UNIVERSITI PUTRA MALAYSIA

IN VITRO EFFECTS OF Phaleria macrocarpa (Boerl.) MAHKOTA DEWA FRUIT AQUEOUS AND METHANOL-CHLOROFORM EXTRACTS ON GLUCOSE UPTAKE AND METABOLISM

NURUL AKMARYANTI ABDULLAH

FPSK(M) 2014 4
IN VITRO EFFECTS OF *Phaleria macrocarpa* (Boerl.) MAHKOTA DEWA FRUIT AQUEOUS AND METHANOL-CHLOROFORM EXTRACTS ON GLUCOSE UPTAKE AND METABOLISM

By

NURUL AKMARYANTI ABDULLAH

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

February 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Master of Science

IN VITRO EFFECTS OF *Phaleria macrocarpa* (Boerl.) MAHKOTA DEWA FRUIT AQUEOUS AND METHANOL-CHLOROFORM EXTRACTS ON GLUCOSE UPTAKE AND METABOLISM

By

NURUL AKMARYANTI ABDULLAH

February 2014

Chair: Associate Professor Mohamad Aziz Dollah, PhD

Faculty: Faculty of Medicine and Health Sciences

Diabetes mellitus is the most common metabolic disease worldwide. One of the main pathophysiological defects of diabetes is insulin resistance due to impairment in the insulin-signaling pathway leading to a failure of the insulin stimulated glucose uptake in the target cells. Traditionally, plants such as *Phaleria macrocarpa* have been used to treat diabetes. The mechanism of how this *Phaleria macrocarpa* exert an anti-diabetic effect still obscure and thus a research consisted of five studies was conducted in vitro with the objectives to evaluate the anti-diabetic properties of *Phaleria macrocarpa* aqueous and methanol-chloroform fruit extracts using hepatocytes (HepG2 cells) as a model. In these studies, HepG2 cells were cultured in RPMI media in the presence of *Phaleria macrocarpa* fruit extracts (0, 0.01, 0.1 and 1 mg/mL) or metformin (1 mg/mL) or insulin (100 nM). Metformin and insulin were used as positive control. There are five studies including glucose uptake assay, inhibitor studies using wortmannin (PI3-kinase inhibitor) and genistein (protein tyrosine kinase inhibitor), glycogen synthesis assay and glycogen synthase activity assay. The present studies showed that both *Phaleria macrocarpa* extracts (aqueous and methanol-chloroform) had demonstrated the ability to enhance glucose uptake activity by up to 5-folds (p<0.05). That is similarly to the metformin when compared to the control. However, insulin showed the highest in glucose uptake activity (7-folds). The efficacy of aqueous extract was found to be slightly better than the commercial drug, metformin. In inhibitors study, the glucose uptake activity in cell cultures pre-treated with wortmannin or genistein and later with *Phaleria macrocarpa* extracts were significantly reduced (p<0.05) suggesting a possible involvement of PI3-kinase pathway and protein tyrosine kinase pathway in *Phaleria macrocarpa*-induced glucose uptake activity. The percentages of
inhibition at all doses of *Phaleria macrocarpa* extracts were comparable with the percentage of inhibition on insulin action. These indicated that the *Phaleria macrocarpa* action was mimicking the action of insulin. Glycogen synthesis was stimulated in HepG2 cells by more than 1-fold after treatment with *Phaleria macrocarpa* extracts. Metformin showed no effect on glycogen synthesis whereas insulin caused a maximum increased in glycogen synthesis activity in two hours. Both aqueous and methanol-chloroform of *Phaleria macrocarpa* fruit extracts significantly increased (p<0.05) glycogen synthase activity. The significant changes in enzyme activities were observed at as low as 0.01 mg/mL of *Phaleria macrocarpa* extracts while the maximum effects was observed at 1.0 mg/mL aqueous extract. This was similar to insulin effect and thus *Phaleria macrocarpa* was able to increase glycogen synthase activity at the same rate as insulin. Moreover, metformin also demonstrated significant increase in glycogen synthase activity (p<0.05) when compare to control, however its activity was lower than insulin. These studies concluded that *Phaleria macrocarpa* extracts have the ability to increase glucose uptake, glycogen synthesis and glycogen synthase activity similar to insulin action. Thus, *Phaleria macrocarpa* fruit extracts have insulin mimic activity. Therefore, with further investigation including clinical trial, *Phaleria macrocarpa* has a therapeutic potential as an anti-diabetic agents.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Sarjana Sains

