UNIVERSITI PUTRA MALAYSIA

ANTIULCER PROPERTIES OF ESSENTIAL OIL AND POLYPEPTIDE K
ISOLATED FROM Momordica charantia L. SEEDS

NURUL ‘AIN BINTI ABU BAKAR

FPSK(M) 2016 79
ANTIULCER PROPERTIES OF ESSENTIAL OIL AND POLYPEPTIDE K ISOLATED FROM *Momordica charantia* L. SEEDS

By

NURUL ‘AIN BINTI ABU BAKAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

November 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ANTIULCER PROPERTIES OF ESSENTIAL OIL AND POLYPEPTIDE K ISOLATED FROM *Momordica Charantia* L. SEEDS

By

NURUL ‘AIN BINTI ABU BAKAR

November 2015

Chairman : Zuraini binti Ahmad, PhD
Faculty : Medicine and Health Science

Momordica charantia L. or bitter gourd, a Cucurbitaceae family plant is a plant native to the semi-tropical climate of Thailand, Asia, India and Africa and has been traditionally used as a folk remedy and best known for its anti-diabetic, anti-inflammatory, anti-microbial, anti-ulcer and antihelmintic properties. The aims of this study were to investigate the anti-ulcerogenic activities of *Momordica charantia* L. (MC) essential oil and polypeptide k on various rats model. The anti-ulcerogenic effects of MCEO and polypeptide k were studied against HCl/Ethanol and Indomethacin-induced ulcer in rats. Spraque Dawley rats were given treatment orally for 7 days consecutively. In pre-treatment for MCEO, total length for HCl/EtOH is significantly longer than indomethacin Generally, for negative control, total length is 48.2±19.9. Supplementation with 10 MCEO, it reduced to 19.3±13.1 and similar to Rantidine 100 mg/kg. When the dose was increased, the total length was decreased (19.3±13.1 to 6.2±6.2). Rantidine 100 mg/kg as reference drug reduced the length about half of the negative control group. Furthermore, polypeptide k showed significantly longer (ulcer length) in HCl/EtOH than indomethacin. Generally, for negative control, total length is 43.0±14.1. Supplementation with 10 PPK, it reduced to 29.3±18.6 and slightly similar to Rantidine 100 mg/kg. When the dose was increased, the total length was decreased (29.3±18.6 to 13.6±9.5). Rantidine 100 mg/kg as reference drug reduced the length about half of the negative control group (22.1±13.2). This has been supported by findings from pylorus-ligated model in rats. Pre-treatment with MCEO at 10 mg/kg, 50 mg/kg and 100 mg/kg failed to increase the volume of gastric acid secretion when compared to control group. However, it significantly elevates the pH but not decrease the total acidity. Basically, MCEO managed to preserve the gastric wall by significantly increased the gastric wall mucus content. Polypeptide K (PPK) on the other hand, exerted a significant reduction in the total ulcer area (mm²) similarly with Ranitidine and successfully preserve the gastric
wall by significantly increase the gastric wall mucus. However, it did not elevate the pH nor decrease the total acidity. As a conclusion, MCEO and polypeptide k possesses anti-ulcer effects in various ulcer models of rats.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

POTENSI ANTI-ULSER OLEH MINYAK PATI DAN POLIPEPTIDA K PENGASINGAN DARI BIJI *Momordica charantia* L.

