UNIVERSITI PUTRA MALAYSIA

ANTIDEPRESSANT-LIKE EFFECTS OF MENHADEN FISH OIL IN POSTPARTUM-INDUCED MODEL OF DEPRESSION IN RATS

LEILA ARBABI

FPSK(M) 2014 15
ANTIDEPRESSANT-LIKE EFFECTS OF MENHADEN FISH OIL IN POSTPARTUM-INDUCED MODEL OF DEPRESSION IN RATS

By

LEILA ARBABI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

I dedicate this thesis to my beloved parents for their unconditional love and support
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ANTIDEPRESSANT-LIKE EFFECTS OF MENHADEN FISH OIL IN POSTPARTUM-INDUCED MODEL OF DEPRESSION IN RATS

By

LEILA ARBABI

March 2014

Chair: Mohamad. Taufik Hidayat Baharuldin, PhD
Faculty: Faculty of Medicine and Health Sciences

Postpartum depression (PPD) is a psychiatric disorder that defined as a subtype of major depressive disorder (MDD) which may result from reproductive hormone fluctuations subsequent to childbirth. Approximately 10-15% of women experience postpartum depression (PPD) after baby delivery. It is hypothesized that the depression symptoms may be attenuated with omega-3 fatty acids. In order to examine this hypothesis, ovariectomized female rats underwent hormone-simulated pregnancy (HSP) regimen and received progesterone and estradiol benzoate or vehicle for 23 days, mimicking the actual rat’s pregnancy. Forced feeding of menhaden fish oil (rich in omega-3) with three doses of 1, 3 and 9 g/kg/d, fluoxetine (an antidepressant drug) 15mg/kg/d and distilled water 2ml/d per rat started in six experimental groups on postpartum day 1 and continued for 15 consecutive days. On postpartum day 2, 8 and 15 all groups were tested in the forced swimming test (FST) and open field test (OFT). The seventh experimental group (normal control), which had not experienced neither ovariectomy nor injection, received only distilled water 2ml/d through oral gavage for 15 consecutive days and underwent the same behavioral tests as well. Animals were sacrificed by decapitation on postpartum day 15 following exposure to behavioral tests and blood and brain samples were collected. Plasma samples were utilized to assay levels of corticosterone and pro-inflammatory cytokines using ELISA and Procarta immunossay technique respectively. The corticosterone levels of hippocampus were measured by ELISA as well. Significant differences between groups were evaluated using one-way analysis of variance (ANOVA), followed by the post hoc Tukey’s multiple comparison test when appropriate \(P<0.05 \) was considered significant. The results showed that following 15 consecutive days’ treatment with three different doses of menhaden fish oil, the immobility time of animals seen in FST was reduced compared to negative control group. The effect was found to be dose dependent where menhaden fish oil 3g and 9g/kg/d have shown significant reduction in immobility time. Furthermore, menhaden fish oil did not change locomotor activity; therefore, the decrease of immobility time observed in FST.
following menhaden fish oil supplementation is due to its ability to attenuate depression. The results of biochemical analysis showed that the plasma levels of corticosterone, interleukin 1-β and interferon-γ were decreased significantly following menhaden fish oil treatment at doses of 3 and 9 g/kg/d. In addition, supplementation with 9 g/kg menhaden fish oil significantly decreased the plasma levels of tumor necrosis factor-α and hippocampal levels of corticosterone. However, menhaden fish oil at 1 g/kg produced a slight reduction (p>0.05) in immobility time in FST and in the levels of corticosterone and pro-inflammatory cytokines. Taken together, these results suggest that menhaden fish oil, rich in omega-3, exerts beneficial effect on postpartum depression and decreases the biomarkers related to depression.
KESAN ANTI-KEMURUNGAN MINYAK IKAN MENHADEN KEATAS MODEL KEMURUNGAN POSTPARTUM

Oleh

LEILA ARBABI

Mac 2014

Pengerusi: Mohamad. Taufik Hidayat Baharuldin, PhD
Fakulti: Perubatan dan Sains Kesihatan

