UNIVERSITI PUTRA MALAYSIA

HEDGEHOG PATHWAY PROTEINS AND THEIR ASSOCIATION WITH CLINICOPATHOLOGICAL PARAMETERS OF BLADDER CANCER

KHAIRUNNISA BINTI MOHD ARIFFIN

FPSK(M) 2016 42
HEDGEHOG PATHWAY PROTEINS AND THEIR ASSOCIATION WITH CLINICOPATHOLOGICAL PARAMETERS OF BLADDER CANCER

By

KHAIRUNNISA BINTI MOHD ARIFFIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

August 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

HEDGEHOG PATHWAY PROTEINS AND THEIR ASSOCIATION WITH CLINICOPATHOLOGICAL PARAMETERS OF BLADDER CANCER

By

KHAIRUNNISA BINTI MOHD ARIFFIN

August 2016

Chairman : Maizaton Atmadini Abdullah, PhD
Faculty : Medicine and Health Sciences

Hedgehog pathway is important for growth and patterning during embryonic development. Previous studies have shown that constitutive activation of Hedgehog pathway can lead to various types of malignancies including medulloblastoma, basal cell carcinoma, gastrointestinal, breast and prostate cancer. The purpose of this study was to investigate the expression of Hedgehog pathway proteins in bladder cancer and determine their association with clinicopathological parameters. The expression of Sonic hedgehog (SHH), its receptor Patched (PTCH1), downstream transcription factor GLI1 and its signal transducer SMO in 112 bladder cancer tissues from Hospital Kuala Lumpur were determined by immunohistochemistry. SHH was expressed in 108 (96.4%) cases, GLI1 in 104 (92.9%) cases, PTCH1 in 111 (99.1%) cases and SMO in all cases. The relationship between the expression of these four proteins and its clinicopathological parameters were analysed statistically. Immunohistochemical staining results showed SHH, GLI1 and SMO proteins were mainly located in the cytoplasm of tumour cells, whereas PTCH1 was mainly located in the nucleus of tumour cells. Positive expression of SHH, PTCH1, GLI1 and SMO proteins were correlated with a few variables which include grade and stage of bladder cancer, lymph node metastasis and distant metastasis (Mx). Among all of the clinicopathological parameters, SMO was found to be the only protein that showed statistically significant association with higher grade (p=0.001) and higher stage (p=0.042) of bladder cancer. SMO expression also showed borderline association with lymph node metastasis (p=0.056). These findings indicate that SMO expression may be a poor prognostic marker in bladder cancer.

Keywords: Hedgehog signalling pathway, Sonic hedgehog, Gli1, Patched, Smo, bladder cancer.
LALUAN HEDGEHOG PROTEIN DAN HUBUNGKAITNYA DENGAN PARAMETER PATOLOGI KLINIKAL KANSER PUNDI KENCING

Oleh

KHAIRUNNISA BINTI MOHD ARIFFIN

Ogos 2016

Pengerusi : Maizaton Atmadini Abdullah, PhD
Fakulti : Perubatan dan Sains Kesihatan