Oleh

NURUL ‘AIN BINTI ABU BAKAR

November 2015

Pengerusi : Zuraini binti Ahmad, PhD
Faculti : Perubatan dan Sains Kesihatan

Momordica charantia L. atau peria, berasal dari keluarga Cucurbitaceae merupakan tumbuhan asli untuk iklim separa tropika Thailand, India, Asia dan Afrika dan telah secara tradisional digunakan sebagai ubat rakyat seperti anti-diabetes, anti-radang, anti-mikrob, anti ulser dan antihelminthic sifatnya. Matlamat kajian ini adalah untuk menyiasat aktiviti-aktiviti anti ulcerogenic minyak pati *Momordica charantia* L.(MC) dan polipeptida k ke atas pelbagai model tikus. Keslan anti-ulser MCEO dan polypeptida k telah dikaji terhadap aruhan HCl/etanol dan Indomethacin pada tikus. Tikus *Sprague Dawley* telah diberi rawatan secara oral selama 7 hari berturut-turut. Dalam pra-rawatan untuk MCEO, jumlah panjang ulser untuk HCl / EtOH adalah jauh lebih panjang daripada indomethacin. Secara umumnya, untuk kawalan negatif, jumlah panjang adalah 48.2 ± 19.9. Pada dos 10 MCEO, ia berkurang kepada 19.3 ± 13.1 dan sama dengan Ranitidine 100 mg / kg. Apabila dos meningkat, jumlah panjang telah menurun (19.3 ± 13,1-6,2 ± 6.2). Ranitidine 100 mg / kg sebagai ubat rujukan dikuangkan panjang kira-kira separuh daripada kumpulan kawalan negatif. Tambahlan pula, polipeptida k menunjukkan panjang ulser yang ketara dalam HCl / EtOH daripada indomethacin. Secara umumnya, untuk kawalan negatif, jumlah panjang adalah 43.0 ± 14.1. Pada dos 10 mg/kg PPK, ia dikuangkan kepada 29.3 ± 18.6 dan sedikit sama dengan Ranitidine 100 kg mg /. Apabila dos meningkat, jumlah panjang telah menurun (29.3 ± 18,6-13,6 ± 9.5). Ranitidine 100 mg / kg sebagai ubat rujukan dikuangkan panjang kira-kira separuh daripada kumpulan kawalan negatif (22.1 ± 13.2). Ini telah disokong oleh penemuan-penemuan daripada model pylorus-ligated pada tikus. Pra rawatan dengan MCEO 10 mg/kg, 50 mg/kg dan 100 mg/kg gagal menegaskan rembesan asid gastrik jika dibandingkan dengan kumpulan kawalan. Walau bagaimanapun, ia menaikkan pH yang ketara tetapi tidak mengurangkan jumlah keasidan. Pada dasarnya, MCEO dapat mengekalkan dinding gastrik dengan meningkatkan kandungan mukus dinding gastrik. Polipeptida K (PPK) di sisi lain, memberikan pengurangan yang ketara di kawasan jumlah ulser (mm²)
sama seperti dengan kumpulan Ranitidine dan berjaya mengekalkan dinding gastrik dengan meningkatkan mukus dinding gastrik secara signifikan. Walau bagaimanapun, ia tidak pula meningkatkan pH atau mengurangkan jumlah keasidan. Sebagai kesimpulannya, MCEO dan polipeptida k mempunyai kesan anti-ulser dalam pelbagai model ulser tikus.
ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my utmost gratitude to Associate Professor Dr. Zuraini binti Ahmad for her encouragement, motivation, greatest guidance, kind understanding, advices, supervision, and ideas in the completion of this project. Besides that, special thanks to my co-supervisor Associate Professor Dr. Roslida Abdul Hamid for her advices.

My sincere thanks also goes to assistant science officer, Puan Normayati Sulaiman, lab assistant, Puan Hasnijah Alias @Yaakub and En Nasrul Ridzal for their help in using the chemicals and lab equipments. I also expressed my appreciation to En. Ramli for his help in the use of the animal house.

On top of that, a token of appreciation goes to my research teammates Yong Yoke Keong, Hayuti Hussain and friends Wan Aminatul Afna, Chan Pitt Foong, Nur Raihana Ithnin and Nurshahira Sulaiman for their cooperation, teamwork and invaluable friendship.

