UNIVERSITI PUTRA MALAYSIA

IMMUNOHISTOCHEMICAL EXPRESSION OF HEDGEHOG PROTEINS IN DIFFUSE LARGE B-CELL LYMPHOMA

SITI NUR LINA BINTI AZMAN

FPSK(M) 2016 43
IMMUNOHISTOCHEMICAL EXPRESSION OF HEDGEHOG PROTEINS IN DIFFUSE LARGE B-CELL LYMPHOMA

By

SITI NUR LINA BINTI AZMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

August 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Specially dedicated to

My parents, brothers, sisters and

Whom I love

For their invaluable love, endless support, understanding, encouragement and

patients

“Life is a learning experience, only if you learn”
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

IMMUNOHISTOCHEMICAL EXPRESSION OF HEDGEHOG PROTEINS IN DIFFUSE LARGE B-CELL LYMPHOMA

By

SITI NUR LINA BINTI AZMAN

August 2016

Chairman : Maizaton Atmadini Abdullah, PhD
Faculty : Medicine and Health Sciences

The Hedgehog (Hh) signalling pathway is a developmental signalling pathway involved in numerous developmental processes, including determination of cell fate, proliferation, patterning, survival and differentiation. In most adult tissues, this pathway remains silent and its aberrant activation has been documented in various types of malignancies including basal cell carcinoma, gastrointestinal, lung and prostate cancers. The aim of this study was to demonstrate the expression of Hh signalling pathway components in 107 DLBCL formalin fixed paraffin embedded (FFPE) tissues from Hospital Kuala Lumpur and determine their association with clinicopathological parameters. We assessed the expression of SHH (ligand), GLI1 (transcriptional effectors of SHH signalling), its receptor Patched (PTCH1) and signal transducer Smoothened (SMO) using immunohistochemistry. SHH was expressed in 42 (42.1%) cases, GLI1 in 61 (57%) cases, PTCH1 in 107 (100%) cases and SMO in 105 (98.1%) cases. Tumours display strong staining intensity for SMO and PTCH1 but low intensity for SHH and GLI1 when compared to normal tonsil tissues. Immunohistochemical staining results showed that SHH, GLI1 and SMO proteins were localised in the cytoplasm of tumour cells, whereas PTCH1 was mainly localised in their nucleus of tumour cells. Survival curves calculated using the Kaplan-Meier method also showed no significant association with sociodemographic distributions (age, gender, race, tumour involvement) and expression between HH signalling pathway proteins. To the best of our knowledge, there is no study investigating the correlation between SHH, PTCH1 and SMO. This study has shown that SHH expression was significantly associated with the expression of PTCH1 ($P=0.030$) and PTCH1 was significantly associated with SMO ($P=0.030$) expression. Our findings suggest that high expression of PTCH1 and SMO might be important in the pathogenesis of DLBCL. However, further studies are required to ascertain their roles in DLBCL.
EXPRESI PROTIN HEDGEHOG DALAM LIMFOMA SEL B BESAR DIFUS

Oleh

SITI NUR LINA BINTI AZMAN

Ogos 2016

Pengerusi : Maizaton Atmadini Abdullah, PhD
Fakulti : Perubatan dan Sains Kesihatan

