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Methyl-CpG binding protein (MBD) family consists of Methyl-CpG Binding Protein 2 

(MeCP2), Methyl-CpG Binding Domain Protein 1 (MBD1), MBD2, MBD3 and MBD4 

where MeCP2 is the prototype of the family. MeCP2 contains several domains: (a) a 

methyl-CpG binding domain (MBD), (b) a transcriptional repression domain (TRD), (c) 

two AT hooks and (d) a nuclear localisation signal (NLS). MeCP2 binds to methylated 

DNA and represses the transcription of the associated genes. Mutations in MECP2 lead 

to Rett syndrome (RTT), which is characterised by progressive neuro-developmental 

disorder in early childhood of females. Previous studies revealed that most RTT 

missense mutations alter the protein conformation and subsequently interferes the 

methyl-CpG recognition. To understand how the structural changes contribute to RTT, 

the 3-dimensional structure of these mutants need to be elucidated. Therefore, it is of 
interest to study the structure of RTT related MBD in complex with methylated DNA 

using X-ray crystallography and characterised the DNA-protein binding with some 

biophysical assays. Since more than 50% of the missense mutations occur within the 

MBD domain. Out of the 8 hot RTT spots within this domain, RTT mutants D97E, 

A140V, Y141C, P152R and D156E were included in this study. In band shift assay, 

wild-type MBD complexed with DNA was significantly shifted compared to A140V 

and D97E while other mutants were not significantly shifted. In SPR, wild-type MBD 

showed the highest affinity towards the DNA followed by A140V (KD: 0.28 µM). 

Circular dichrosim (CD) analysis revealed that the secondary structures of A140V, 

Y141C, P152R and D156E are highly similar to wild-type MBD (14.7 % -helix, 25.2 % 

-strand, and 60.1 % turns and unordered) except for D97E which showed 31 % -

helix, 6.5 % -strand, 62.5 % turns and unordered. The complex of MBD140V with 
methylated DNA was crystallised and diffracted X-ray to 2.2 Å resolution. The co-

crystal belongs to monoclinic space group C2, with unit cell parameters of a=78.66 Å, 

b=53.49 Å, c=62.78 Å, ==90 ° and β=132.47 °. X-ray analysis revealed that the 
MBD domain was not altered by mutation of Ala-140 to Val (A140V). However, 

additional water molecules were identified at the DNA-protein contact interface and 
around the DNA molecule. A narrow minor groove of A/T run was observed as a result 

of additional bifurcated hydrogen bonds and vertical stacking of bases results from high 

degree of propeller twist and heavy purine-purine stacking. Two hydration spines were 

observed running down the wall of the minor groove. Each hydration spine is well 
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arranged into two shells adopting a zig-zag arrangement. Hence, this finding provides 

insights for the DNA geometry where the A/T run is geometrically stabilized by 

extensive water network and is independent of the flanking nucleotide sequence, DNA 

methylation and the bound MBD domain. The finding explores characteristics of the 

methylated DNA containing A/T run, which provide the nucleotide sequence 

preferences to MeCP2.  In general, these additional molecular details could provide 
fundamental knowledge in RTT therapeutic approaches. 
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Keluarga protein pengikat metil-CpG (MBD) terdiri daripada protein Pengikat Metil-

CpG 2 (MeCP2), pengikat metil-CpG 1 (MBD1), MBD2, MBD3 dan MBD4 di mana 

MeCP2 adalah prototaip keluarga. MeCP2 mengandungi beberapa domain: (a) domain 
pengikat metil-CpG (MBD), (b) domain penindasan transkripsi (TRD), (c) dua 

pencangkuk AT dan (d) isyarat penempatan nuklear (NLS). Protein Pengikat Metil-

CpG 2 (MeCP2) mengikat DNA bermetil dan menindas transkripsi gen yang berkaitan. 

Mutasi dalam MECP2 membawa kepada sindrom Rett (RTT), yang mempunyai ciri-

ciri progresif gangguan neuron dalam perkembangan awal kanak-kanak perempuan. 

Kajian sebelum ini menunjukkan bahawa kebanyakan mutasi missense RTT mengubah 

komformasi protein dan seterusnya mengganggu pengenalan metil-CpG. Untuk 

memahami bagaimana perubahan struktur membawa kepada RTT, struktur 3-dimensi 

mutan perlu dijelaskan. Oleh itu, adalah penting untuk mengkaji struktur RTT 

berkaitan dengan MBD kompleks dengan DNA bermetil menggunakan sinaran-X 

penghabluran dan mencirikan dengan beberapa analisis DNA biofizikal metilasi. Lebih 

daripada 50% daripada mutasi missense berkelompok dalam domain MBD. Daripada 8 
lokasi penting RTT dalam domain ini, mutan RTT termasuk D97E, A140V, Y141C, 

