Chapter two gives a literature review. Chapter 3 describes the materials and a 
sample preparation method, moreover includes a detailed explanation of the devices 
that used in the project. Chapter four illustrates the results of measurements have 
been reached and conclusions. Finally, Chapter 5 comprises the summary and future 
studies. 
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