Laluan Hedgehog (Hh) merupakan laluan signal yang terlibat dalam pelbagai proses pertumbuhan termasuk penentuan nasib sel, pembiakan sel, corak sel, perbezaan dan jangka hayat sel. Dalam kebanyakan tisu-tisu matang, laluan ini tidak aktif, namun pengaktifan laluan ini telah berlaku didalam beberapa jenis tumor termasuk sel basal karsinoma, tumor gasrousus, kanser paru-paru dan kanser prostat. Oleh itu, kajian ini bertujuan untuk mengenal pasti ekspresi protin Hh dalam 107 sampel terendam formalin dan terbenam-parafin daripada DLBCL di Hospital Kuala Lumpur dan hubung kaitnya dengan parameter demografi. Dalam kajian ini, kami menilai ekspresi protein SHH (ligand), GLI1 (faktor transkripsi), reseptor Patched (PTCH1) dan isyarat transduser, Smoothened (SMO) dengan menggunakan teknik immunohistokimia. Ekspresi protin SHH telah menunjukkan ekspresi yang positif dalam 42 (42.1%) kes, GLI1 sebanyak 61 (57%) kes, PTCH1 sebanyak 107 (100%) kes dan SMO sebanyak 105 (98.1%) kes. Tumor DLBCL memaparkan intensiti yang paling kuat bagi protin SMO dan PTCH1 tetapi berintensiti rendah bagi protin SHH dan GLI1 jika dibandingkan dengan tisu tonsil yang normal. Teknik pewarnaan immunohistokimia menunjukkan protin SHH, GLI1 dan SMO kebanyakannya terletak di sitoplasma sel kanser, manakala protin PTCH1 terletak di dalam nukleus sel tumor tersebut. Analisa jangka hayat menggunakan Kaplan Meir menunjukkan tiada sebarang signifikan dengan parameter demografi (umur, jantina, bangsa pesakit, lokasi tumor) dan expresi laluan signal diantara HH protins dalam DLBCL. Sepanjang pengetahuan kami, tiada kajian yang menyiapkan hubungkait antara protein SHH, PTCH1 dan SMO. Dalam kajian ini, ekspresi SHH menunjukkan hubungan yang signifikan dengan ekspresi protin PTCH1 ($P=0.030$), manakala protin PTCH1 telah menunjukkan ekspresi yang signifikan dengan ekspresi protin SMO ($P=0.030$). Kesimpulan daripada kajian ini kebarangkalian menunjukkan bahawa ekspresi protin PTCH dan SMO yang tinggi adalah penting dalam patogenesis DLBCL. Walau bagaimanapun, kajian selanjutnya harus dilakukan untuk mengenal pasti peranan mereka dalam kanser sel DLBCL.
ACKNOWLEDGEMENTS

This dissertation would not have been completed if it was not for all the people who have always been there to inspire, support and motivate me throughout the past few challenging years that I have gone through.

First and foremost, deepest love and gratitude to my beloved father, Dr Azman Shafawi, my beloved mother Roziah Abd Rahim, my siblings, my brother and sister in law who have inspired me in many ways to work hard. They have supported me throughout the period of the project and reminded me to have strong faith in Allah the Almighty to succeed in life and the hereafter.

I would also like to convey my deepest appreciation to my inspiring supervisor Dr Maizaton Atmadini Abdullah, for her endless guidance, advice, patience, support, and knowledge throughout the project period, especially in understanding the research aspects of the project. I would also like to thank my respectful co-supervisors, Dr Huzlinda Hussin and Dr Salmiah Md. Said for their constant help, support, advice, comments, comforting and encouraging words.

Apart from that, I would also like to thank the laboratory personnel in Histopathology lab and staffs, Puan Juita, Puan Norma and Puan Amrina for giving me permission and assisting me to use the laboratory equipment in the lab for my research project.

Last but not least, thanks to my friends, laboratory mates and senior colleague for their continuous help and enduring support throughout my research duration. Thank you for the wonderful friendship and being my strength, inspiration and hope.
I certify that a Thesis Examination Committee has met on 8 August 2016 to conduct the final examination of Siti Nur Lina binti Azman on her thesis entitled "Immunohistochemical Expression of Hedgehog Proteins in Diffuse Large B-Cell Lymphoma" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Eusni Rahayu binti Mohd Tohit, PhD
Senior Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Hairuzsah binti Ithnin @ Mokngin, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Sabariah binti Abdul Rahman, PhD
Professor
Universiti Teknologi MARA
Malaysia
(External Examiner)

[Signature]

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 September 2016
This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Maizaton Atmadini Binti Abdullah, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Chairman)

Huzlinda Binti Hussin, MD, MPATH
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Salmiah Binti Md Said, MD, MPH
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student:

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before the thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012.
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No: Siti Nur Lina Bt Azman (GS37159)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________________
Name of Chairman of
Supervisory Committee: Maizaton Atmadini Abdullah, PhD

Signature: ______________________________
Name of Member of Supervisory Committee: Huzlinda bt Hussin, MD, MPATH