Kemurungan postpartum (PPD) ialah gangguan psikiatri yang berlaku selepas kelahiran anak. PPD didefinisikan sebagai satu bentuk gangguan kemurungan (MDD) disebabkan oleh ketidakstabilan hormon reproduktif selepas kelahiran anak. Hampir 10-15% wanita mengalami PPD setelah kelahiran bayi. Adalah dihipotesiskan bahawa simptom-simptom kemurungan boleh dikurangkan dengan pengambilan asid omega 3 lemak. Untuk mengkaji hipotesis ini, tikus betina yang diaruh ovariektomi disimulasi kehamilan oleh hormon (HSP) melalui pemberian benzoat progesteron dan estradiol atau bahan kawalan selama 23 hari, bagi menyerupai tempoh kehamilan tikus sebenar. Pemberian secara oral minyak ikan menhaden (kaya dengan omega-3) dengan tiga dos 1, 3 dan 9 g/kg/d, 15mg/kg/d fluoxetine (dadah antidepresan) dan 2mL/d air suling setiap tikus dimulakan keatas 6 kumpulan eksperimen pada hari pertama pospartum dan berterusan untuk 15 hari berikutnya. Pada hari ke-2, 8 dan 15 pospartum, semua kumpulan diuji dengan ujian paksa-renang (FST) dan lapangan terbuka (OFT). Kumpulan uji kaji ketujuh, yang tidak diaruh ovariektomi mahupun suntikan hormon, menerima 2mL/d air suling secara oral untuk 15 hari berturut-turut serta menjalani ujian tingkahkala yang sama. Haiwan dikorbankan dengan dipenggal lehernya pada hari ke-15 pospartum selepas ujian tingkahkala serta sampel darah dan hipokampus diambil. Sampel plasma digunakan untuk ujian kortikosteron dan sitokin pro-inflamatori menggunakan ELISA dan teknik ujian imun Procarta. Tahap kortikosteron hipokampus diukur menggunakan ELISA. Perbezaan yang signifikan antara kumpulan dinilai menggunakan ANOVA, diikuti dengan ujian perbandingan pelbagai Tukey post hoc. Setelah 15 hari rawatan dengan tiga dos minyak ikan menhaden, masa immobiliti haiwan ketika FST lebih pendek berbanding kumpulan kawalan negatif. Dos 3g dan 9g/kg/d minyak ikan menhaden menunjukkan pengurangan yang signifikan terhadap masa immobiliti haiwan. Tambahan pula, pengambilan minyak ikan menhaden tidak mengubah aktiviti lokomotor; maka, pengurangan masa immobiliti haiwan ketika FST mencadangkan bahawa pengambilan minyak ikan menhaden berupaya mengurangkan kemurungan.
Keputusan analisis biokimia menunjukkan aras kortikosteron plasma, interleukin-1-β dan interferon-γ menurun dengan signifikan pada kumpulan rawatan 3 dan 9 g/kg/d minyak ikan menhaden. Pengambilan 9 g/kg minyak ikan menhaden juga mengurangkan aras plasma nekrosis tumor faktor α dan kortikosteron hipokampus dengan signifikan. Walaubagaimanapun, minyak ikan menhaden 1g/kg menunjukkan sedikit penurunan (p>0.05) terhadap tempoh imobiliti FST dan paras kortikosteron serta sitokin. Oleh itu minyak ikan menhaden, yang kaya dengan omega-3, dicadangkan mempunyai kesan antidepresan serta berupaya mengurangkan paras penunjuk biologi ke atas tikus-tikus yang diaruh PPD.
ACKNOWLEDGEMENTS

First of all, I would like to thank God for giving me this opportunity. I am honored and grateful to have the full support and commitment from a number of people during my study. I would like to express my sincere appreciation and gratitude to my supervisor Assoc. Prof. Dr. Mohamad. Taufik Hidayat Baharudin, my co-supervisor Assoc. Prof. Dr. Mohamad. Aris Mohamad. Moklas and member of the Supervisory Committee Assoc. Prof. Dr. Sharida Fakurazi for their kindness, support and guidance all throughout my study.

I am also indebted to the staffs of Anatomy laboratory, Department of Human Anatomy of FMHS for helping me to set up the behavioral room and assisted during the laboratory work. I would like to express special thanks to Dr. Sani Ismaila Muhammad for his technical support regarding surgery on rats and Mr. Ramli Suhaimi and staffs of Animal Unit for their kind support. I am also thankful to Mr. Ariyo Movahedi and Mr. Sobhan Ghafourian for their technical support.