P152R dan D156E telah dimasukkan dalam kajian ini. Dalam essei anjakan jalur, 

Kompleks DNA-protein MBD jenis liar meranjak dengan ketara berbanding dengan 

mutan A140V dan D97E manakala anjakan jalur mutan lain tidak ketara. Dalam SPR, 

MBD jenis liar mempunyai daya afiniti ke arah DNA yang paling tinggi dan diikuti 

oleh mutan A140V (KD: 0.28 µM). Analisis dikreisme membulat (CD) menunjukkan 

bahawa struktur sekundur mutan RTT (A140V, Y141C, P152R dan D156E) adalah 

menyerupai MBD jenis liar (14.7 % α-heliks, 25.2 % β-helai, dan 60.1 % tidak tersusun) 

kecuali D97E yang menunjukkan 31 % α -heliks, 6.5 % β-helai, 62.5 % tidak tersusun. 

Kompleks MBD140V dengan DNA bermetil telah dihablurkan dengan menggunakan 30 % 

(w/v) PEG 2000 dan hablur telah dibelau oleh sinaran-X kepada resolusi 2.2 Å. Hablur 
ini tergolong dalam kumpulan ruang monoklinik C2, dengan parameter unit sel = 78.66 

Å, b = 53.49 Å, c = 62.78 Å, α = γ = 90 ° dan β = 132.47 °. Analisis sinaran-X 

mendedahkan bahawa domain MBD tidak berubah akibat mutasi Ala-140 kepada Val 

(A140V). Walau bagaimanapun, lebih banyak molekul air telah dikenalpasti di antara 

muka DNA-protein dan di sekitar molekul DNA. Lurah minor dengan urutan A/T yang 

berulang telah dikenalpasti dengan tambahan ikatan hidrogen bercabang dan 

penindihan nukleotida secara menegak yang berpunca daripada pusingan baling-baling 
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yang berdarjah tinggi dan penindihan purina.  Dua spina hidrasi didapati menuruni 

dinding lurah minor. Setiap spina hidrasi tersusun dalam dua lapisan dengan 

penyusunan zig-zag. Oleh itu, kajian ini dapat meningkatkan pemahaman dalam 

geometri DNA di mana urutan A/T yang berulang adalah stabil akibat daripada 

rangkaian molekul air dan bebas daripada mengapitnya urutan nukleotida, metilasi 

DNA dan domain MBD yang terikat. Penemuan ini membongkarkan ciri-ciri DNA 
bermetil yang mengandungi urutan A/T berulang bagi membekalkan kegemaran 

jujukan nukleotida kepada MeCP2. Secara umum, Informasi molekular yang didapati 

dapat menawarkan perkembangan dalam permahaman asas dalam terapeutik RTT. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

DNA methylation is an epigenetic signal that affects gene regulation, genomic stability 

and chromatin structure in mammalian cells (Bird, 2002; Du et al., 2015). In most cases, 

this signal can be read by a family of proteins that contains a common methyl-CpG 

binding domain (MBD) (Hendrich and Bird, 1998). To date, five family members, 

namely MeCP2, MBD1, MBD2, MBD3 and MBD4 have been identified, in which, 

MeCP2 is the prototype of this family (Hendrich and Bird, 1998). MeCP2, MBD1 and 

MBD2 are able to recruit co-repressor complexes that can inhibit transcription in concert 

with chromatin modifiers (Scarsdale et al., 2011). Mammalian MBD3 does not bind to 

methylated DNA in vitro and in vivo due to replacement of amino acid (K43H and Y47F) 

which is critical for DNA binding (Fraga et al., 2003). MBD4 contains a thymine DNA-

glycosylase at the C-terminal region that can repair G-T mismatches via hydrolytic 

deamination [(Refer Section 2.3.4 and Figure 2.3) (Neddermann et al., 1996)].  

MeCP2 is a transcriptional repressor that contains several domains: (a) a methyl-CpG 

binding domain (MBD), (b) a transcriptional repression domain (TRD), (c) AT hooks 

and (d) a nuclear localisation signal (NLS) (Lewis et al., 1992; Nan and Bird, 2001; Xu 

and Pozzo-Miller, 2013). MBD domain of MeCP2 is able to recognise methyl-CpG 

containing DNA. TRD domain involves in recruitment of transcriptional co-repressors 

such as mSin3A and histone deacetylases (HDACs) (Bienvenu et al., 2000). Two 

putative NLSs facilitate nuclear localisation, which targets the protein into the cell 

nucleus (Weaving et al., 2004) and the AT hooks are believed to interact with AT rich 

region of the DNA (Klose et al., 2005). In addition, the AT hooks of MeCP2 bearing 

amino acid sequences 185GRGRGRP191 and 265PKKRGRKP272 (superscript indicates 

amino acid number) which are highly similar to the high mobility group with the AT 

hook I chromosomal protein (HMCG-I) that is capable to bind to the minor groove of 

the AT stretches (A/T run) of DNA and functionally (Aravind and Landsman, 1998; 