Signature: ______________________________
Name of Member of Supervisory Committee: Salmiah bt Md. Said, MD, MPH
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 General Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem statement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Significant of study</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4 Research objective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4.1 General objective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4.2 Specific objectives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.5 Hypothesis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.6 Conceptual framework</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Lymphoma</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2 Hodgkin Lymphoma</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Pathophysiology of Hodgkin Lymphoma</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Epidemiology and risk factor of Hodgkin Lymphoma</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Diagnosis and treatment of Hodgkin Lymphoma</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.3 Non-Hodgkin Lymphoma</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Epidemiology and risk factors of NHL</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Pathophysiology of NHL</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Diagnosis and treatment of NHL</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.4 Diffuse large B-cell lymphoma</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Epidemiology of DLBCL</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Microscopic pathology and differential diagnoses</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Molecular classification of DLBCL</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.4.4 Risk stratification of DLBCL patients</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.4.5 Biomarkers in DLBCL</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.5 Hedgehog (HH) signalling pathway</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.5.1 Overview of HH signalling pathway</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Function of HH pathway proteins</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.5.2.1 Sonic Hedgehog (SHH)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.5.2.2 Glioma-associated oncogene homolog 1 (GLI1)</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.5.2.3 Patched (PTCH1)</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.5.2.4 Smoothened (SMO)</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.5.3 Mechanism of HH signalling pathway</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.5.4 Aberrant HH signalling pathway and human cancer</td>
<td>24</td>
</tr>
</tbody>
</table>
2.5.5 Relationship between lymphoid malignancies and HH signaling pathway

2.6 Immunohistochemistry

3 MATERIALS AND METHODS

3.1 Collection and preparation of clinical samples
 3.1.1 Collection of tissue specimens
 3.1.2 Collection of clinical data
 3.1.3 Inclusion criteria
 3.1.4 Exclusion criteria
 3.1.5 Sample size calculation

3.2 Tissue sectioning

3.3 Hematoxylin and eosin staining (H&E)

3.4 Immunohistochemistry (IHC)
 3.4.1 Control
 3.4.2 Preparation of tissue biopsy sections for IHC
 3.4.3 Antigen retrieval
 3.4.4 Detection of antigen and blocking agent
 3.4.5 Visualization and counterstaining

3.5 Evaluation and scoring

3.6 Statistical analysis

3.7 Overall survival analysis

3.8 Research flowchart

4 RESULTS

4.1 Sample distribution
 4.1.1 Distribution and NHL subtypes
 4.1.2 Distribution of DLBCL

4.2 Morphology of tumour tissue samples

4.3 Expression of HH pathway proteins in DLBCL
 4.3.1 Analysis of SHH protein expression in DLBCL
 4.3.1.1 Association of SHH protein expression with sociodemographic distribution
 4.3.1 Analysis of GLI1 protein expression in DLBCL
 4.3.1.1 Association of GLI1 protein expression with sociodemographic distributions
 4.3.1 Analysis of PTCH1 protein expression in DLBCL
 4.3.1.1 Association of PTCH1 protein expression with sociodemographic distributions
 4.3.1 Analysis of SMO protein expression in DLBCL
 4.3.1.1 Association of SMO protein expression with sociodemographic distributions

4.4 Association of immunohistochemical expression between Hedgehog signalling proteins (SHH, GLI1, PTCH and SMO)

4.5 Relationship between expression of HH proteins and sociodemographic distribution with overall survival
5 DISCUSSION
5.1 Sociodemographic distribution and clinical characteristics of DLBCL patients 56
5.2 Protein expression by immunohistochemistry 57
 5.2.1 Analysis of HH protein expression in DLBCL 57
 5.2.2 Correlation of immunohistochemical expression between HH pathway proteins 58
5.3 Overall survival analysis between HH pathway proteins and sociodemographic distribution 58

