UNIVERSITI PUTRA MALAYSIA

IN VITRO AND IN VIVO STUDIES ON ANTI-WITHDRAWAL PROPERTIES ON ERYTHROXYLUM CUNEATUM LEAVES ALKALOID EXTRACT

MUHAMMAD AMIN BIN AHMAD ZAKI

FPSK(M) 2016 74
IN VITRO AND IN VIVO STUDIES ON ANTI-WITHDRAWAL PROPERTIES ON ERYTHROXYLUM CUNEATUM LEAVES ALKALOID EXTRACT

By

MUHAMMAD AMIN BIN AHMAD ZAKI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfillment of the Requirements for the Master of Science.

November 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Master of Science

IN VITRO AND IN VIVO STUDIES ON ANTI-PWITHDRAWAL PROPERTIES OF ERYTHROXYLUM CUNEATUM LEAVES ALKALOID EXTRACT

By

MUHAMMAD AMIN BIN AHMAD ZAKI

November 2015

Chair: Mohamad Aris Mohd Moklas, PhD

Faculty: Medicine and Health Sciences

Erythroxylum cuneatum (EC) is locally known as the ‘Chinta Mula’ plant. Its leaves are used by the native traditional healers as an anti-addiction treatment. However, its effects were not fully explored scientifically, resulting in lack of documented information on its therapeutic anti-addiction effects. The objectives of this study are to produce a standard extract of EC, examining the efficacy of alkaloid extract of EC on cyclic adenosine monophosphate (cAMP) production in SK-N-SH cell after chronic morphine treatment and to investigate the effect of EC extract on anti-withdrawal properties in the morphine-addicted rats. The alkaloid crude extract of EC underwent two extraction processes, namely the Soxhlet and the acid-base extraction. The alkaloid crude extract of EC was obtained using acid-base extraction and the yield was 0.19% from 1 kg leaves. The in-vitro studies was performed separately as two different tests (co-treatment and pre-treatment) whereas in-vivo study used 6 groups (n=8) of Wistar rats (male: 180-220 g) which were treated with morphine at 10-30 mg/kg for 5 consecutive days. Withdrawal signs exhibited by the morphine-dependent rats were measured by 9 counts and checking of parametric signs. The rats were then treated with two different interventions which are Methadone (5 mg/kg), and crude alkaloid extract of EC (5, 25 and 50 mg/kg) respectively and the withdrawal signs were re-evaluated again. Co-treatment for 24 h between morphine sulphate with alkaloid extract of EC significantly reduced (p<0.05) the production of cyclic AMP at lower concentration (0.1 mg). Similarly pre-treatment with morphine sulphate for 24 h then treated with alkaloid extract of EC for 6 h significantly reduced the production of cyclic AMP (P<0.05). In-vivo results also showed that administration of alkaloid extracts of EC caused significant reduction (p<0.05) in all withdrawal signs. The results obtained from the study suggested that the administration alkaloid extract of EC caused significant decrease in the withdrawal signs of morphine addicted both in vitro and in vivo studies.

Keywords: Erythroxylum cuneatum (EC), Cyclic adenosine monophosphate (cAMP)
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah

KAJIAN IN VITRO DAN IN VIVO KE ATAS SIFAT SELEPAS KETAGIHAN TERHADAP EKSTRAK ALKALOID DAUN ERYTHROXYLUM CUNEATUM (EC)