Laluan hedgehog penting untuk pertumbuhan dan corak semasa perkembangan embrio. Kajian sebelum ini menunjukkan bahawa pengaktifan berterusan laluan hedgehog boleh membawa kepada pelbagai jenis tumor termasuk medulloblastoma, karsinoma sel basal, kanser gastrousus, kanser payudara dan kanser prostat. Kajian ini bertujuan untuk menyiasat ekspresi protein laluan Hedgehog dalam kanser pundi kencing dan menentukan hubungkaitnya dengan parameter patologi klinikal. Ekspresi Sonic hedgehog (SHH), penerima (PTCH), faktor transkripsi, (GLI1) dan isyarat transduser, (SMO) bagi 112 tisu kanser pundi kencing daripada Hospital Kuala Lumpur telah ditentukan dengan teknik immunohistokimia. SHH menunjukkan ekspresi dalam 108 (96.4%) kes, GLI1 dalam 104 (92.9%) kes, PTCH1 dalam 111 (99.1%) kes dan SMO dalam semua kes. Hubungan ekspresi untuk keempat-empat protein dan parameter patologiklinikal telah dianalisa secara statistik. Keputusan pewarnaan imunohistokimia menunjukkan protein SHH, GLI1 dan SMO kebanyakannya terletak di sitoplasma sel-sel tumor, manakala PTCH1 kebanyakannya terletak di dalam nukleus sel-sel tumor. Ekspresi positif daripada SHH, GLI1, PTCH1 dan SMO protein telah dikorelasi dengan beberapa pembolehubah yang merangkumi gred dan peringkat kanser pundi kencing, metastasis nodus limfa dan metastasis lebih jauh. Antara semua parameter patologi klinikal, SMO protein sahaja yang menunjukkan hubungkait yang signifikan secara statistik dengan gred tertinggi \(p=0.001 \) dan peringkat tertinggi \(p=0.042 \) kanser pundi kencing. Ekspresi SMO juga menunjukkan garis batas berkait dengan nodus limfa \(p=0.056 \). Keputusan ini menunjukkan bahawa ekspresi SMO mungkin merupakan petanda prognostik yang lemah untuk kanser pundi kencing.

Kata kunci: Laluan hedgehog protein, Sonic hedgehog, GLI1, PTCH1, SMO, kanser pundi kencing.
Firstly, I would like to thank to Allah who gave me such a great strength and courage throughout this journey and without His blessing I do not think I could complete this thesis successfully.

I would like to acknowledge my special gratitude and appreciation to my supervisor, Dr. Maizaton Atmadini Abdullah for her endless help, support, advice and guidance in completing this research. In addition, I would like to express my thankfulness to my co-supervisor, Dr. Fauzah Abd Ghani and Dr. Salmiah Md Said for their advice and comments throughout the entire project.

My sincere gratitude is also accorded to all staffs of the Department of Pathology, Hospital Kuala Lumpur for their kind assistance during collection of data and samples at the department. Not forgetting all staffs of Histopathology Laboratory, Faculty of Medicine and Health Science for their help in assisting me to use the equipment and facilities required to complete this research.

I would like to express my special gratitude to my beloved mother and my family who gave me such a great support in every possible way and always prayed for me whenever they could. With their support, I was able to complete my research with great success. They are always my supporters ever.

Last but not least, thanks to all my friends who were involved in my research directly or indirectly, with all their helps, this thesis will be able to be completed with flying colours.
I certify that a Thesis Examination Committee has met on 3 August 2016 to conduct the final examination of Khairunnisa binti Mohd Ariffin on her thesis entitled "Hedgehog Pathway Proteins and their Association with Clinicopathological Parameters of Bladder Cancer" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Sabariah binti Md. Noor, PhD
Senior Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Norhafizah binti Mohtarrudin, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Siti Aishah Md. Ali, PhD
Professor
Pusat Perubatan Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 September 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Maizaton Atmadini Abdullah, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Fauzah Abd Ghani, MBBS, M.Path
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Salmiah Md. Said, MD, MPH
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT , PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date :
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: ______________

Name and Matric No: Khairunnisa Binti Mohd Ariffin (GS37160)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to

Signature: _______________________

Name of Chairman of Supervisory Committee: Maizaton Atmadini Abdullah, PhD

Signature: _______________________

Name of Member of Supervisory Committee: Fauzah Abd. Ghani, MBBS, MPath

Signature: _______________________

Name of Member of Supervisory Committee: Salmiah Md. Said, MD, MPH
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General introduction 1