Finally, thanks to my husband, parents and family for their understanding and continuous support in completion of this research project. Not forgetting thanks to all those who are involved in this completion of my project directly and indirectly.
I certify that a Thesis Examination Committee has met on 23 November 2015 to conduct the final examination of Nurul 'ain binti Abu Bakar on his thesis entitled "Antiulcer Properties of Essential Oil and Polypeptide K Isolated from *Momordica charantia* L. Seeds" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohamad Taufik Hidayat bin Baharuldin, PhD
Senior Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Mohamad Aziz bin Dollah, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Radiah Abdul Ghani, PhD
Assistant Professor
International Islamic University Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 24 March 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Zuraini Ahmad, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia.
(Chairman)

Roslida Abdul Hamid, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _____________________ Date: _____________________

Name and Matric No: Nurul ‘Ain Binti Abu Bakar, GS22623
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ________________________________
Name of Chairman of Supervisory Committee: Associate Professor Dr. Zuraini Ahmad

Signature: ________________________________
Name of Member of Supervisory Committee: Associate Professor Dr. Roslida Abdul Hamid
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 General Introduction 1
1.2 Problem Statement 2
1.3 Significance of Study 2
1.4 Research Objectives 3

2 LITERATURE REVIEW
2.1 The Stomach 4
2.1.1 Gross Anatomy of Stomach 4
2.1.2 Microscopic anatomy of stomach 5
2.1.3 Regulators of gastric secretion 6
2.1.4 Mechanism of gastric acid secretion 7
2.2 Peptic ulcer 8
2.2.1 Epidemiology and etiology of peptic ulcer 9
2.2.2 Pathophysiology of peptic ulcer 10
2.2.3 Clinical features of peptic ulcers 11
2.2.4 Ulcerogens 11
2.2.4.1 Non-steroidal anti-inflammatory drugs (NSAIDs) 12
2.2.5 Current Treatment for Peptic Ulcer 13
2.2.5.1 H₂-receptor antagonists 14
2.2.5.2 Ranitidine 14
2.2.6 Mechanism of ulcer formation 15
2.3 Momordica charantia L. 16
2.3.1 Traditional usage of *Momordica charantia* L. 17
2.3.2 Ethnobotanical uses of *Momordica charantia* L. 19
2.3.3 Phytochemistry of *Momordica charantia* L. 19

3 MATERIALS AND METHODS
3.1 Preparation of plant extract 21
3.2 Experimental animals 21
3.3 Anti-ulcerogenic activity 22
3.3.1 HCl/Ethanol-induced ulcer 22
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1</td>
<td>Botanical classification of Momordica charantia L. adapted from Germplasm</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Worldwide Ethnobotanical uses of Momordica charantia (Adapted from Leslie Taylor, 2002)</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Experimental Design</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Ulcer lesion score according to Minano et. al., 1987</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Effect of Momordica charantia L. seed essential oil on total area of length (mm2) of gastric ulcer induced by HCl/EtOH and Indomethacin in rats</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Effect of Momordica charantia L. seed essential oil on total area of lesion of gastric ulcer induced by HCl/EtOH and Indomethacin in rats</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Effect of Polypeptide K on total area of length(mm2) of gastric ulcer induced by HCl/EtOH and indomethacin in rats</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Effect of Polypeptide k (PPK) on total area of lesion of gastric ulcer induced by HCl/EtOH and Indomethacin in rats</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Effect of MCEO on gastric juice parameters in pylorus ligation model in rats</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Effect of MCEO on gastric wall mucus secretion</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Effect of PPK on gastric juice parameters in pylorus ligation model in rats</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Effect of PPK on gastric wall mucus secretion</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Anterior view of regions of stomach</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Microscopic view of layers of stomach</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Secretion of HCl by parietal cells in stomach</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Peptic ulcer</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Structure of Indomethacin</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Structure of Aspirin</td>
<td>13</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Ranitidine structural formula</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Momordica charantia leaves</td>
<td>17</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Effect of Momordica charantia L. seed essential oil on total area of length (mm2) of gastric ulcer induced by HCl/EtOH and Indomethacin in rats. abcd comparisons of means between treatments and between inducers significant at p <0.05</td>
<td>26</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Gross appearance of the gastric mucosa in a normal rat</td>
<td>26</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Gross appearance of the gastric mucosa in a rat pre-treated with distilled water after induction with 1 ml of HCl/EtOH (negative group)</td>
<td>27</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Gross appearance of the gastric mucosa in a rat pre-treated with 10 mg/kg MCEO after induced by HCl/EtOH</td>
<td>27</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Gross appearance of the gastric mucosa in a rat pre-treated with 50 mg/kg MCEO</td>
<td>28</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Gross appearance of the gastric mucosa in a rat pre-treated with 100 mg/kg MCEO</td>
<td>28</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Gross appearance of the gastric mucosa in a rat pre-treated with ranitidine after induction with 1 ml of HCl/EtOH</td>
<td>29</td>
</tr>
<tr>
<td>4.1.8</td>
<td>Gross appearance of the gastric mucosa in a rat pre-treated with distilled water after induction with 1 ml of Indomethacin (Negative group)</td>
<td>29</td>
</tr>
</tbody>
</table>
4.1.9 Gross appearance of the gastric mucosa in a rat pre-treated with 10 mg/kg MCEO induced by indomethacin