Oleh

MUHAMMAD AMIN BIN AHMAD ZAKI

November 2015

Pengerusi: Mohamad Aris Mohd Moklas, PhD
Fakulti: Perubatan dan Sains Kesihatan

Erythroxylum cuneatum (EC) ataupun lebih dikenali dengan nama tempatan Chinta Mula, telah dilapor penggunaannya di kalangan pengamal perubatan tradisional sebagai rawatan anti-ketagihan. Walaubagaimanapun kesannya masih belum diterokai sepenuhnya secara saintifik, menyebabkan kurang maklumat terdokumentasi tentang kesan terapeutik ekstrak alkaloid dari daun EC telah dikaji untuk mengetahui dengan lebih mendalam mengenai ciri-ciri sifat anti-ketagihannya. Objektif kajian adalah untuk menghasilkan ekstrak alkaloid EC, menentukan kesan ekstrak alkaloid EC pada pengeluaran kitaran adenosine monofosfat (cAMP) selepas rawatan morfin secara kronik dalam sel SK-N-SH dan menilai kesan ekstrak EC pada anti-ketagihan pada tikus yang ketagihan morfin. Ekstrak alkaloid diperolehi melalui proses pengekstrakan soxhlet, methanol dan pengekstrakan asid-bes. Ekstrak alkaloid EC diperolehi melalui proses pengekstrakan asid-bes dan hasilnya adalah 0.19% daripada 1 kg EC. Kajian sel terbahagi kepada dua; rawatan bersama dan pra-rawatan. Dalam kajian menggunakan tikus, 6 kumpulan (n = 8) tikus Wistar (jantan; 180-220 g), telah diberikan Morfin (10 hingga 30 mg/kg) selama 5 hari. Selepas itu, 9 tanda ketagihan morfin tikus direkod. Semua tikus yang telah dirawat dengan Methadone 5 mg/kg dan ekstrak alkaloid EC (5, 25 dan 50 mg/kg) akan dinilai semula tanda ketagihan mereka. Rawatan bersama selama 24 jam antara morfin sulfat dengan ekstrak alkaloid EC menunjukkan pengurangan ketara (P <0.05) pada dos rendah (0.1 mg). Begitu juga pra-rawatan dengan morfin sulfat untuk 24 jam kemudian dirawat dengan ekstrak alkaloid EC selama 6 jam juga menunjukkan pengurangan pengeluaran kitaran AMP (P <0.05). Hasil kajian melibatkan haiwan pula, menunjukkan bahawa ekstrak alkaloid EC menyebabkan pengurangan ketara (P <0.05) dalam semua ciri-ciri. Hasil kajian mencadangkan bahawa ekstrak alkaloid EC dapat mengurangkan ciri-ciri ketagihan morfin secara in vivo dan in vitro.

Kata Kunci: Erythroxylum cuneatum (EC), Kitaran adenosine monophosphate (cAMP).
ACKNOWLEDGEMENT

Alhamdulillah, I am grateful to The Almighty Allah who has blessed and guided me to complete this thesis as partial fulfillment of the requirement for the award of Master of Science in Human Anatomy from Universiti Putra Malaysia.

My deepest appreciation goes to my beloved parents; Ahmad Zaki Haji Haji Omar Zuhdi and Sarifah Hashim, for their love, encouragement and both financial and moral support. A special appreciation goes to my beloved wife Nooraziatuliza Abd Wahab and daughter Marsya Medina for their invaluable support. I wish to express my deep gratitude and appreciation to Associate Professor Dr. Mohamad Aris Mohd Moklas as my supervisor during my MSc research project. He has unconditionally given his valuable time, advice, critique, and correction to this thesis from beginning to the end of its write-up. Not forgotten are my co-supervisors Dr. Che Norma Mat Taib and Prof. Dr. Mohamad Ilham Adenan whom I am very indebted to for their brilliant ideas, suggestions and unyielding efforts in assisting my MSc thesis.

I would also like to honor my fellow lab mates in the Anatomy Laboratory (FPSK) namely Noor Azuin Suliman, Mohamad Syahmi Shahril, Pearl Majorie Liew and Mohamad Khairil for the stimulating discussions and unforgettable experiences we have shared for the past three years. In addition, I would like to express my appreciation to Mohd Rohaizad Md Rodwan for helping me in the statistical analysis portion of my research.

Lastly, special thanks to all the staff of the Malaysian Institute of Pharmaceuticals and Neutraceuticals (IPHARM), Penang and Anatomy Laboratory at Faculty of Medicine and Health Sciences UPM, who provided assistance and gave full cooperation during the research period.
I certify that a Thesis Examination Committee has met on (date of viva voce) to conduct the final examination of (Muhammad Amin bin Ahmad Zaki) on his thesis entitled (In vitro and in vivo studies on anti-withdrawal properties of *erythroxylum cuneatum*’s leaves) in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the (insert the name of relevant degree).