Kesan Estrak Akues dan Metanol-Kloroform Buah *Phaleria macrocarpa* (Boerl.) Mahkota Dewake Atas Pengambilan dan Metabolisme Glukosa In Vitro

Oleh

NURUL AKMARYANTI ABDULLAH

Februari 2014

Pengerusi: Profesor Madya Mohamad Aziz Dollah, PhD

Fakulti: Fakulti Perubatan dan Sains Kesihatan

Penyakit diabetes adalah penyakit metabolik yang tersebar meluas di seluruh dunia. Salah satu punca utama penyakit diabetes adalah disebabkan oleh rintangan hormon insulin yang berpunca dari penurunan dalam penghantaran isyarat insulin yang kemudian membawa kepada kegagalan insulin untuk merangsang pengambilan glukosa oleh sel-sel tubuh. Secara tradisional, *Phaleria macrocarpa* ialah sejenis tumbuhan yang telah digunakan untuk merawat diabetes. Mekanisme bagaimana *Phaleria macrocarpa* boleh memberi kesan anti–diabetik masih tidak diketahui. Oleh yang demikian, lima kajian telah dijalankan secara *in-vitro* menggunakan sel hepatosit (HepG2) sebagai model dengan objektif untuk menilai ciri-ciri anti-diabetik estrak akues dan ekstrak metanol-kloroform buah *Phaleria macrocarpa*. Dalam kajian ini, sel HepG2 dieram dalam media RPMI dan diberi masing-masing estrak buah *Phaleria macrocarpa* (0, 0.01, 0.1 dan 1 mg/mL) atau insulin (100 nM) atau metformin (1 mg/mL). Metformin dan insulin digunakan sebagai kawalan positif. Terdapat lima kajian termasuk kajian pengambilan glukosa, kajian perencat menggunakan wortmannin (perencat PI3-kinase) dan genistein (perencat protein tyrosine kinase), sintesis glikogen dan kajian aktiviti enzim glikogen sintase. Kajian ini menunjukkan bahawa kedua-dua *Phaleria macrocarpa* ekstrak (akues dan metanol-kloroform) mempunyai keupayaan untuk meningkatkan aktiviti pengambilan glukosa sehingga 5 kali ganda (p<0.05) dari kawalan. Kesanan ini adalah sama seperti kesan metformin. Walau bagaimanapun, insulin menunjukkan aktiviti pengambilan glukosa paling tinggi (7 kali ganda). Keberkesanan ekstrak air didapati sedikit lebih baik daripada ubat komersial iaitu metformin. Dalam kajian kedua dan ketiga, aktiviti pengambilan glukosa dalam sel didik yang diberi wortmannin atau genistein menyebabkan aktiviti pengambilan glukosa oleh sel didik berkurang dengan ketara (p<0.05). Ini menunjukkan terdapat penglibatan PI3-kinase dan tyrosine kinase dalam aktiviti
pengambilanglukosa oleh HepG2 sel. Peratusan perencatan kemasukan glukosa oleh semua dos ekstrak Phaleria macrocarpa adalah setara dengan peratusan perencatan terhadap tindakan insulin. Ini menunjukkan bahawa, tindakan Phaleria macrocarpa adalah menyamai dengan tindakan insulin. Sintesis glikogen yang dirangsang di dalam sel HepG2 adalah lebih daripada 1 kali ganda selepas diberi ekstrak Phaleria macrocarpa. Metformin tidak menunjukkan sebarang kesan ke atas sintesis glikogen manakala insulin menunjukkan kesan maksimum terhadap aktiviti sintesis glikogen dalam masa dua jam. Kedua-dua ekstrak akues dan metanol-kloroform Phaleria macrocarpa meningkatkan aktiviti enzim glikogen synthase dengan ketara (p<0.05). Perubahan ketara aktiviti enzim adalah berkadar dengan dos Phaleria macrocarpa ekstrak dan menyamai dengan kesan insulin. Selain itu, metformin juga menunjukkan peningkatan yang ketara dalam aktiviti enzim glikogen synthase (p<0.05) apabila dibandingkan dengan kumpulan kawalan, namun aktivitinya adalah lebih rendah daripada insulin. Kajian ini membuktikan bahawa ekstrak Phaleria macrocarpa mempunyai keupayaan untuk meningkatkan pengambilan glukosa, sintesis glikogen dan aktiviti enzim glikogen synthase pada sel HepG2 yang menyamai dengan tindakan insulin. Oleh itu, kajian ini dapat membuktikan peranan dan mekanisme tindakan Phaleria macrocarpa untuk mengurangkan gula dalam darah. Oleh itu, untuk mengetahui lebih lanjut mengenai potensi Phaleria macrocarpa sebagai agen anti-diabetik, adalah dicadangkan membuat siasatan lanjut melibatkan percubaan klinikal.
ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my supervisor, Associate Professor Dr. Mohamad Aziz Dollah. His wise opinion, extensive knowledge, devotion and enthusiasm gave significant positive influence on the development of this project. He also is the one who introduced me to the field of Radiation Biology, which I now began to love. I have always appreciated his patience and willingness to make time to discuss the obstacles I encountered throughout the project. I also thank him for never complaining and losing patience during supervision as well as correcting my thesis draft. He always stood behind me in the difficult times and provides me with the kindest and wisest words of advice that made hard phase thousand times easier.