4.1.10 Gross appearance of the gastric mucosa in a rat pre-treated with 50 mg/kg MCEO after induction with indomethacin

4.1.11 Gross appearance of the gastric mucosa in a rat pre-treated with 100 mg/kg MCEO after induction by indomethacin

4.1.12 Gross appearance of the gastric mucosa in a rat pre-treated with ranitidine after induction with indomethacin

4.1.13 Effect of Momordica charantia L. seed essential oil on total area of lesions of gastric ulcer induced by HCl/EtOH and Indomethacin in rats. abcd comparisons of means between treatments and between inducers significant at p <0.05

4.1.14 The stomach wall of a rat showing normal appearance. Haematoxylin and eosin X 40

4.1.15 The stomach wall of a rat after administration of 1 ml of HCl/EtOH by gavage, showed epithelial disruption (red arrow). Haematoxylin and eosin X 40

4.1.16 The stomach wall of a rat, after administration of ranitidine on ulcer induced by HCl/EtOH, showed epithelial disruption (red arrow) and edema (black arrow). Haematoxylin and eosin X 40

4.1.17 The stomach wall of a rat, after treatment with 10 mg/kg MCEO on ulcer induced by HCl/EtOH, showed epithelial disruption (red arrow) and Erosion extending to the muscularized mucosae (blue arrow). Haematoxylin and eosin X 40

4.1.18 The stomach wall of a rat, after treatment with 50 mg/kg MCEO on ulcer induced by HCl/EtOH, showed epithelial disruption (red arrow) and edema (black arrow). Haematoxylin and eosin X 40

4.1.19 The stomach wall of a rat, after treatment with 100 mg/kg MCEO on ulcer induced by HCl/EtOH, showed vacuolation (yellow arrow). Haematoxylin and eosin X 100

4.1.20 The stomach wall of a rat, after administration of 1 ml of Indomethacin by gavage, showed erosion extending to the muscularized mucosae (blue arrow) and edema (black arrow). Haematoxylin and eosin X 100
4.1.21 The stomach wall of a rat, after administration of ranitidine on ulcer induced by Indomethacin, showed epithelial disruption (red arrow). Haematoxylin and eosin X 100

4.1.22 The stomach wall of a rat, after treatment with 10 mg/kg MCEO on ulcer induced by Indomethacin, showed epithelial disruption (red arrow). Haematoxylin and eosin X 100

4.1.23 The stomach wall of a rat, after treatment with 10 mg/kg MCEO on ulcer induced by Indomethacin, showed epithelial disruption (red arrow). Haematoxylin and eosin X 100