Members of the Thesis Examination Committee were as follows:

Associate Prof. Dr. Mohamad Taufik Hidayat bin Baharudin, PhD
Department of Human Anatomy
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Associate Prof. Dr. Roslida binti Abd Hamid @ Abdul Razak, PhD
Department of Biomedic
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Prof. Dr. Farihah Haji Suhaimi, PhD
Department of Anatomy
Medical Faculty
Universiti Kebangsaan Malaysia
(External Examiner)

(PROF. DR. ZULKARNIAN)

(E.g. XXXX XXXX, PhD)
Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of (Master of science). The members of the Supervisory Committee were as follows:

Mohamad Aris bin Mohd Moklas, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Che Norma binti Mat Taib, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mohd Ilham bin Adenan, PhD
Professor
Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns)
Universiti Teknologi MARA
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: __
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:

Name of Chairman of Supervisory Committee: Associate Professor Dr. Mohamad Aris bin Mohd Moklas

Signature:

Name of Member of Supervisory Committee: Dr. Che Norma binti Mat Taib

Signature:

Name of Member of Supervisory Committee: Professor Dr. Mohd Ilham bin Adenan,
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction 1
1.2 Problem statement 3
1.3 Hypothesis 3
1.4 Objectives 3
1.5 Significance of the study 3

2 LITERATURE REVIEW

2.1 *Erythroxylum cuneatum* (EC) 4
 2.1.1 Introduction 4
 2.1.2 Taxonomy of *Erythroxylum cuneatum* 5
 2.1.3 Ethnomedical uses of *Erythroxylum cuneatum* 5
2.2 The History of Drug Use 6
 2.2.1 Drugs of Abuse 7
 2.2.2 Drug abuse in Malaysia 7
 2.2.3 Problems related to drug addiction 8
2.3 Opioid 9
 2.3.1 Introduction of opioid drug 9
 2.3.2 Opioid receptors 9
 2.3.2.1 G protein-coupled receptor 9
 2.3.2.2 Types of opioid receptors 10
 2.3.2.2.1 Mδ opioid receptor (-μ) 10
 2.3.2.2.2 Delta opioid receptor (-δ) 11
 2.3.2.2.3 Kappa opioid receptor (-κ) 11
 2.3.3 Morphine 11
 2.3.4 The mechanism of opioid addiction 12
 2.3.5 Opioid addiction and withdrawal 14
 2.3.6 Basic development of opioid addiction at the molecular level 16
 2.3.7 Treatment of opioid addiction 18
 2.3.7.1 Opioid replacement therapy 19
 2.3.7.2 Methadone Maintenance Therapy 19
 2.3.8 Natural product used in the treatment of drug addiction 20
2.4 Cyclic adenosine monophosphate (cAMP) 21
 2.4.1 Neuroblastoma cell SK-N-Sh cell (HTB-11, ATCC) 23
 2.4.2 Concepts of cyclic AMP detection 24
3 MATERIALS AND METHODS
3.1 Materials 26
3.2 Study design 26
3.3 Plant identification, preparation and isolation 27
 3.3.1 Sampling 27
 3.3.2 Leaves drying 27
 3.3.3 Preparation of methanol extract of EC 28
 3.3.4 Preparation of alkaloid extract of EC 29
3.4 In vitro study: Preparation of cell culture and cyclic AMP 30
 3.4.1 Preparation of glassware, plastic ware and ceramics 30
 3.4.2 Thawing cells (SK-N-SH) 30
 3.4.3 Maintenance and subculturing the cells 30
 3.4.4 Cell viability and quantification 30
 3.4.5 Retinoic acid (RA) treatment 31
 3.4.6 Cyclic AMP assay 31
3.5 In vivo study: anti-withdrawal properties 32
 3.5.1 The effective dose extract of Erythroxylum cuneatum 32
 3.5.2 Acclimatization, preparation and approval of animal ethic 33
 3.5.3 Observation of anti-withdrawal signs in morphine addicted rats 34