Last but not least, I would like to express my deepest thanks to my beloved family and parents for their patience, continuous support and encouragement.
I certify that a Thesis Examination Committee has met on 19 March 2014 to conduct the final examination of Leila Arbabi on her thesis entitled "Antidepressant-Like Effects of Menhaden Fish Oil in Postpartum-Induced Model of Depression in Rats" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Roslan bin Sulaiman, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Sabrina binti Sukardi, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Roslinda binti Abd Hamid @ Abdul Razak, PhD
Senior Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Che Badariah Ab Aziz, PhD
Senior Lecturer
Universiti Sains Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 May 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohamad. Taufik Hidayat Baharuldin, PhD
Associate. Professor
Faculty of Medicine and Health Sciences
Universiti putra Malaysia
(Chairman)

Mohamad. Aris Mohamad. Moklas, PhD
Associate. Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Sharida Fakurazi, PhD
Associate. Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, Ph.D
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 June 2014
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the University Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________ Date: __________________

Name and Matric No.: ______________________________________
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _______________________
Name of Chairman of Supervisory Committee: _______________________

Signature: _______________________
Name of Member of Supervisory Committee: _______________________

Signature: _______________________
Name of Member of Supervisory Committee: _______________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction 1
1.2 Problem statement 3
1.3 Hypothesis 3
1.4 Objectives 3
 1.4.1 General objectives 3
 1.4.2 Specific objectives 3

2 LITERATURE REVIEW

2.1 Postpartum depression 4
 2.1.1 Pathophysiology of postpartum depression 5
 2.1.2 Animal Model of Postpartum Depression (PPD) 5
 2.1.3 Reproductive system in female rats 8
 2.1.4 The effect of postpartum depression on family 11
 2.1.5 Medical treatment options for PPD 11
2.2 Omega-3 fatty acids 12
 2.2.1 The effects of omega-3 fatty acids on the body 13
 2.2.2 Omega-3 and depression 14
 2.2.4 Proposed mechanisms of omega-3 in depression 14
2.3 Hypothalamic-pituitary-adrenal (HPA) axis 15
 2.3.1 HPA axis dysregulation in depression 17
 2.3.2 Hippocampus and depression 18
2.4 Immune system and depression 18
 2.4.1 Relation between pro-inflammatory cytokines and depression 19
 2.4.2 Pathways linking the immune system and depression 19
2.5 Behavioral tests to study depression 20
 2.5.1 Forced swim test (FST) 20
 2.5.2 Open field test (OFT) 22

3 MATERIALS AND METHODS

3.1 Animals 23
3.2 Postpartum model induction 25
 3.2.1 Ovariectomy 25
3.2.2 Hormone Simulating Pregnancy (HSP) 25
3.3 Maternal behavior 26
3.4 Treatment regimen 26
3.5 Behavioral test 28
 3.5.1 Open Field Test (OFT) 28
 3.5.2 Forced Swim Test (FST) 30
3.6 Biochemical analysis 30
 3.6.1 Blood and brain samples collection 32
 3.6.2 Preparation of blood plasma sample 32
 3.6.3 Preparing and homogenization of brain hippocampus 32
 3.6.4 Hippocampus and plasma corticosterone analysis 32
 3.6.5 Measurement of plasma level of pro-inflammatory cytokines including IL1β, TNF-α, and INF-γ 32
3.7 Statistics 33

4 RESULTS AND DISCUSSION 34
4.1 Maternal behavior assessment 34
4.2 Body weight profile 35
4.3 The effects of menhaden fish oil on forced swim test (FST) according to postpartum days 36
 4.3.1 The effects of menhaden fish oil on FST on postpartum day 2 36
 4.3.2 The effects of menhaden fish oil on FST on Postpartum day 8 37
 4.3.3 The effects of menhaden fish oil on FST on Postpartum day 15 38
 4.3.4 Discussion 39
4.4 The effects of menhaden fish oil on open field test (OFT) 42
 4.4.1 Results 42
 4.4.2 Discussion 45
4.5 The effects of 15 days supplementation of menhaden fish oil on plasma and hippocampal levels of corticosterone 46
 4.5.1 The effects of 15 days supplementation of menhaden fish oil on plasma level of corticosterone 46
 4.5.2 The effects of 15 days forced feeding of menhaden fish oil on hippocampus corticosterone level 47
 4.5.3 Discussion 48
4.6 The effects of 15 days supplementation of menhaden fish oil on pro-inflammatory cytokines 51
 4.6.1 The effects of menhaden fish oil on interleukin 1β (IL-1β) 51
 4.6.2 The effects of menhaden fish oil on Tumor necrosis factor-alpha (TNF-α) 52
 4.6.3 The effects of menhaden fish oil on interferon-gamma (INF-γ) 53
 4.6.4 Discussion 54