Secondly, I would like to thank both my committee members Associate Professor Dr. Sabrina Sukardi and Dr. Abdah Akim for their encouragement and guidance especially on Physiology and Biochemistry parts of my project. I would also like to thank Radioisotope Laboratory staff, Mr. Fadzlee Mohd Noh for helping me especially on machines preparations throughout my graduate years.

My sincere thanks goes to my fellow lab-mates and friends especially Hazirah, Nurhayatie, Thilaga, Azimah, Nor Afiqah, Saadah, Dila and Sarah for their help, motivation, and useful suggestions from time to time. I would be missing you all very much.

Finally and most importantly, I offer a heartfelt thank you to my dearest family for their endless love, faith and support. Thank you for believing in me all these years. I would like to dedicate this dissertation to them.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohamad Aziz Dollah, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Sabrina Sukardi, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Abdah Md Akim, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean,
School of Graduate Studies
Universiti Putra Malaysia.

Date: 21 April 2014
DECLARATION

Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrent for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before this thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: __________________

Name and Matric No: Nurul Akmaryanti Abdullah (GS29293)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- the supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________ Signature: ____________________
Name of Chairman of Chairman of
Supervisory Supervisory
Committee: ___________________ Committee: ___________________

Signature: ____________________ Signature: ____________________
Name of Chairman of Chairman of
Supervisory Supervisory
Committee: ___________________ Committee: ___________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Glucose Homeostasis 4
2.2 Metabolic Pathway of Glucose in the Liver 6
2.3 Insulin and Its Signaling Pathway 7
2.3.1 PI3-kinase-Akt Pathway 8
2.3.2 Translocation of GLUT4 9
2.4 Diabetes Mellitus and Classification 10
2.4.1 Type 1 Diabetes Mellitus 11
2.4.2 Type 2 Diabetes Mellitus 11
2.5 Metformin 12
2.6 Phaleria macrocarpa 13
2.7 Previous Scientific Study of Phaleria macrocarpa 14
2.8 Anti-diabetic Properties of Phaleria macrocarpa 15

3 MATERIALS AND METHODS

3.1 Chemicals and Reagents 17
3.2 Preparation of Phaleria macrocarpa dried fruit slices 17
3.3 Preparation of Phaleria macrocarpa Extracts 17
 3.3.1 Preparation of Phaleria macrocarpa Aqueous Extract 17
 3.3.2 Preparation of Phaleria macrocarpa Methanol-Chloroform 17
3.4 Cell Cultures 18
 3.4.1 Cells Cultures Protocols and Maintenances 18
 3.4.2 Determine Cells number and Cells Viability 19
3.5 Experiment 1: Study on the effect of Phaleria macrocarpa extract on glucose uptake in HepG2 cells. 22
3.6 Experiment 2: Study on the effect on glucose uptake activity after incubated with wortmannin (inhibitor) in HepG2 cells. 24
3.7 Experiment 3: Study on the effect on glucose uptake activity after incubated with genistein (inhibitor) in HepG2 cells. 26
3.8 Experiment 4: Study on the effect of Phaleria macrocarpa extract on 28
glycogen synthesis in HepG2 cells.