4 RESULTS
4.1 Extraction and identification of alkaloid extract from Erythroxylum cuneatum’s leaves. 36
 4.1.1 Extraction 36
 4.1.2 Identification of alkaloid 37
 4.1.3 Result of phytochemicals of Erythroxylum cuneatum 37
4.2 In-vitro study: Cyclic adenosine monophosphate (cAMP) 38
 4.2.1 Preparation of cAMP standard curve from Colometric cAMP Direct Immunoassay Kit 38
 4.2.2 Retionic acid (RA) treatment for six days 39
 4.2.3 Morphine sulphate induced up-regulation in 24 h of cyclic AMP in SK-N-SH cells 40
 4.2.4 Alkaloid of Erythroxylum cuneatum reduced the up-regulation of cyclic AMP in co-treatment and pre-treatment with morphine sulphate in SK-N-SH cells 41
4.3 In-vivo study: anti-withdrawal properties 43
 4.3.1 Observation of anti-withdrawal signs in morphine addicted rats 43

5 DISCUSSION
5.1 Preparation of alkaloid crude extract from Erythroxylum cuneatum’s leave. 54
5.2 In-vitro: Cyclic adenosine monophosphate (cAMP) 54
5.3 In-vivo: Anti-withdrawal properties 54
6 CONCLUSION

7 RECOMMENDATION

REFERENCES 57
APPENDICES 71
BIODATA OF STUDENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Previous study on Erythroxylum cuneatum</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of Cases by Type of Drug Addiction year 2009-2013</td>
</tr>
<tr>
<td>2.3</td>
<td>Nomenclature of opioid receptor base on pharmacology, molecular biology and IUPHAR recommendatios</td>
</tr>
<tr>
<td>2.4</td>
<td>The list of plants used in the treatment of drug addiction</td>
</tr>
<tr>
<td>3.1</td>
<td>List of chemicals and reagents</td>
</tr>
<tr>
<td>3.2</td>
<td>List of commercial kits and consumables</td>
</tr>
<tr>
<td>3.3</td>
<td>List of drugs</td>
</tr>
<tr>
<td>3.4</td>
<td>Treatment groups and the types of treatment that given in this project</td>
</tr>
<tr>
<td>3.5</td>
<td>Dose schedule of morphine for inducing morphine dependence in rats</td>
</tr>
<tr>
<td>3.6</td>
<td>‘Counted’ and ‘checked’ signs procedure</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison between total crude alkaloid</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of the phytochemicals report from FRIM</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Erythroxylum cuneatum’s leaf</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of Morphine</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Part of the brain which involve with several pathways in the brain</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>The mechanism of morphine action on opioid receptors at the molecular level</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>After chronic opioid treatment, the regulation of transmitter release from terminals is changed</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Regulation expression of cAMP as a mechanism of opiate tolerance and dependence</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Neuroblastoma SK-N-SH cell growth in medium (ATCC No:HTB-11)</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>A schematic diagram describing the assay procedure for the cAMP detection</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Study design</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Dried processes of Erythroxylum cuneatum’s leaves</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Dried leaves powders</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Extraction and isolation of the alkaloid extracts of Erythroxylum cuneatum’s leaves used in this study</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Haemocytometer kit for counting procedure</td>
<td>31</td>
</tr>
<tr>
<td>3.6</td>
<td>Flow diagram of how the research was conducted</td>
<td>32</td>
</tr>
<tr>
<td>3.7</td>
<td>Flow diagram of in vivo study on anti-withdrawal properties</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Total alkaloid extract from dried leaves of Erythroxylum cuneatum</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Thin layer chromatography (TLC) of alkaloid extract from EC leaves</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Standard curve for cAMP concentration from Colorimetric cAMP Direct immunoassay Kit</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>Microscopic observation revealed morphological changes in cells treated with retinoic acid (RA)</td>
<td>40</td>
</tr>
</tbody>
</table>
4.5 Dose response effect of co-treatment of morphine sulphate and alkaloid extract of EC on forskolin stimulated cAMP production after 24 h incubation