1.2 Problem statement 2

1.3 Significance of the study 2

1.4 Research objectives

1.4.1 General objective 3

1.4.2 Specific objectives 3

1.5 Research hypothesis 3

1.6 Conceptual framework 4

2 LITERATURE REVIEWS

2.1 Anatomy of the urinary bladder

2.1.1 Gross (macroscopic) appearance of the urinary bladder 5

2.1.2 Histology (microscopic) of the urinary bladder 5

2.2 Background of bladder cancer

2.2.1 Epidemiology of bladder cancer 6

2.2.2 Risk factors of bladder cancer 7

2.2.3 Histological type of bladder cancer 7

2.2.4 Staging and grading of bladder cancer 8

2.3 Hedgehog (HH) signalling pathway

2.3.1 An overview of Hedgehog (HH) signalling pathway 11

2.3.2 Function of each of Hedgehog (HH) pathway protein

2.3.2.1 SHH 11

2.3.2.2 GLI1 11

2.3.2.3 PTCH1 12

2.3.2.4 SMO 12

2.3.3 Mechanism of the HH signalling pathway 12

2.3.4 Aberrant of HH signalling pathway in human cancer 16

2.3.5 Role of HH signalling in bladder development 17

2.3.6 HH signalling in bladder tumorigenesis 18
3 MATERIALS AND METHODS
3.1 Location of the study 19
3.2 Study design 19
3.3 Sampling
 3.3.1 Study population 19
 3.3.2 Sampling frame 19
 3.3.3 Sampling unit 19
 3.3.4 Sample size 20
 3.3.5 Sampling method
 3.3.5.1 Tissue sectioning 20
 3.3.5.2 Hematoxylin and Eosin (H&E) staining 20
 3.3.5.3 Principles of immunohistochemistry 21
 3.3.5.4 Control 21
 3.3.5.5 Preparation of tissue biopsy sections for
 immunohistochemistry 22
 3.3.5.6 Antigen retrieval and blocking of
 endogenous peroxidise activity 22
 3.3.5.7 Detection of antigen 22
 3.3.5.8 Visualization and counterstaining 23
3.4 Variables
 3.4.1 Dependent variables 24
 3.4.2 Independent variables 25
3.5 Data collection 25
3.6 Operational definition of terms 26
3.7 Data analysis 27
3.8 Ethical validation 28

4 RESULTS
4.1 Demographic distribution of bladder cancer 29
4.2 Immunohistochemical expression of hedgehog signalling
 proteins in bladder cancer
 4.2.1 Morphology analysis of the samples 31
 4.2.2 Analyses of SHH protein expression in bladder
 cancer 33
 4.2.3 Analyses of GLI1 protein expression in bladder
 Cancer 36
 4.2.4 Analyses of PTCH1 protein expression in bladder
 cancer 39
 4.2.5 Analyses of SMO protein expression in bladder
 cancer 42
4.3 Correlation between HH pathway proteins in bladder cancer 45
4.4 Association of Hedgehog pathway proteins in bladder cancer
 4.4.1 Association of SHH expression with demographic and
 clinicopathological parameters 46
4.4.2 Association of GLI1 expression with demographic and clinicopathological parameters
4.4.3 Association of PTCH1 expression with demographic and clinicopathological parameters
4.4.4 Association of SMO expression with demographic and clinicopathological parameters

5 DISCUSSION
5.1 Demographic distribution of bladder cancer
5.2 Analyses of HH pathway proteins expression in bladder cancer
5.3 Correlation of immunohistochemical expression between HH pathway proteins
5.4 Association of demographic factors and clinicopathological parameters with the expression of HH pathway proteins