6 CONCLUSION
6.1 Conclusion 60
6.2 Future recommendation 60

REFERENCES 61
APPENDICES 71
BIODATA OF STUDENT 82
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The 2016 World Health Organization (WHO) Classification of Tumour of Haematopoietic and Lymphoid Tissue</td>
</tr>
<tr>
<td>2.2</td>
<td>Cotswold Modification of Ann Arbour Staging System</td>
</tr>
<tr>
<td>2.3</td>
<td>The WHO classification of different subgroups of DLBCL</td>
</tr>
<tr>
<td>2.4</td>
<td>International Prognostic Index</td>
</tr>
<tr>
<td>2.5</td>
<td>The age-adjusted International Prognostic Index</td>
</tr>
<tr>
<td>2.6</td>
<td>Cancers linked to aberrant HH signalling pathway</td>
</tr>
<tr>
<td>3.1</td>
<td>Positive control used in this study</td>
</tr>
<tr>
<td>3.2</td>
<td>Primary antibody used for immunohistochemistry staining</td>
</tr>
<tr>
<td>3.3</td>
<td>Immunohistochemical scoring system used for SHH, GLI1, PTCH1 and SMO proteins</td>
</tr>
<tr>
<td>3.4</td>
<td>Site of immunoreactivity staining expression</td>
</tr>
<tr>
<td>4.1</td>
<td>Sociodemographic distribution of NHL in Hospital Kuala Lumpur from 2008-2014</td>
</tr>
<tr>
<td>4.2</td>
<td>Subtypes of NHL based on 2008 WHO classification of NHL</td>
</tr>
<tr>
<td>4.3</td>
<td>Sociodemographic distributions of DLBCL patients in Hospital Kuala Lumpur from 2008-2014</td>
</tr>
<tr>
<td>4.4</td>
<td>Association of SHH protein expression with sociodemographic distributions</td>
</tr>
<tr>
<td>4.5</td>
<td>Association of GLI1 protein expression with sociodemographic distributions</td>
</tr>
<tr>
<td>4.6</td>
<td>Association of PTCH1 protein expression with sociodemographic distributions</td>
</tr>
<tr>
<td>4.7</td>
<td>Association of SMO protein expression with sociodemographic distributions</td>
</tr>
<tr>
<td>4.8</td>
<td>Correlation between HH pathway proteins in DLBCL</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Micrograph of Hodgkin lymphoma in a lymph node showing complete effacement of its normal architecture</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Morphologically recognized variants in DLBCL</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Subtyping of DLBCL cases according to the New Algorithm and Han’s Algorithm</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Simplified model of the Hedgehog signaling pathway</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Subtypes of NHL in Hospital Kuala Lumpur from 2008-2014</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Representative photomicrographs of sample stained with H&E staining</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>Score distribution of SHH immunoreactivity in DLBCL</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>Representative photomicrographs of SHH immunohistochemical staining in DLBCL</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>Score distribution of GLI1 immunoreactivity in DLBCL</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Representative photomicrographs of GLI1 immunohistochemical staining in DLBCL</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>Score distribution of PTCH1 immunoreactivity in DLBCL</td>
<td>46</td>
</tr>
<tr>
<td>4.8</td>
<td>Representative photomicrographs of PTCH1 immunohistochemical staining in DLBCL</td>
<td>47</td>
</tr>
<tr>
<td>4.9</td>
<td>Score distribution of the SMO immunoreactivity in DLBCL</td>
<td>49</td>
</tr>
<tr>
<td>4.10</td>
<td>Representative photomicrographs of SMO immunohistochemical Staining</td>
<td>50</td>
</tr>
<tr>
<td>4.11</td>
<td>The Kaplan Meier overall survival curves by gender, age group, ethnicity and tumour location in DLBCL patients</td>
<td>54</td>
</tr>
<tr>
<td>4.12</td>
<td>The Kaplan Meier curves between expression of SHH, GLI1, PTCH1 and SMO with overall survival in DLBCL</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab</td>
<td>Antibody</td>
</tr>
<tr>
<td>ABC</td>
<td>Activated B-cell</td>