4.6 Dose response effect of pre-treatment of morphine sulphate and alkaloid extract of EC on forskolin stimulated cAMP production after 24 h incubation

4.7 Locomotors analysis from different group

4.8 Exploring analysis from different group

4.9 Digging analysis from different group

4.10 Teeth chattering analysis from different group

4.11 Jumping analysis from different group

4.12 Wet dog shake analysis from different group

4.13 Squeaking on touch analysis from different group

4.14 Hostility on handling analysis from different group

4.15 Diarrhea analysis from different group

4.16 Penile erection analysis from different group
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phytochemical screening report</td>
</tr>
<tr>
<td>2</td>
<td>Approved: Institutional Animal Care and Use Committee (IACUC) UPM</td>
</tr>
<tr>
<td>3</td>
<td>Permission to have a dangerous drug (Morphine)</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>±</td>
<td>Plus/minus</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microliter</td>
</tr>
<tr>
<td>></td>
<td>Less than</td>
</tr>
<tr>
<td><</td>
<td>Greater than</td>
</tr>
<tr>
<td>ATCC American Type Cell Culture</td>
<td>CO2</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>cAMP</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>e.g</td>
<td>For example</td>
</tr>
<tr>
<td>et al</td>
<td>Co workers</td>
</tr>
<tr>
<td>EC</td>
<td>Erythroxyllum cuneatum</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>FRIM</td>
<td>Forest research institute Malaysia</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>H2O</td>
<td>Water</td>
</tr>
<tr>
<td>IACUC</td>
<td>Institutional animal care and use committe</td>
</tr>
<tr>
<td>IC50</td>
<td>Inhibition concentration caused 50% cell death</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimum essential media</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>n</td>
<td>Number of replicate</td>
</tr>
<tr>
<td>NADA</td>
<td>National Anti-Drug Agency</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>O</td>
<td>Oxygen</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>pH</td>
<td>Negative logarithm of H+ concentration</td>
</tr>
<tr>
<td>Rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SK-N-SH</td>
<td>Human neuroblastoma cell</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume by volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight by volume</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

The effort to explore alternatives to synthetic drugs has long been undertaken by medicinal practitioners. Synthetic drugs are generally known to elicit various side effects to the consumers. Despite the massive number of natural products used as the herbal medicines to treat medical illness, there are still more which potentials are not discovered. Although we are progressing with advancements to produce new and better drugs, traditional-ethnic drugs still has its own place in pharmaceutical treatments.

Many plants are being widely used for their therapeutic qualities in the pharmaceutical industry due to the increasing interest in finding substitutes for synthetic products. In Malaysia, there are few plants which were once used as ingredients in treating drug addiction in traditional way such as *Limacia oblongata* (Akar Kunyit), *Moringa oleifera* (Daun Kelor), *Erythrina subumbrans* (Daun Dedap), *Gomphandra species* (Akar Hempedu Jawa), *Gandarusa vulgaris*, *Mimosa pudica* (Semalu), *Aquilaria malaccensis*, *Cassia alata* (Gelenggang), *Randia species* (Duri Randa), and *Acanthus bracteatus* (Kayu Jeruju) according to Supathan (1988). Unlike other plants which have been extensively studied, there is less study conducted on *Erythroxylum cuneatum* (EC) (Chinta Mula). Therefore, this study aims to investigate this plant’s anti-withdrawal properties for therapeutic uses.

Drug abuse is the recurrent use of illegal drugs, or the misuse of prescription or over-the-counter drugs with negative consequences. These consequences may involve problems at work, school, home or in interpersonal relationships; problems with the law and the physical risks that come with using drugs in dangerous situations (Samet, J.H., 2007). Drug abuse and addiction is known to run in families that do not have any genetic predisposition in affecting certain individuals to abuse drugs. Drug abuse begins in individuals due to the practice of the same behavior by the people around them, which is peer pressure or influence. Substance abuse may also begin as a bad habit, but when and if the addiction grows, it manifests as a chronic disease of addiction.