6 CONCLUSION AND FUTURE RECOMMENDATIONS
6.1 Conclusions
6.2 Future recommendations

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Old and new classification of bladder cancer</td>
</tr>
<tr>
<td>2.2</td>
<td>TNM staging system of bladder cancer</td>
</tr>
<tr>
<td>2.3</td>
<td>Cancers linked to aberrant of HH signalling pathway</td>
</tr>
<tr>
<td>3.1</td>
<td>Positive control used in this study</td>
</tr>
<tr>
<td>3.2</td>
<td>Primary antibodies for immunohistochemical staining</td>
</tr>
<tr>
<td>3.3</td>
<td>Site of immune-positive staining of each protein</td>
</tr>
<tr>
<td>3.4</td>
<td>The contextual definition of all dependent study variables</td>
</tr>
<tr>
<td>3.5</td>
<td>The contextual definitions of all independent study variables</td>
</tr>
<tr>
<td>3.6</td>
<td>The operational definitions of all dependent study variables</td>
</tr>
<tr>
<td>3.7</td>
<td>The operational definitions of all independent study variables</td>
</tr>
<tr>
<td>3.8</td>
<td>Immunoreactivity score system used in this study</td>
</tr>
<tr>
<td>4.1</td>
<td>Demographic distribution and clinicopathological data of bladder cancer patients in Hospital Kuala Lumpur</td>
</tr>
<tr>
<td>4.2</td>
<td>Correlation among HH pathway proteins expression in bladder cancer</td>
</tr>
<tr>
<td>4.3</td>
<td>Association of SHH protein expression with demographic and clinicopathological parameters</td>
</tr>
<tr>
<td>4.4</td>
<td>Association of GLI1 protein expression with demographic and clinicopathological parameters</td>
</tr>
<tr>
<td>4.5</td>
<td>Association of PTCH1 protein expression with demographic and clinicopathological parameters</td>
</tr>
<tr>
<td>4.6</td>
<td>Association of SMO protein expression with demographic and clinicopathological parameters</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The anatomy and histology of urinary bladder</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Simplified diagram of HH signalling pathway</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Diagram of Ligand-dependent signalling and Ligand-independent signalling pathway</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Representative photos of the bladder cancer stained with H&E staining</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Score distribution of SHH immunoreactivity</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>Representative photo of tonsil as a positive control of SHH</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>SHH expression in bladder cancer</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>Score distribution of GLI1 immunoreactivity</td>
<td>36</td>
</tr>
<tr>
<td>4.6</td>
<td>Representative photo of gastric carcinoma as a positive control of GLI1</td>
<td>37</td>
</tr>
<tr>
<td>4.7</td>
<td>GLI1 expression in bladder cancer</td>
<td>38</td>
</tr>
<tr>
<td>4.8</td>
<td>Score distribution of PTCH1 immunoreactivity</td>
<td>39</td>
</tr>
<tr>
<td>4.9</td>
<td>Representative photo of gastric carcinoma as a positive control of PTCH1</td>
<td>40</td>
</tr>
<tr>
<td>4.10</td>
<td>PTCH1 expression in bladder cancer</td>
<td>41</td>
</tr>
<tr>
<td>4.11</td>
<td>Score distribution of SMO immunoreactivity</td>
<td>42</td>
</tr>
<tr>
<td>4.12</td>
<td>Representative photo of gastric carcinoma as a positive control of SMO</td>
<td>43</td>
</tr>
<tr>
<td>4.13</td>
<td>SMO expression bladder cancer</td>
<td>44</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