3.9 Experiment 5: Study on the effect of *Phaleria macrocarpa* extract on glycogen synthase activity in HepG2 cells.

3.10 Statistical Analysis

4 RESULTS

4.1 Experiment 1: Effect of *Phaleria macrocarpa* extracts on glucose uptake in HepG2 cells.

4.2 Experiment 2: Effect of *Phaleria macrocarpa* extracts on glucose uptake in HepG2 cells after incubated with wortmannin (inhibitor).

4.3 Experiment 3: Effect of *Phaleria macrocarpa* extract on glucose uptake in HepG2 cells after incubated with genistein (inhibitor).

4.4 Experiment 4: Effect of *Phaleria macrocarpa* extracts on glycogen synthesis in HepG2 cells.

4.5 Experiment 5: Effect of *Phaleria macrocarpa* extracts on glycogen synthase activity in HepG2 cells.

5 DISCUSSION

6 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES 57
APPENDICES 73
BIODATA OF STUDENT 86
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Experimental design table used for in-vitro study.</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of Phaleria macrocarpa aqueous and methanol-chloroform extracts on glucose uptake in HepG2 cells.</td>
<td>35</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of Phaleria macrocarpa extracts on glucose uptake of HepG2 cells pre-treated with PI3-kinase inhibitor (Wortmannin).</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of Phaleria macrocarpa extracts on glucose uptake of HepG2 cells pre-treated with protein kinase inhibitor (Wortmannin).</td>
<td>41</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of Phaleria macrocarpa aqueous and methanol-chloroform extracts on glycogen synthesis in HepG2 cells.</td>
<td>44</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of Phaleria macrocarpa aqueous and methanol-chloroform extracts on glycogen synthase activity in HepG2 cells.</td>
<td>47</td>
</tr>
<tr>
<td>A1</td>
<td>Analysis of Variance (ANOVA) on the effect of Phaleria macrocarpa extract on glucose uptake in HepG2 cells.</td>
<td>73</td>
</tr>
<tr>
<td>A2</td>
<td>Analysis of Variance (ANOVA) on the effect of Phaleria macrocarpa extract on glucose uptake in HepG2 cells after incubated with wortmannin (inhibitor).</td>
<td>73</td>
</tr>
<tr>
<td>A3</td>
<td>Analysis of Variance (ANOVA) on the effect of Phaleria macrocarpa extract on glucose uptake in HepG2 cells after incubated with genistein (inhibitor).</td>
<td>74</td>
</tr>
<tr>
<td>A4</td>
<td>Analysis of Variance (ANOVA) on the effect of Phaleria macrocarpa extract on glycogen synthesis in HepG2 cells.</td>
<td>74</td>
</tr>
<tr>
<td>A5</td>
<td>Analysis of Variance (ANOVA) on the effect of Phaleria macrocarpa extract on glycogen synthase activity in HepG2 cells.</td>
<td>75</td>
</tr>
<tr>
<td>A6</td>
<td>Effect of the Phaleria macrocarpa aqueous and methanol-chloroform extracts on glucose uptake in HepG2 cells.</td>
<td>76</td>
</tr>
</tbody>
</table>
A7 Effect of *Phaleria macrocarpa* extracts on glucose uptake of HepG2 cells pre-treated with PI-3 Kinase inhibitor (Wortmannin).

A8 Effect of *Phaleria macrocarpa* extracts on glucose uptake of HepG2 cells pre-treated with protein kinase inhibitor (Genistein).

A9 Effect of the *Phaleria macrocarpa* aqueous and methanol-chloroform extracts on glycogen synthesis in HepG2 cells.