4.1.24 The stomach wall of a rat, after treatment with 100 mg/kg MCEO on ulcer induced by Indomethacin, showed edema (black arrow) and epithelial disruption (red arrow). Haematoxylin and eosin X 100

4.2.1 Effect of Polypeptide K (PPK) on total area of length (mm2) of gastric ulcer induced by HCl/EtOH and indomethacin in rats

4.2.2 Gross appearance of the gastric mucosa in a normal rat

4.2.3 Gross appearance of the gastric mucosa in a rat pre-treated with distilled water after induction with 1 ml of HCl/EtOH (Negative group)

4.2.4 Gross appearance of the gastric mucosa in a rat pre-treated with 10 mg/kg PPK

4.2.5 Gross appearance of the gastric mucosa in a rat pre-treated with 25 mg/kg PPK

4.2.6 Gross appearance of the gastric mucosa in a rat pre-treated with 50 mg/kg PPK

4.2.7 Gross appearance of the gastric mucosa in a rat pre-treated with ranitidine (100 mg/kg)

4.2.8 Gross appearance of the gastric mucosa in a rat pre-treated with distilled water after induction with 1 ml of indomethacin (Negative group)

4.2.9 Gross appearance of the gastric mucosa in a rat pre-treated with 10 mg/kg PPK after induced by indomethacin

4.2.10 Gross appearance of the gastric mucosa in a rat pre-treated with 25 mg/kg after induction with indomethacin
4.2.11 Gross appearance of the gastric mucosa in a rat pre-treated with 50mg/kg PPK after induction with indomethacin

4.2.12 Gross appearance of the gastric mucosa in a rat pre-treated with ranitidine after induction with indomethacin

4.2.13 Effect of PPK on total area of lesions of gastric ulcer induced by HCl/EtOH and Indomethacin in rats ab comparisons of means between treatments and between inducers significant at p < 0.05

4.2.14 The stomach wall of a rat, after administration of 1 ml of HCl/EtOH by gavage, showed epithelial disruption (red arrow) and edema (black arrow). Haematoxylin and eosin X 100

4.2.15 The stomach wall of a rat, after administration of ranitidine on ulcer induced by HCl/EtOH, showed epithelial disruption (red arrow). Haematoxylin and eosin X 100

4.2.16 The stomach wall of a rat after treatment with 10 mg/kg PPK on ulcer induced by HCl/EtOH, showed epithelial disruption (red arrow) edema (black arrow) and vacuolation (yellow arrow). Haematoxylin and eosin X 100

4.2.17 The stomach wall of a rat, after treatment with 25 mg/kg PPK on ulcer induced by HCl/EtOH, showed epithelial disruption (red arrow) and edema (black arrow). Haematoxylin and eosin X 100

4.2.18 The stomach wall of a rat, after treatment with 25 mg/kg PPK on ulcer induced by HCl/EtOH, showed epithelial disruption (red arrow) edema (black arrow). Haematoxylin and eosin X 100

4.2.19 The stomach wall of a rat after administration of 1 ml of Indomethacin by gavage, showed epithelial disruption (red arrow) and edema (black arrow). Haematoxylin and eosin X 100.

4.2.20 The stomach wall of a rat after administration of ranitidine on ulcer induced by Indomethacin, showed epithelial disruption (red arrow) and edema (black arrow). Haematoxylin and eosin X 100

4.2.21 The stomach wall of a rat, after treatment with 10 mg/kg PPK on ulcer induced by Indomethacin, showed epithelial disruption (red arrow) and edema (black arrow). Haematoxylin and eosin X 100.