Lewis et al., 1992; Nan et al., 1993; Reeves and Nissen, 1990).  Baker et al. (2013) 

demonstrated that the disruption of second conserved AT hook at the C-terminal region 

of MeCP2 by truncation at R270X of MeCP2 led to failure in chromatin compaction and 

localization of pericentric heterochromatin domain of -thalassemia mental retardation 

syndrome X-linked (ATRX); a chromatin remodelling protein, with MeCP2, and caused 

the R270X mice to exhibit Rett syndrome (RTT) phenotypes which is similar to MeCP2 

knock-out mice (Baker et al., 2013; Xu and Pozzo-Miller, 2013). 

The MBD domain of MeCP2 is able to recognise single methyl-CpG dinucleotide (Lewis 

et al., 1992). The MBD domain alone is ample for the methylated DNA binding and 

mutations in the MBD domain intercept its binding to methylated sequence (Baubec et 

al., 2013; Yusufzai and Wolffe, 2000). MeCP2 mutation causes Rett syndrome (RTT); a 

progressive neurodevelopmental disorder in early childhood, which leads to mental 
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retardation in females, with a prevalence of 1 in 10,000-15,000 female births (Hagberg, 

1985). RTT is caused by an X-linked mutation dominant inheritance with normally 

lethality in males due to severe encephalopathy (Bianciardi et al., 2015; Bienvenu et al., 

2000; Zhao et al., 2015). Studies revealed that most RTT related missense mutations 

alter the structure of the MBD domain and subsequently interrupt DNA recognition 

properties (Kriaucionis and Bird, 2003; Kucukkal et al., 2015). Klose et al. (2005) 

showed that an A/T run adjacent to the methyl-CpG is required to enhance the MeCP2 

binding (Klose et al., 2005). Identified endogenous MeCP2 targeting genes such as brain 

derived neurotropic factor (BDNF) promoter region contains high occurrences of A/T 

runs closed to the methyl-CpGs (Chen et al., 2003; Martinowich et al., 2003). The A/T 

run in the methylated DNA facilitated the co-crystallisation of MeCP2 MBD domain in 

complex with methylated DNA used in this study. Due to the presence of AT hooks in 

MeCP2 and the requirement of A/T run for maximal binding, it has been speculated that 

the A/T run could interact with the AT hooks of the MeCP2. However, the characteristics 

of A/T run which provide specificity for the MeCP2 to recognise the methyl groups 

remained unclear.  Therefore, it is of interest to elucidate the 3-dimensional structure of 

RTT mutants in order to understand how the structural changes contribute to RTT and 

the A/T run characteristics with MBD domain bound to its adjacent methyl-CpG 

dinucleotide. 

X-ray analysis of previous report on a MeCP2 MBD-methylated DNA complex revealed 

that only a few residues are involved in direct contact with the DNA bases (Ho et al., 

2008). The methyl groups are recognised by the Arginine fingers of R111 and R133 

while D121 is critical in maintaining the unique hydration pattern at the DNA-protein 

interface. The unique water molecules distribution pattern is crucial to mediate methyl 

group recognition (Ho et al., 2008). RTT mutations within the MBD domain of MeCP2, 

however, are believed to alter the 3-dimensional structure of the protein and subsequently 

affects DNA binding. Several critical mutations such as R111G, R133C, T158M and 

D121G, which close to the DNA-protein contact region have been investigated (Free et 

al., 2001; Meehan et al., 1992; Nan et al., 1993; Yusufzai and Wolffe, 2000). In this 

study, other RTT mutations which are located distance from the DNA-protein contact 

region have been studied.  According to Wakefield and colleagues (1999), missense 

mutations found in RTT usually do not specifically interrupt DNA recognition but may 

result in structural changes in the domain (Bianciardi et al., 2015; Wakefield et al., 1999). 

In order to further investigate the details on the structural changes and molecular 

functional role, several mutants (D97E, A140V, Y141C, P152R and D156E) were 

constructed and the DNA-MBD interactions were characterised with various biophysical 

assays. A co-crystal structure was also elucidated, in which, more molecular details about 

the DNA-protein complex have been revealed compared with previous reported structure. 

In addition, the atomic details of the DNA geometry of the MBD bound A/T run are 

highlighted in comparison with the A/T run of the free DNA double helices. In general, 

these additional molecular details could provide fundamental knowledge in RTT 

therapeutic approaches. 
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1.2 Objectives 

The general objective of this study was to explore and understand the atomic details 

of Rett mutants in complex with methylated DNA. The specific objectives were: 

1. To construct MBD mutants

2. To characterise the interactions of MBD mutants and methylated DNA

3. To crystallise the MBD mutants in complex with methylated DNA

4. To solve the X-ray structure of MBD mutants in complex with methylated DNA
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