</tr>
<tr>
<td>Ag</td>
<td>Antigen</td>
</tr>
<tr>
<td>AILD</td>
<td>Angioimmunoblastic</td>
</tr>
<tr>
<td>ALCL</td>
<td>Anaplastic large cell lymphoma</td>
</tr>
<tr>
<td>AP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>BCC</td>
<td>Basal cell carcinoma</td>
</tr>
<tr>
<td>BcL2</td>
<td>B-cell CLL/Lymphoma 2</td>
</tr>
<tr>
<td>BCNS</td>
<td>Basal cell nevus syndrome</td>
</tr>
<tr>
<td>BL</td>
<td>Burkitt lymphoma</td>
</tr>
<tr>
<td>DLBCL</td>
<td>Diffuse large B cell lymphoma</td>
</tr>
<tr>
<td>DAB</td>
<td>Diaminobenzidine</td>
</tr>
<tr>
<td>Dhh</td>
<td>Desert Hedgehog</td>
</tr>
<tr>
<td>DPX</td>
<td>Di-N-Butyle Phthalate in Xylene</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>FDC</td>
<td>Follicular dendritic cells</td>
</tr>
<tr>
<td>FFPE</td>
<td>Formalin fixed paraffin embedded</td>
</tr>
<tr>
<td>FL</td>
<td>Follicular lymphoma</td>
</tr>
<tr>
<td>Fu</td>
<td>Serine/threonine protein kinase Fused</td>
</tr>
<tr>
<td>GLI</td>
<td>Glioma-associated oncogene homolog</td>
</tr>
<tr>
<td>GCB</td>
<td>Germinal center B-cell</td>
</tr>
<tr>
<td>GEP</td>
<td>Gene expression profiling</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein compound receptor</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>H&E</td>
<td>Haematoxylin and eosin</td>
</tr>
<tr>
<td>HH</td>
<td>Hedgehog</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>HL</td>
<td>Hodgkin lymphoma</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>Ihh</td>
<td>Indian Hedgehog</td>
</tr>
<tr>
<td>LSAB</td>
<td>Labelled streptavidin-biotin</td>
</tr>
<tr>
<td>LL</td>
<td>Lymphoblastic lymphoma</td>
</tr>
<tr>
<td>MOH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>MZ</td>
<td>Marginal zone</td>
</tr>
<tr>
<td>NCS</td>
<td>National Cancer Society Malaysia</td>
</tr>
<tr>
<td>NGCB</td>
<td>Non-germinal centre B-like</td>
</tr>
<tr>
<td>NHL</td>
<td>Non-Hodgkin lymphoma</td>
</tr>
<tr>
<td>NS</td>
<td>Nodular sclerosis subtype</td>
</tr>
<tr>
<td>NK</td>
<td>Natural killer lymphocyte</td>
</tr>
<tr>
<td>NLPHL</td>
<td>Nodular lymphocyte predominant Hodgkin lymphoma</td>
</tr>
<tr>
<td>NMRR</td>
<td>National Medical Research Registration</td>
</tr>
<tr>
<td>NOS</td>
<td>Not otherwise specified</td>
</tr>
<tr>
<td>OS</td>
<td>Overall survival</td>
</tr>
<tr>
<td>PAP</td>
<td>Peroxidase-antiperoxidase</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PL</td>
<td>Plasmablastic lymphoma</td>
</tr>
<tr>
<td>PTC</td>
<td>Patched</td>
</tr>
<tr>
<td>RS</td>
<td>Reed-Sternberg</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SHH</td>
<td>Sonic hedgehog</td>
</tr>
<tr>
<td>SLL</td>
<td>Small lymphoblastic lymphoma</td>
</tr>
<tr>
<td>SL</td>
<td>Subcutaneous lymphoma</td>
</tr>
<tr>
<td>SMO</td>
<td>Smoothened</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Cancer is a very complex disease involving numerous changes in the cell physiology that eventually leads to malignant tumours. It involves a process in which an unregulated division of abnormal cells spreads into nearby tissues or even in the blood. It is often shaped differently from healthy cells; they do not function properly, and they metastasise to other parts of the body. Tumours are clusters of cells that are capable of growing and dividing uncontrollably, and their growth is unregulated. Cancer is not just a disease but rather a group of diseases all of which cause cells in the body to change and grow out of control, invading normal tissues and organs and eventually spreading throughout the body. Cancers are classified according to their tissue of origin like breast cancer, lung cancer, prostate cancer, liver cancer renal cell carcinoma (kidney cancer), oral cancer and brain cancer. It can also be classified into tissue types, for example carcinoma sarcoma, lymphoma or cancers of mixed types which includes mixed mesodermal tumour, carcinosarcoma, adenosquamous carcinoma and teratocarcinoma.