WHO World Health Organization
TCC Transitional cell carcinoma
HH Hedgehog
Shh Sonic hedgehog
PTCH1 Patched homologue 1
SMO Smoothened homologue
GLI1 GLI family zinc finger 1
mL millilitre
G1 well differentiated
G2 moderately differentiated
G3 poorly differentiated
WHO/ISUP World Health Organization/International Society of Urological Pathology
PUNLMP papillary urothelial neoplasms of low malignant
TNM Tumour nodes metastasis
AJCC American Joint Committee on Cancer
Ihh Indian Hedgehog
Dhh Desert Hedgehog
SUFU Suppressor of fused
DNA Deoxyribonucleic acid
GliR GLI family zinc finger repressor
GliA GLI family zinc finger activator
BCC Basal cell carcinomas
MB Medulloblastoma
CSCs Cancer stem cells
FFPE Formalin-fixed paraffin embedded
H&E Hematoxylin & Eosin
DPX Di-N-Butyle Phthalate in Xylene
Ag-Ab Antigen antibody
ABC Avidin-biotin complex
LSAB Labelled streptavidin-biotin
PAP Peroxidase-antiperoxidase
mM mili molar
PBS Phosphate buffered saline
TBST Tris Buffered Saline with Tween 20
HRP Horse radish peroxidase
µl microlitre
DAB Diaminobenzidine
SPSS Statistical Package for the Social Sciences
Mx Distant metastasis
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Cancer is one of the common health problems worldwide. In the United States, one in four deaths is due to cancer (Siegel, Naishadham, & Jemal, 2013). In year 2007, based on Ministry of Health Malaysia Hospitals after Heart Diseases & Diseases of Pulmonary Circulation and Septicaemia, cancer was the third common cause of death in Malaysia. A total of 18,219 new cancer cases were diagnosed in 2007 and registered at the National Cancer Registry. Among the cases reported, there were 8,123 (44.6%) males and 10,096 (55.4%) females (Zainal & Nor Saleha, 2011). Worldwide, bladder cancer ranks eleventh most common malignancy. It is the 7th most common cancer in men and the 19th most common cancer in women (Jacques Ferlay, Isabelle Soerjomataram, Rajesh Dikshit, 2012). The disease is more common in whites than blacks, and the average age at diagnosis is 65 years. In addition, it has been recommended that the stage survival of bladder cancer in female is worse than in male (Kirkali et al., 2005).

Approximately 90% of bladder tumours arise from the urothelial lining, and transitional cell carcinoma (TCC) is the most common histological type in cases arising in the United States. TCC or as known as urothelial carcinoma starts in the cells lining of the bladder and later will spread to the nearby organ or other body parts if it is not treated at early stage. Smoking habit, chemical exposure, age, sex and chronic bladder inflammation are risk factors that can contribute to the development of bladder cancer (Jemal et al., 2011). However, the pathogenesis of bladder cancer still largely remains unknown. Bladder cancer is treated based on the tumour stage and grade. Besides the treatment protocols, the incidence of therapeutic resistance and failure are still present.

Malignant cells aberrantly reactivate oncogenic developmental pathways such as Hedgehog, Wnt and Notch to provide growth and survival advantage to tumour cells (Ingham, Mcmahon, Ingham, & Mcmahon, 2001). Emerging evidence clearly suggesting the activation of Hedgehog pathway has been implicated in the tumour development of a large number of human cancers (Beachy, Karhadkar, & Berman, 2004).

The exact genetic events leading to urothelial transformation involve the activation and inactivation of oncogenes, inactivation or loss of tumour suppressor genes and alterations in the apoptotic gene products (Sandberg and Berger, 1994). Study shows that there are a lot of genetic abnormalities but the specific genes involved are still unidentified. This is because there are a lot of gene mutations detectable in bladder cancer (Cantile et al., 2003).

In 2010, Chen et al. have genotyped 177 single-nucleotide polymorphisms (SNP) in 11 SHH pathway genes in a study including 803 bladder cancer cases and 803 controls. They also analysed SNP associations with cancer risk and clinical outcomes in 318
cases of muscle-invasive and 419 cases of non-muscle-invasive bladder cancer and metastatic bladder cancer. As their findings, it has been confirmed that germ-line genetic variations in the SHH pathway could predict the clinical outcomes of non-muscle-invasive bladder cancer patients received transurethral resection and Bacillus Calmette-Guérin.