5 GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATION FOR FUTURE STUDY 56
5.1 General discussion and conclusion 56
5.2 Recommendation for future study 57
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Studies on postpartum-induced model of rat</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Hormone-simulated pregnancy (HSP) regimen</td>
<td>26</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A Schematic Picture of Reproductive System of Female Rat</td>
</tr>
<tr>
<td>2.2</td>
<td>Human and rat Reproductive Menstrual Cycle</td>
</tr>
<tr>
<td>2.3</td>
<td>Figure 2.3 Pattern of Estrogen and Progesterone in Rat’s Normal Gestation</td>
</tr>
<tr>
<td>2.4</td>
<td>Plasma Levels of Estradiol and Progesterone in Postpartum Rats (Following a Normal Gestation) Compared to Virgin Control</td>
</tr>
<tr>
<td>2.5</td>
<td>The Hypothalamic-Pituitary-Adrenal (HPA) Axis and the Glucocorticoids (GC) Feedback</td>
</tr>
<tr>
<td>3.1</td>
<td>The Summary of Experimental Design</td>
</tr>
<tr>
<td>3.2</td>
<td>Timeline of Hormone and Treatment Regimen</td>
</tr>
<tr>
<td>3.3</td>
<td>Open Field Test for Locomotor Activity Evaluation</td>
</tr>
<tr>
<td>3.4</td>
<td>Forced Swim Test for Depressive-like Behavior Evaluation</td>
</tr>
<tr>
<td>4.1</td>
<td>Positive Nesting Behavior at the End of HSP Regimen</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentages of Body Weight Gain of Experimental Rats from postpartum day 1 to postpartum day 15</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of Menhaden Fish Oil (1 g/kg, 3 g/kg and 9 g/kg) on Immobility Time in the Forced Swim Test on Postpartum Day 2</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of Menhaden Fish Oil (1 g/kg, 3 g/kg and 9 g/kg) on Immobility Time in the Forced Swim Test on Postpartum Day 8</td>
</tr>
<tr>
<td>4.5</td>
<td>Effects of Menhaden Fish Oil (1 g/kg, 3 g/kg and 9 g/kg) on Immobility Time in the Forced Swim Test on Postpartum Day 15</td>
</tr>
<tr>
<td>4.6</td>
<td>Effects of Menhaden Fish Oil (1 g/kg, 3 g/kg and 9 g/kg) and Fluoxetine (15 mg/kg) on Open Field Test (OFT) on Postpartum Day 2</td>
</tr>
<tr>
<td>4.7</td>
<td>Effects of Menhaden Fish Oil (1 g/kg, 3 g/kg and 9 g/kg) and Fluoxetine (15 mg/kg) on Open Field Test (OFT) on Postpartum Day 8</td>
</tr>
</tbody>
</table>
4.8 Effects of Menhaden Fish Oil (1 g/kg, 3 g/kg and 9 g/kg) and Fluoxetine (15 mg/kg) on Open Field Test (OFT) on Postpartum Day 15

4.9 Effects of Menhaden Fish Oil (1 g/kg/d, 3 g/kg/d and 9 g/kg/d) on Plasma Levels of Corticosterone in the Postpartum Depression-induced Rats

4.10 Effects of Menhaden Fish Oil (1 g/kg/d, 3 g/kg/d and 9 g/kg/d) on Hippocampus Level of Corticosterone in the Postpartum Depression-induced Rats

4.11 Effects of Menhaden Fish Oil (1 g/kg/d, 3 g/kg/d and 9 g/kg/d) on Plasma Levels of IL-1β in the Postpartum Depression-induced Rats

4.12 Effects of Menhaden Fish Oil (1 g/kg/d, 3 g/kg/d and 9 g/kg/d) on Plasma Levels of TN-α in the Postpartum Depression-induced Rats

4.13 Effects of Different Doses of Menhaden Fish Oil on Plasma Level of INF-gamma in the Postpartum Depression-induced Rats