In Malaysia, drug addiction is an offence which is placed under Drug Dependency Act 1983 (Treatment and Rehabilitation). This problem had become severe since 1970s which prompted the government to declare the drug as the ‘number one public enemy’ in 1983. The National Anti-Drug Agency (NADA) is the agency that accounted for addressing problems related to drugs. Cases of drug addiction in the last 5 years showed an interesting but stable pattern. The highest number of drug addicts recorded in 2010 with a total of 23,462 people which decreased to 7,864 people in 2013. Registered drug addicts detected an average decreased to 8.67% from 2009 to 2013 (National Anti-Drug Agency, 2013).

Erythroxylum cuneatum is rarely known in traditional Malay medicine unless brought up anecdotally by local residents on how the leaves have been used in Philippines as fish poison and may be used as a tonic for women who miscarry in Pahang (Burkill, 1935).
In addition, local medical practitioners claimed that the water decoction of leaves from EC is able to reduce the signs of addiction to opioid drugs, particularly heroin. In recent years, a report from FRIM on the impact of anti-withdrawal signs in morphine-dependent rats have demonstrated the ability to suppress withdrawal signs exhibited by morphine addicted rats 24 hours after cessation of morphine by using both aqueous and methanol extracts of the leaves of EC (Ilham et. al., 2010). It was suggested that this plant might serve as an essential component to reduce withdrawal signs, followed by enforced drug cessation, but up to now, such an effect has not been reported (Kumarnsit et al., 2006).

However, the detailed mechanism involving anti-withdrawal properties of this plant remains unknown. Therefore, the design of the study is to understand the anti-withdrawal properties of EC’s extracts. This plant can be developed into a new drug for the treatment of drug addiction.
1.2 Problem statement

Reports of drug abuse increases annually in Malaysia. Even though many programs were carried out by the Malaysian government in order to treat drug abuse, the patient’s compliance towards the program are doubtful and treatment therapy cost is high. Thus, this study provides other alternatives using locally-available and cost-effective natural products to treat drug abuse especially on withdrawal effects of the drugs.

1.3 Hypothesis

The extracts of *Erythroxylum cuneatum* is able decrease withdrawal signs exhibited by morphine addicted rats.

1.4 Objectives

1.4.1 General objective

The aim of this study is to determine the anti-withdrawal properties effect of *Erythroxylum cuneatum* leaves extract on morphine addicted rats.

1.4.2 Specific objectives

i. To produce a standard extract of *Erythroxylum cuneatum* by using acid base extraction.

ii. To determine the effect of alkaloid extract of *Erythroxylum cuneatum* on cAMP production in SK-N-SH cell after chronic morphine treatment.

iii. To evaluate the effects of alkaloid extract of *Erythroxylum cuneatum* against withdrawal properties in morphine addicted rats.

1.5 Significance of the study

This study will provide a detailed preliminary information regarding the anti-withdrawal properties of *Erythroxylum cuneatum*’s leaf extracts which can be used as a stepping stone for future studies. Furthermore, the study results will be a testament of the feasibility of alternative, natural treatments for synthetic drugs on substance addiction. It is hoped that new avenues of research on this plant extract will open, and due to availability of this plant in Malaysia it can further boost the local economy by promoting and cultivating this plant as a profitable natural product due to its importance in the rehabilitation field.
REFERENCES

Badawy, A. B., Evans, C. M., & Evans, M. (1982). Production of tolerance and physical

Collier, H. O. J., & Francis, D. L. (1975). Morphine abstinence is associated with increased brain cyclic AMP.

National Drug Intelligence Center (2011). The Economic Impact of Illicit Drug Use on

on Malaysian Traditional Medicine, Kuala Lumpur: Institute of Advanced Study, University of Malaya and Malaysian Institute of Chemistry(pp. 49-53).