A10 Effect of the *Phaleria macrocarpa* aqueous and methanol-chloroform extracts on glycogen synthase activity in HepG2 cells.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Insulin signaling pathway regulating glucose transport.</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical structure of metformin.</td>
</tr>
<tr>
<td>2.3</td>
<td>Ripe fruits of Phaleria macrocarpa and dried slices of Phaleria macrocarpa fruits with seeds removed.</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of the overall study.</td>
</tr>
<tr>
<td>3.2</td>
<td>Flowchart for glucose uptake assay.</td>
</tr>
<tr>
<td>3.3</td>
<td>Flowchart for Inhibitor Study (Wortmannin)</td>
</tr>
<tr>
<td>3.4</td>
<td>Flowchart for Inhibitor Study (Genistein)</td>
</tr>
<tr>
<td>3.5</td>
<td>Flowchart for Glycogen Synthesis Assay</td>
</tr>
<tr>
<td>3.6</td>
<td>Flowchart for Glycogen Glycogen Synthase Enzyme Assay</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of various concentrations of Phaleria macrocarpa aqueous and methanol-chloroform extracts, insulin and metformin on relative glucose uptake in HepG2 cells.</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of various concentrations of Phaleria macrocarpa aqueous and methanol-chloroform extracts and insulin pre-treated with wortmannin on percentage of inhibition of glucose uptake in HepG2 cells.</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of various concentrations of Phaleria macrocarpa aqueous and methanol-chloroform extracts and insulin pre-treated with genistein on percentage reduction of glucose uptake in HepG2 cells.</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of various concentrations of Phaleria macrocarpa aqueous and methanol-chloroform extracts, insulin and metformin on glycogen synthesis in HepG2.</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of various concentrations of Phaleria macrocarpa aqueous and methanol-chloroform extracts, insulin and metformin on glycogen synthase activity in HepG2 cells.</td>
</tr>
</tbody>
</table>

A6 *Phaleria macrocarpa* ripe fruit. | 81 |

A7 *Phaleria macrocarpa* seed. | 81 |
A8 *Phaleria macrocarpa* fruit slice with seed removed.

A9 HepG2 cells (Adherent types cells).
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akt</td>
<td>Protein kinase</td>
</tr>
<tr>
<td>ARC</td>
<td>Arcuate nucleus</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>cAMPK</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>COX-2</td>
<td>Cyclooxygenase 2</td>
</tr>
<tr>
<td>CPLA2</td>
<td>Cytosolic phospholipase A.</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>EFGR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>G6P</td>
<td>Glucose-6-phosphate</td>
</tr>
<tr>
<td>GLUT</td>
<td>Glucose transporter</td>
</tr>
<tr>
<td>GSK 3β</td>
<td>Glycogen synthase kinase-3β</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>HepG2</td>
<td>Hepatocellular carcinoma cells</td>
</tr>
<tr>
<td>HER2</td>
<td>Human epidermal receptor-2</td>
</tr>
<tr>
<td>HGP</td>
<td>Hepatic glucose production</td>
</tr>
<tr>
<td>HL-60</td>
<td>Human promyelocytic leukemia cells</td>
</tr>
<tr>
<td>IDF</td>
<td>International Diabetes Federation</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin growth factor</td>
</tr>
<tr>
<td>IR</td>
<td>Insulin receptor</td>
</tr>
<tr>
<td>IRS 1/2</td>
<td>Insulin receptor substrate 1/2</td>
</tr>
<tr>
<td>IRTK</td>
<td>Insulin receptor tyrosine kinase</td>
</tr>
<tr>
<td>KIF3</td>
<td>Kinesins superfamily-3</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid Chromatography/Mass Spectrometry</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipo protein</td>
</tr>
<tr>
<td>LKB1</td>
<td>Liver kinase B1</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>MTT</td>
<td>Methylthiazol Tetrazolium Assay</td>
</tr>
<tr>
<td>NEFAs</td>
<td>Non-esterified fatty acids</td>
</tr>
<tr>
<td>NKC</td>
<td>Natural killer cells</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCSK9</td>
<td>Proprotein convertase subtilisin kexin 9</td>
</tr>
<tr>
<td>PDK1</td>
<td>Phosphoinositide-dependent kinase-1</td>
</tr>
<tr>
<td>PEPCK</td>
<td>Phosphoenolpyruvate carboxykinase</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PI3-kinase</td>
<td>Phosphatidylinositol-3-kinase</td>
</tr>
<tr>
<td>PIP3</td>
<td>Phosphatidylinositol (3,4,5)-trisphosphate</td>
</tr>
<tr>
<td>PKB</td>
<td>Protein-kinase B</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein-kinase C</td>
</tr>
<tr>
<td>PTK</td>
<td>Protein tyrosine kinase</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>STAT3</td>
<td>Signal transducers and activators of transcription 3</td>
</tr>
<tr>
<td>UDP</td>
<td>Uridine di-phosphate</td>
</tr>
<tr>
<td>UTP</td>
<td>Uridine tri-phosphate</td>
</tr>
<tr>
<td>VEGF-C</td>
<td>Vascular endothelial growth factor C</td>
</tr>
</tbody>
</table>
LIST OF ANNOTATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>More than</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>cm²</td>
<td>Centimeter square</td>
</tr>
<tr>
<td>dpm</td>
<td>Disintegration per minute</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>mg/mL</td>
<td>Miligram per mililiter</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celcius</td>
</tr>
<tr>
<td>S.E.M</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>µCi/mL</td>
<td>Micro curie per mililiter</td>
</tr>
<tr>
<td>µL</td>
<td>Microliter</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.0 Overview