There is no one single cause for cancer. According to Foster and Sarelius, 2015, the medical reviewer of University of Rochester Medical Center, believe that there are many factors that may contribute to cancer. The factors involved may be genetic, environmental, or biological characteristics of the individual for example age, gender and ethnicity. Diagnosis, treatment and prognosis for childhood cancers are different from adult cancers because childhood cancer is more responsive to therapy, and a child can tolerate more aggressive therapy (Foster & Sarelius, 2015). The overall five-years survival rate for common childhood cancers are acute lymphocytic leukemia (89%), acute myelogenous leukemia (65%), brain and other CNS (72%), wilms tumours (92%), hodgkin lymphoma (98%) and non-hodgkin lymphoma (89%). The overall five-years survival rate for common adult cancers are prostate (99%), melanoma of the skin (92%), breast (89%), urinary bladder (77%) colorectum (65) and lung and bronchus (17%) (American Cancer Society, 2015).

Cancer is one of the leading causes of death worldwide and the pattern continues to increase with time. These causes might have been due to avoidable risk factors that include tobacco exposure, smoking, poor diet, inadequate exercise and being overweight. Worldwide, one in eight deaths is due to cancer (American Cancer Society, 2008). When countries are grouped according to economic development, cancer is the leading cause of death in developing countries and the second-leading cause of deaths in emerging countries. According to the International Agency for Research on Cancer (IARC) Globocan of the World Health Organisation (WHO), there were 14.1 million new cancer cases, 8.2 million cancer deaths and 32.6 million people living with cancer (within 5 years of diagnosis) in 2012 worldwide (Jacques Ferlay, Isabelle Soerjomataram, Rajesh Dikshit, 2012).

In Malaysia, the incidence of cancer has become the fourth leading cause of death and is expected to increase by year with an estimated of 30,000 cases annually. Cancer is one of the top ten causes of hospitalisation and the fifth cause of death in both Ministry of Health and private hospitals (Ministry of Health Malaysia, 2013).
online article ‘Rise in cancer deaths in Malaysia’ 2014, stated that the incidence of cancer in Malaysia has increased from 32,000 new cases in 2008 to about 37,400 cases in 2012. This number, however, is expected to rise in the years to come if no actions such as living a healthy lifestyle, avoiding exposure to known cancer-causing substances and taking medicines or vaccines are taken (The Star Online, 2014). According to the National Cancer Registry of Malaysia, the most common cancer among Malaysian population is breast cancer, with one in 19 Malaysian developing breast cancer, one in 33 developing colorectal cancer, and one in 40 developing lung cancer followed by nasopharyngeal cancer, cervical cancer, lymphomas, leukaemia, ovarian cancer, stomach cancer and also liver cancer. Within different ethnic groups, cancer seems to be predominant among Chinese compared to Malays and Indians (Zainal & Nor Saleha, 2011). The National Cancer Society Malaysia (NCSM) estimated that in 2015, 90,000 to 100,000 Malaysians are living with cancer. Less than 10% of cancers occurred among children while over 50% in men and 35% in women aged 50 and above. However, it is estimated that a ratio of one in four Malaysian (1:4) will develop cancer at the age of 75 years old. It is also expected that by 2030, the global burden of cancer will increase to 21.4 million new cancer cases and 13.2 million deaths from cancer annually.

In 2010, the World Health Organization (WHO) recorded that lymphoma was the 21st top killer disease with 0.97% of the total death (World Health Organization, 2010). Almost one thousand patients are diagnosed every day with one million people worldwide living with lymphoma. According to the National Cancer Registry, 2007, lymphoma is the 6th commonest cancer among Malaysians. It is the sixth most common cancer in males and the eighth most common cancer in females (Zainal & Nor Saleha, 2011). There are two main subgroups of lymphoma, which are non-Hodgkin lymphoma (NHL) and Hodgkin’s lymphoma (HL). HL is divided into four subtypes, and NHL is divided into more than 61 subtypes. The data collected at the GLOBOCAN, 2012, estimated that the incidence of HL patients is about 0.5% per 1,000,000 populations while for NHL is about 2.9% per 1,000,000 populations. In 2015, approximately about 9,050 new cases of HL and 4% case of NHL were expected to occur. There are approximately 1,150 deaths and 19,790 deaths from HL and NHL respectively (American Cancer Society, 2015). The most common subtype of NHL is diffuse large B-cell lymphoma (DLBCL) and are known to be the aggressive subtype. It develops when the body makes abnormal B-lymphocytes which is the lymphoma cells. B-cell lymphocytes are white blood cells that fight infection. Sometimes lymphoma cells begin in other parts of the body known as extranodal disease. The term diffuse refers to the fact that the cancer cells are spread around and not concentrated in one particular part of the node or in clusters within a part of the node. In other words the cancer cells don't clump together very well.