Hedgehog signalling pathway operates in organogenesis, control of proliferation, and the differentiation of embryonic adult stem cells, thus, not surprisingly it has been linked with several different tumours (Sverrisson et al., 2014) including gastrointestinal cancers and is frequently activated in esophageal (Ingham et al., 2001), pancreatic (Morton et al., 2007) and gastric cancer (Merchant, Saqui-Salces, & El-Zaatari, 2010). On the other hand, the role of hedgehog signalling pathway has been less investigated in the development of bladder cancer and its involvement to the progression of transitional cell carcinoma of bladder is not clear (Haraguchi et al., 2007). However, He et al. successfully proved that the positive expression of SHH, GLI1 and PTCH1 proteins in bladder cancer were significantly higher than in adjacent normal bladder. Ha, Y. S. et al. (2007) has shown that SMO is closely related with the differentiation and progression of bladder cancer. Therefore, SHH, GLI1, PTCH1 and SMO may play important roles during development of bladder cancer (He et al., 2012). This study is necessary to contribute the knowledge in understanding the role of HH pathway proteins in bladder cancer.

1.2 Problem statement

Bladder cancer is generally diagnosed by cystoscopy and biopsy. It has a very high frequency of recurrence and therefore requires follow up cystoscopy as well as urine cytology as periodic surveillance to identify early recurrence. Failure to treat this cancer at an early stage will lead to advance stage which may further complicate the management of the patient. Currently, radical cystectomy is the treatment for urothelial carcinoma. As this cancer needs long-term follow up and surveillance procedure to monitor for tumour recurrence, many of the patients tend to default their follow up. The role of hedgehog signalling pathway in bladder development is well recognized but its role in human bladder cancer progression is uncertain and has been quite controversial. So, this study was done to determine the association of hedgehog pathway protein expression with the progression of bladder cancer so that it can be treated at an early stage with more effective treatments.

1.3 Significance of the study

The findings from this study will contribute knowledge in understanding the role of SHH, GLI1, PTCH1 and SMO in bladder cancer. This study will also offer overview on the expression of these proteins in bladder cancer to better evaluate the function of these proteins in tumour progression. It also provides fundamental background for further investigations on clinical use of related antibodies for personalised cancer management.
1.4 Research objectives

1.4.1 General objective

- To study the HH signalling pathway in bladder cancer.

1.4.2 Specific objectives

1) To determine the demographic distribution of bladder cancer in Hospital Kuala Lumpur from 2008 to 2013.
2) To analyse the immunohistochemical expression of SHH, GLI1, PTCH1 and SMO in bladder cancer.
3) To study the correlation in the immunohistochemical expression between Hedgehog pathway proteins (SHH, GLI1, PTCH1 and SMO) in bladder cancer.
4) To study the association of demographic factors (age, gender, ethnicity) and clinicopathological parameters (grade, stage, lymph node metastasis, distant metastasis) of bladder cancer with the expression of hedgehog pathway protein.

1.5 Research hypothesis

1) There is high expression of hedgehog pathway proteins (SHH, GLI1, PTCH1 and SMO) in bladder cancer.
2) There is significant correlation among the expression of hedgehog signalling proteins (SHH, GLI1, PTCH1 and SMO).
3) There is significant association between demographic factor and clinicopathological parameters of bladder cancer with the expression of hedgehog pathway proteins (SHH, GLI1, PTCH1 and SMO).
1.6 Conceptual Framework

Immunohistochemical staining of bladder cancer

Expression of SHH
Expression of GLI1
Expression of PTCH1
Expression of SMO

Demographic Factors
- Gender
- Age
- Ethnic

Clinicopathological Parameters
- Grade
- Stage
- Lymph node metastasis
- Distant metastasis
REFERENCES

Shiroyanagi, Y., Liu, B., Cao, M., Agras, K., Li, J., Hsieh, M. H., … Baskin, L. S.
Urothelial sonic hedgehog signaling plays an important role in bladder smooth muscle formation. *Differentiation; Research in Biological Diversity*, 75(10), 968–77.

of Biological Chemistry, 289(45), 31513–31525.