Diabetes is a complex and multi-factorial disease mainly caused by insulin deficit that leads to abnormalities in carbohydrate, fat and protein metabolism on target tissues (American Diabetes Association, 2010). Diabetes is considered the most prevalent disorder in the world. In 2011, there were already 336 million patients with diabetes mellitus worldwide. This value is expected to increase up to 552 million cases by the year of 2030 (International Diabetes Federation, 2011). Malaysia is very likely heading towards epidemic proportions based on the result in Malaysian National HealthMorbidity Survey III 2006 reported by Letchuman et al. (2010), which showed that Malaysia has already reached the projected prevalence for year 2025. The number of diabetic patients increased from 8.3% in 1996 to 11.6% in 2006.

Diabetes mellitus is a common metabolic disorder of the endocrine system. It is described by high blood glucose (sugar). Glucose is the main source of energy for the cells and tissues especially brain. Both adults and children require an intake of 130 grams of dietary glycemic carbohydrates per day to cover the glucose requirement of the brain (EFSA Panel on Dietetic Products Nutrition and Allergies, 2010). In a normal healthy people, blood glucose is strictly maintained by a close ranged, around 3.9 to 6.1 mmol/L (Philip, 2007). However, in diabetic patients, this range cannot be controlled by the body and always causes extra glucose circulating in the blood.

Insulin is the hormone that responsible in maintaining blood glucose level by stimulating phosphorylation and utilization of glucose. Liver is the primary site of insulin action. After a meal, insulin stimulates glucose uptake and store surplus glucose in the form of glycogen in the liver. Insulin initiates the glucose uptake into the cells by activating the insulin receptor (IR). It is then phosphorylates and recruits different substrate adaptors such as the insulin receptor substrates family (IRS) including IRS-1 and IRS-2. This initiates the phosphatidylinositol-3-kinase (PI3-kinase) pathway and conducts the modulation of other proteins necessary for the metabolic effects of insulin (Klover and Mooney, 2004). PI3-kinase is known to play an important role in glucose transporter translocation (Lizcano and Alessi 2002). The inhibition of catalytic subunit of PI3-kinase, p110 with inhibitors for example wortmannin, can totally block most actions of insulin (Okada et al., 1994). Previous studies postulate that defect in glucose transporter translocation and impaired in insulin signaling cascade have been identified in patients with type 2 diabetes (Leng et al., 2004).

By looking at the prevalence mentioned earlier, many researchers interested to investigate new anti-diabetic drugs that can treat hyperglycemia better than the commercially available drugs due to its clinical side effects such as gastrointestinal side effect and increase cardiovascular risk (Hoffmann et al.,
Therefore, many diabetic patients are also recommended to receive complementary and alternative medicine therapies.

Herbal medicines have been practiced many years ago and research showed their value in treatment and prevention of various kinds of diseases. Recently, much attention has been paid to the discovery of natural products that may be advantageous in reducing the risks of diabetes. Normally, these natural products are usually has less toxicity, with little side effects than over the counter drugs (Jung et al., 2006). Diabetes is known can be controlled using natural products and therefore, the discovery and development of novel drugs for diabetic mellitus based on natural products are very important (Dham et al., 2006). The available literature shows that there are more than 400 plant species possess anti-hyperglycemic activity (Rai, 1995).