Although tumours differ based on their tissues of origin, all cancers share the fundamental features of propagated mutation to daughter cells. These propagated mutations generally lead to deregulated signalling pathways that gives a variety of clinical consequences and indications for new therapeutic involvement (Rajeev et al., 2011). Cancer cells aberrantly reactivate oncogenic developmental pathways such as Notch, Wnt and Hedgehog to provide growth and survival advantage to tumour cells. The Hedgehog pathway (Hh) protein family is a group of secreted signalling molecules for mammalian development and homeostasis of renewal adult tissues (McMahon, Ingham, & Tabin, 2003). It is normally activated during embryonic development.
(Ingham, 2001) and promotes vascularization (Nagase, Nagase, & Machida, 2008). The basic components of Hh ligands refer to the three family members which include Sonic (Shh), Indian (Ihh) and Desert (Dhh) Hedgehog.

In adults, HH ligands are thought to be important for the renewal of hematopoietic stem cells (Varjosalo & Taipale, 2008). Ligands of the pathway are expressed in the hematopoietic niche and have been shown to be important for survival signals of leukemia, lymphoma and myeloma cancer stem cells by bone marrow imaging and transgenic Eµ-Myc mice model, whereas inhibiting the pathway suppresses disease progression (Dierks et al., 2007, 2008; Zhao et al., 2009). The ligands Ihh and Shh promote survival of B-cell malignancies such as lymphoma (Lowrey et al., 2002; Stewart et al., 2002). Unlike solid tumours which produce HH ligand, Ihh and Shh are produced by surrounding non-malignant cells in the lymph nodes, bone marrow and spleen to permit the growth of lymphoma cells.

1.2 Problem Statement

Despite treatment with conventional anthracyclin-based chemotherapy, approximately half of all DLBCL patients eventually die of this disease. Inappropriate activation of the HH signalling pathway has been found to occur in haematological neoplasms. This study is conducted to study the expression of HH signalling proteins expression (SHH, GLI1, PTCH1 and SMO) in DLBCL. This is important to unlock some possible diagnostic and treatment strategies in DLBCL.

1.3 Significance of Study

The study will provide an overview on the expression of HH pathway proteins in DLBCL. Hence further in depth research can be performed to evaluate their functions in tumour progression and the possibilities of targeted therapeutic interventions.

1.4 Research Objective

1.4.1 General Objective

To evaluate the expression of Hh signalling pathway proteins in DLBCL

1.4.2 Specific Objectives

1. To determine the sociodemographic distribution of patients with DLBCL.
2. To analyze the immunohistochemical expression of four Hedgehog pathway proteins (SHH, GLI, PTCH1 and SMO) in DLBCL.
3. To determine the correlation of immunohistochemical expression between Hedgehog pathway proteins and sociodemographic factors in DLBCL.
4. To analyze the association between Hedgehog pathway proteins and sociodemographic factors with overall survival in DLBCL.
1.5 Hypothesis

1. There is high expression of Hedgehog pathway proteins in DLBCL.
2. There is significant association between the expression of four different HH pathway proteins (SHH, GLI1, PTCH1 and SMO) in DLBCL.
3. There is significant association between the expression of Hedgehog pathway proteins with sociodemographic factors and overall survival in DLBCL.
1.6 Conceptual Framework

- Expression of SHH
- Expression of GLI1
- Expression of PTCH1
- Expression of SMO

- Sociodemographic Factors
 - Gender
 - Age
 - Race
 - Tumour location

- Non-studied variable

- Studied variables

- Survival Analysis of DLBCL
- Treatment of DLBCL
REFERENCES

Kappler, R., Bauer, R., Calzada-Wack, J., Rosemann, M., Hemmerlein, B., & Hahn, H.