4.2.22 The stomach wall of a rat, after treatment with 25 mg/kg PPK on ulcer induced by Indomethacin, showed epithelial disruption (red arrow). Haematoxylin and eosin X 100
4.2.23 The stomach wall of a rat, after treatment with 50 mg/kg PPK on ulcer induced by Indomethacin, showed epithelial disruption (red arrow. Haematoxylin and eosin X 100
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tissue Processing Of Several Parts Of Stomach In Rats</td>
</tr>
<tr>
<td>2</td>
<td>Procedure Of H & E Staining</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>Momordica charantia</td>
</tr>
<tr>
<td>MCEO</td>
<td>Momordica charantia essential oil</td>
</tr>
<tr>
<td>PPK</td>
<td>Polypeptide K</td>
</tr>
<tr>
<td>NSAIDS</td>
<td>Non-steroidal Anti-Inflammatory Drugs</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>S.E.M</td>
<td>Standard Error of Mean</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase enzyme</td>
</tr>
<tr>
<td>cm</td>
<td>centimeters</td>
</tr>
<tr>
<td>ml</td>
<td>mililitres</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>mm²</td>
<td>millimeter square</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>PUD</td>
<td>Peptic Ulcer Disease</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and eosin</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>Chloride ion</td>
</tr>
<tr>
<td>K⁺</td>
<td>Potassium ion</td>
</tr>
<tr>
<td>H⁺</td>
<td>Hydrogen ion</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>Bicarbonate ion</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Gastric ulcer is defined as disruption or erosion of the mucosal integrity of the stomach which extends through the muscularis mucosa into submucosa or deeper (Singh, et.al., 2008). It also demonstrates a local defect or excavation at the mucosal surface due to active inflammation (Das, et. al., 2008). Gastric ulcer is a very common global problem and gastrointestinal disorder today as it is caused by various factors. As well known, ulcer disease results from an imbalance between aggressive and defensive factors (Jainu, et.al., 2006). Acid, pepsin, Helicobacter pylori and bile salts are the major aggressive factors while defensive factors mainly involve mucus-bicarbonate secretion and prostaglandins (Hoogerwerf and Pasricha, 2001). Common causes involved in the development of gastric ulceration are Helicobacter pylori and nonsteroidal anti-inflammatory drugs (NSAIDs).

Helicobacter pylori, a Gram-negative bacteria weakens the protective coating of the stomach and first part of the intestine thus allows damaging digestive juices to eat away at the sensitive lining below. Frequent ingestion of NSAIDs, stress, smoking and nutritional deficiencies also will increase the gastric ulcer incidences (Belaiche, et al., 2002). Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are commonly used as pain relievers, but prolonged used of NSAIDs will demonstrate the blockage of prostaglandins, release a substance in the stomach which help to maintain blood flow and protect the mucosal area from injury.

There are many plants with ethnopharmacological background that have been used in traditional medicine known to possess anti-ulcer properties. These include Bauhinia purpurea (Zakaria, et. al., 2011), Alchornea castaneaefolia (Hiruma-Lima, et. al., 2006), Solanum nigrum (Jainu, et. al., 2006), Kaempferia parviflora (Rujjanawate, 2005), Utleria salicifolia (Rao, et. al., 2004) and many more.

Momordica charantia L., a Cucurbitaceae family plant is a plant native to the semi-tropical climate of Thailand, India, Asia and Africa has been traditionally used as a folk remedy and best known for its anti-diabetic (Satishsekar and Subramanian, 2005a), antifungal (Schmouarlo, et. al., 2005), antiulcer (Samsul Alam, 2009), antioxidant effects (Sathishsekar and Subramanian, 2005b), antihyperlipidemic (Chen and Li, 2005), antimutagenicity (Singh et. al., 1998) and antiviral (Jjiratchariyakul, et. al., 2001) properties. The oil from the seeds of Momordica charantia L. useful as anti-inflammatory, anti-arthritic, vasculodilatory and wound healing agent (Khanna, 2005). In addition, Polypeptide k, isolated from seeds of MC has anti-diabetic properties which is more potent than polypeptide-p and helps in preventing diabetes (Kanna, 2004). However, no scientific data is available on the anti-ulcer properties of
MC oil and polypeptide k Therefore, this present study was aimed to investigate the antiulcer properties of essential oil and polypeptide k isolated from *Momordica charantia* L. seeds.