Phaleria macrocarpa typically known as Crown God originated from Papua, Indonesia has been used traditionally to treat diabetic mellitus and other diseases such as rheumatic, kidney, gout, heart, hypertension and eczema (Lisdawati, 2002). *Phaleria macrocarpa* fruit is rich in alkaloids, saponins and flavoids while the leaves contain mangiferin, and saponins compound, which are classified into triterpenoid and steroid saponins, based on the structure of aglycon (Zhang et al., 2006; Saufi et al., 2008). Both of these compounds are reported to have anti-inflammatory and cytotoxic effects (Gotama et al., 1999). The isolated chemical constituents of *Phaleria macrocarpa* fruits extract include Icariside C3, magniferin, and gallic acid (Oshimi et al., 2008). It is found that mangiferin has a wide range of therapeutic effects including anti-diabetic, anti-HIV, anti-cancer, immunomodulatory and anti-oxidant activities (Yoshimi et al., 2001). *Phaleria macrocarpa* is one of the herbs that has been claimed traditionally to reduce high blood glucose levels. Sri Sugiwati et al., (2006) demonstrated that an oral administration of *Phaleria macrocarpa* leaves extract exhibited hypoglycemic effect and its ability to act as α-glucosidase inhibitors. Study in our laboratory has successful screened this plant on its anti-diabetic properties. After 28 days of administration with *Phaleria macrocarpa* fruit aqueous extract, blood glucose level of diabetes-induced rats found to reduce from 25 mmol/L to 5 mmol/L (Raudhah and Dollah, 2008). In addition, it was reported that the bioassay-activity guided of anti-diabetic study of the methanol extract of *Phaleria macrocarpa* fruit showed that the flavonoids sub-fraction, which contains 22% of magniferin, has the highest anti-diabetic activity on diabetic rats (Rabyah et al., 2012). However, the mechanism of action of which *Phaleria macrocarpa* reduces the blood glucose still remains to be elucidated.

Hence, the present study focuses on finding the possible mechanism of actions of *Phaleria macrocarpa* extracts on glucose metabolism by determining in-vitro the glucose uptake, glycogen synthesis and glycogen synthase enzyme activity. In this study, the possible mechanism of action of *Phaleria macrocarpa* extracts on glucose uptake was also identified using specific inhibitors.
1.1 Objectives

1.1.1 General Objective

To investigate the ability of *Phaleria macrocarpa* aqueous and methanol-chloroform fruits extracts to exert glucose metabolism effect in HepG2 cells by measuring the glucose uptake activity and its possible mechanism using inhibitors (wortmannin and genistein), glycogen synthesis and glycogen synthase enzyme activity.

1.1.2 Specific Objectives

i. To study on the effect of *Phaleria macrocarpa* fruits extracts on glucose uptake by measuring the uptake activity of 2-Deoxy D-[1-2,3\(^3\)H (N)] glucose in HepG2 cells.

ii. To determine on the effect of *Phaleria macrocarpa* fruits extracts on glucose uptake in HepG2 cells following incubation with wortmannin (PI3-kinase inhibitor).

iii. To determine on the effect of *Phaleria macrocarpa* fruits extracts on glucose uptake in HepG2 cells following incubation with genistein (protein tyrosine kinase inhibitor).

iv. To measure on the effect of *Phaleria macrocarpa* fruits extracts on glycogen synthesis by measuring the activity of D-[\(^{14}\)C]glucose in HepG2 cells.

v. To study on the effect of *Phaleria macrocarpa* fruits extract on glycogen synthase by measuring the activity of \(^{3}\)H]-UDP glucose in HepG2 cells.

1.2 Hypothesis

Phaleria macrocarpa extracts stimulate glucose uptake, glycogen synthesis and glycogen synthase activity in HepG2 cells and mimic insulin.
REFERENCES

Shodikin, A. (2009). Antimicrobial activity of ethanol extract of Mahkota Dewa (*Phaleria macrocarpa*) fruits and leaves against pseudomonas aeruginosa by agar dilution and scanning electron microscopy. Surabaya: Faculty of Medicine, University of Airlangga.