xvii
LIST OF ABREVIATIONS

AA Arachidonic Acid
ACTH Adrenocorticotropic Hormone
ACUC Animal Care and Use Committee
ALA Alpha-Linolenic Acid
ANOVA Analysis Of Variance
C Centigrade
CORT Corticosterone
CRF Corticotropin-Releasing Factor
day
DHA Docosahexaenoic Acid
EB Estradiol
EDTA Ethylenediaminetetraacetic Acid
ELISA Enzyme-Linked Immunosorbent Assay
EPA Eicosapentaenoic Acid
FLX Fluoxetine
FSH Follicle-Stimulating Hormone
FST Forced Swim Test
gravitational acceleration
GnRH Gonadotropin-Releasing Hormone
GR Glucocorticoid Receptor
HPA Hypothalamic-Pituitary-Adrenal
HSP Hormone-Simulated Pregnancy
i.m. Intramuscular
IDO Indoleamine 2,3-dioxygenase
IL Interleukin
INF-γ Interferon gamma
IRS Inflammatory Response System
JHU John Hopkins University
LA Linoleic Acid
LCPUFA Long Chain Polyunsaturated Fatty Acids
LH Luteinizing Hormone
MAP Multi-Analyte Profiling beads
MD Major Depression
MDD Major Depression Disorder
MFO Menhaden Fish Oil
mL milliliter
MR Mineralocorticoid Receptor
MSc Master of Science
N Number
ng nanogram
NK Natural killer
OFT Open Field Test
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVX</td>
<td>Ovariectomy</td>
</tr>
<tr>
<td>p</td>
<td>probability</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PG</td>
<td>Prostaglandin</td>
</tr>
<tr>
<td>Pg</td>
<td>picogram</td>
</tr>
<tr>
<td>PLA2</td>
<td>Phospholipases A2</td>
</tr>
<tr>
<td>PP</td>
<td>Postpartum</td>
</tr>
<tr>
<td>PPD</td>
<td>Postpartum Depression</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated Fatty Acids</td>
</tr>
<tr>
<td>PVN</td>
<td>Paraventricular Nucleus</td>
</tr>
<tr>
<td>s.c.</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error of the Mean</td>
</tr>
<tr>
<td>SIDS</td>
<td>Sudden Infant Death Syndrome</td>
</tr>
<tr>
<td>SSRI</td>
<td>Selective Serotonin Reuptake Inhibitor</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricyclic Antidepressants</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor Necrosis Factor alpha</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
</tbody>
</table>

xix
CHAPTER 1
INTRODUCTION

1.1 Introduction

Postpartum depression (PPD) is a psychiatric disorder, which occurs following childbirth. PPD is defined as a subtype of major depressive disorder (MDD) with several symptoms such as depressed mood, loss of interest in activities, loss of pleasure, sleep and appetite disturbance, guilty feeling, lack of concentration, and thought of suicide (Pearlstein et al., 2009).

The onset of PPD occurs within the first 2-3 month after baby delivery and may last one year (Cuijpers et al., 2008). Mood disorder is the most frequent morbidity for mothers during postpartum period (Stocky & Lynch, 2000).

Dramatically changes in reproductive hormones in all women at parturition results in “baby blues” with an estimated rate of 75 % of mothers (Moses-Kolko et al., 2009). Symptoms of baby blues, which are similar to PPD, occur in the first week following baby delivery, peaked on the 5th day, and usually diminish by the 12th day. If the symptoms of baby blues last more than two weeks, it will be considered as postpartum depression (Leitch, 2002). It has been reported that 10-15% women suffer from PPD following childbirth (Halbreich, 2005).

Although the underlying etiology of postpartum depression remained unknown, scientists suggest a number of possible theories in this respect. Biological, psychological and social factors or combination of them may contribute to cause and progress of PPD (Berggren-Clive, 1998). One of the most potent hypotheses of its etiology is the hormonal hypothesis. Abrupt changes in reproductive hormones that women undergo in post-delivery period may cause postpartum depression (Moses-Kolko et al., 2009; O'Hara, 2009; Parry et al., 2003). In addition to the role of estrogen and progesterone, some other biological factors such as hypothalamic-pituitary-adrenal (HPA) axis hormones, altered immune system and cytokines, and altered fatty acids have been proposed to play a role in causing postpartum depression (Corwin & Pajer, 2008; Zonana & Gorman, 2005).

Not diagnosing and treating postpartum depression has significant adverse effects on depressed individuals and their families (Dennis, 2004). Increased risk for marital disruption and divorce as well as child abuse, infanticide and maternal suicide are some of the problems of untreated PPD (Sit et al., 2006). Besides, children from depressed mothers have a high rate of cognitive and behavioral problems and have lower vocabulary skills (Jones & Venis, 2001).
Generally, two main classes of antidepressant drugs, prescribed to decrease PPD symptoms, are serotonin-specific reuptake inhibitor (SSRIs) and tricyclic antidepressants (TCAs). The best example for the former is fluoxetine (Prozac) and for the latter are amitriptyline (Elavil) and imipramine (Tofranil). Due to side effects of medical treatment on breastfed infants and negative effects of untreated depression, mothers face dilemma over how to deal with depression symptoms. Therefore, another alternative treatment should be considered to lessen depressive symptoms with lower side effects for both mother and baby.