1.2 Problem Statement

Gastric hyperacidity and gastroduodenal ulcer is a very common global problem and causing human suffering today. It is an imbalance between damaging factors within the lumen and protective mechanisms within the gastro duodenal mucosa. Recent data from Malaysia suggest that prevalence of duodenal ulcer and gastric ulcer is 9.5% and 9.4% respectively (Goh, et al, 2009). There is a report stated that the prevalence of peptic ulcer disease in the Western countries has been declined as well as in the Asia-Pacific region (El-Serag and Sonnenberg, 1998). However, recent study showed that there was an increase of the diagnosis of erosive gastritis in Turkey (Erkan Caglar, et. al, 2014). *Helicobacter pylori (H. pylori)*, is a bacterium that infects the lining of the stomach and causes chronic inflammation and ulcers is believed to be one of the causes of gastric cancer. In Malaysia, gastric cancer is the ninth most common cancer in the entire general population and the eight most common cancers in males and tenth in females in Malaysia (National Cancer Registry, Malaysia, 2007). The incidence of gastric cancer increases with age and slightly higher in males compared to females and Chinese were found to have higher incidence rate compared to Malay and Indian (National Cancer Registry, Malaysia, 2007).

The conventional drugs used in the treatment of gastric ulcer include proton pump inhibitors (omeprazole, lansoprazole), histamine H2 receptor antagonists (ranitidine, famotidine), antacids and anticholinergics. However, there are reports stating that most of these drugs produce several adverse reactions (Brunton, 1998). In addition, increase in NSAIDs use in recent years is believed to be the reason for the increase of gastric ulcer cases (Erkan Caglar, et. al, 2014). Thus, there is a need for more effective and safe anti-ulcer agents. It is believed that most of the herbal medicine will reduce the offensive factors and proved to be safe, clinically effective, better patient tolerance, relatively less expensive and globally competitive (Goel and Sairam, 2002). Plant extracts, have been proven to produce promising results in treating the gastric ulcers (Jainu, et.al., 2006). Hence, more traditional medicine plants are needed to be explored in searching the best treatment of ulcer.

1.3 Significance of Study

Although gastric ulcer may not be a major health problems in Malaysia, but it is important to have a precaution and treatment steps towards it. The findings of this study are important to reduce the gastric hyperacidity and gastroduodenal ulcer cases in this country by using plant extract as an alternative to conventional drugs. On the other side, this study will help in treating the gastroduodenal ulcers therefore developed other options for general practitioners as well as the patients. In addition, natural products used in medical, may reduce the cost and reduce the mortality cases
among patients. With all the information obtained, this study could improve in healthcare services thus contribute to help the community for the better living.

1.4 Research Objectives

General objective:

- To investigate the anti-ulcerogenic activities of essential oil and polypeptide k extracted from *Momordica charantia* L. using rats model.

Specific objectives:

- To compare the macroscopic and microscopic effect of *Momordica charantia* seed oil and polypeptide k in ulcer-induced rats by HCl/Ethanol and Indomethacin.
- To evaluate the mechanism of *Momordica charantia* essential oil and polypeptide k by measuring gastric acid secretion in pylorous ligated rats.
REFERENCES

Siddiique, R. A. H. (2014). Prevalence of Peptic Ulcer Disease among the Patients with Abdominal Pain Attending the Department Of Medicine in Dhaka Medical College Hospital, Bangladesh. *Journal of Dental and Medical Sciences*, 13(1), 05-20.

The gastric ulcer protective effect of boswellic acids, a leukotriene inhibitor from *Boswellia serrata*, in rats. Singh S, Khajuria A, Taneja SC, Khajuria RK, Singh J, Johri RK, Qazi GN