The benefits of omega-3 to attenuate depression symptoms have been reported in previous studies. There are many reasons indicating an inverse relationship between omega-3 fatty acids and depression. This link is seen in both observational and experimental research (Hallahan & Garland, 2005; Frasure-Smith et al., 2004; Tiemeier et al., 2003; Maes et al., 1999).

Omega-3 fatty acids are long chain polyunsaturated fatty acids (LCPUFA). Alpha-linolenic acid (ALA) is the precursor for omega-3 fatty acids and it is converted to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) through elongation (Nettleton, 1995). EPA (20:5 n-3) and DHA (22:6 n-3) which are both vital compounds should be supplied via individuals’ diet since the human body cannot convert ALA to EPA and DHA efficiently (Pawlosky et al., 2001). Fish and fish oil, which are rich in omega-3 fatty acids, are the best dietary sources of EPA and DHA (McGregor et al., 2001).

In the nervous system, omega-3 has vital functions such as controlling membrane function (Tinoco, 1982), acting as antioxidant, reducing cerebral lipid peroxides (Choi-Kwon et al., 2004; Hossain et al., 1999) and protecting cells from toxicants (Baker, 2007). Immune system, vision and motor skills are the other parts of the body which are affected by omega-3 (Baker, 2007).

Although it is believed that omega-3 plays a vital role in the body and particularly in the nervous system and mood disorder, the mechanism involved is poorly understood. While numerous studies have been done to evaluate the effects of omega-3 on depression and other mood disorders, researches carried out to determine the effects of omega-3 on postpartum depression are few and the results are inconsistent.

Due to the contradictions among the results of previous researches in this regard, the present study was performed to clarify these discrepancies by investigating the effects of menhaden fish oil (rich in omega-3) on postpartum-induced rats. In this study, the locomotore activity and antidepressant-like effect of omega-3 was evaluated using standard behavioral tests, OFT and FST respectively. In addition, corticosterone levels in plasma and hippocampus were assayed and to determine the relation between omega-3 and immune system responses, plasma levels of pro-inflammatory cytokines were also measured.
1.2 Problem statement

Due to disadvantages of using antidepressant drugs such as costs and side effects on mother and breastfed infant, another alternative treatment should be considered to lessen depressive symptoms with lower drawbacks.

1.3 Hypothesis

Menhaden fish oil (rich in omega-3 fatty acids) have antidepressant-like effects on postpartum model of depression in rats.

1.4 Objectives

1.4.1 General objectives

To investigate the beneficial effects of menhaden fish oil (rich in omega-3 fatty acids) on behavioral activity, corticosterone levels and immunological indicators in rat model of postpartum depression.

1.4.2 Specific objectives

1. To determine the effects of menhaden fish oil on behavioral activity in forced swimming test (FST) and locomotor activity in PPD-induced rats
2. To measure levels of corticosterone in the hippocampus and plasma of PPD-induced rats following menhaden fish oil treatment
3. To measure plasma levels of IL1-β, TNF-α and INF-γ in PPD-induced rats following menhaden fish oil treatment.
REFERENCES

Baker, J. (2007). Interactive Effects of Fish Oil and Methylmercury on the Fatty Acid Profile of Adult Rat Forebrain Phospholipids.

prefrontal cortex induced by differing corticosteroid regimens. *Cerebral Cortex, 17*(9), 1998-2006.

De Vriese, S., Christophe, A., & Maes, M. (2003). Lowered serum n-3 polyunsaturated fatty acid (PUFA) levels predict the occurrence of postpartum depression: further evidence that lowered n-PUFAs are related to major depression. Life sciences, 73(25), 3181-3187.

Dennis, C., & Kavanagh, J. (2002). Psychosocial interventions for preventing postpartum depression. The Cochrane Library.

Green, A. D., & Galea, L. A. (2008). Adult hippocampal cell proliferation is suppressed with estrogen withdrawal after a hormone-simulated pregnancy. *Hormones and behavior, 54*(1), 201-211.

Nettleton, J. A. (1).995*Omega-3 fatty acids and health: Springer.

relationship to norepinephrine, dopamine, and serotonin levels in various regions of rat brain. *Brain research reviews*, 3(2), 167-205.

