UNIVERSITI PUTRA MALAYSIA

TUBERCULOSIS-RELATED KNOWLEDGE, ATTITUDE AND PREVENTIVE PRACTICES AMONG ABATTOIR WORKERS IN GUSAU, NIGERIA

ISMAILA USMAN GUSAU

FPSK(M) 2016 24
TUBERCULOSIS-RELATED KNOWLEDGE, ATTITUDE AND
PREVENTIVE PRACTICES AMONG ABATTOIR WORKERS
IN GUSAU, NIGERIA

By

ISMAILA USMAN GUSAU

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfillment of the Requirements for the Degree of
Master of Science

January 2016
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© COPYRIGHT UPM
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Master of Science

TUBERCULOSIS-RELATED KNOWLEDGE, ATTITUDE AND PREVENTIVE PRACTICES AMONG ABATTOIR WORKERS IN GUSAU, NIGERIA

By

ISMAILA USMAN GUSAU

January 2016

Chair: Assoc. Prof. Hejar Binti Abd Rahman, PhD
Faculty: Medicine and Health Sciences

Introduction: Tuberculosis (TB) is still a major health concern worldwide. The global burden of TB is estimated to be 8.5 to 9.2 million with 1.2 to 1.5 million deaths annually. Asia and Africa are affected with 57% and 26% of the disease burden respectively. Nigeria ranked third among the world’s six countries with high burden of TB and has the highest estimated number of new cases with nearly 590,000 new cases annually. Nigeria is one of the African countries where bovine TB is wide spread in both cattle and humans. Although, the current status on the actual prevalence rate of bovine TB at the national level is unknown but from the limited surveys conducted by some researchers reported that, the prevalence of TB due to M. bovis is up to 14%. The isolation and identification of M. bovis in fresh and sour milk sold at local markets, sputum and tissue samples from humans especially herdsmen, abattoir and slaughter houses has been reported. This indicates that the disease occurs both in cattle and humans in Nigeria. Thus, reason to assess the knowledge, attitude and practices of abattoir workers on TB.

Objectives: To determine the level of knowledge, attitude and preventive practices on tuberculosis among abattoir workers in Gusau, Zamfara State, Nigeria.

Methodology: A cross-sectional study was conducted in Gusau Modern Abattoir, Zamfara State, Nigeria. The abattoir was chosen because it is the only one in the state. A total of 416 eligible abattoir workers were selected using proportionate stratified random sampling. Data was collected on knowledge, attitude and preventive practices on TB among the abattoir workers from May to July 2014, through face to face interview and self-administered questionnaire, which was validated by content and face validities. Reliability was measured by checking the internal consistency using Cronbach’s alpha and values above 0.7 were accepted. Descriptive analysis, chi-square and multivariate logistic regression were conducted. Significant level (p) was set at 0.05.
Results: The response rate was 91.3%, the overall mean knowledge score of the respondents was 29.76 (SD) 14.15, with 53.2% having high knowledge and 46.8% having low knowledge on TB. However, 52.9%, mean (SD) is 42.76 (6.23) of the respondents have positive attitude and 58.7%, mean (SD) is 9.13 (4.50) practices preventive measures towards TB. Predictors of knowledge, attitude and preventive practices were determined using logistic regression analysis and results from Chi-square tests with p < 0.25 were included. Years of working experience (AOR = 1.98; CI = 1.231 – 3.189), TB screening (AOR = 3.04; CI = 1.446 – 6.419) and family member history of TB infection (AOR = 17.35; CI = 2.274 – 132.421) were found to be the predictors of knowledge on TB. Immunization (AOR = 2.45; CI = 1.279 – 4.688) and training (AOR = 4.60; CI = 2.254 – 9.385) were found to be the predictors of attitude towards TB. For preventive practices, history of TB infection (AOR = 5.21; CI = 1.547 – 17.560) and family member history of TB infection (AOR = 3.54; CI = 1.330 – 9.429) were found to be the predictors of preventive practices regarding TB.

Conclusion: This study has identified that there is low level of knowledge, negative attitude and poor preventive practices on TB among abattoir workers in Zamfara State. However, predictors of knowledge on TB were years of working experience, TB screening and family member infected with TB. Predictors of attitude towards TB were immunization and training. Predictors of TB preventive practices were personal and family member infected with TB. The study findings will help in development of interventional programs for efficient control of TB (human and animal).

Keywords: Knowledge, attitude, preventive practices, tuberculosis, abattoir, Zamfara State
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

TUBERKULOSIS BERKAITAN PENGETAHUAN, SIKAP DAN AMALAN PENCEGAHAN DALAM KALANGAN PEKERJA ABATOIR DI GUSAU, NIGERIA

Oleh

ISMAILA USMAN GUSAU

Januari 2015

Pengerusi : Prof. Madya Hejar Binti Abd Rahman, PhD
Fakulti : Perubatan dan Sains Kesihatan

Objektif: Untuk mengenalpasti tahap pengetahuan, sikap dan amalan pencegahan mengenai tuberkulosis di kalangan pekerja abatoir di Gusau, Zamfara, Nigeria.

dan regresi multivariat logistik telah dijalankan. Aras signifikan (p) telah ditetapkan pada 0.05.

Hasil: Kadar sambutan ialah 91.3%, skor min keseluruhan pengetahuan responden adalah 29.76 (SP) 14.15, dengan 53.2% mempunyai pengetahuan yang tinggi dan 46.8% mempunyai pengetahuan yang rendah mengenai TB. Walau bagaimanapun, 52.9% min (SP) adalah 42.76 (6.23) daripada responden mempunyai sikap positif dan 58.7%, min (SP) adalah 9.13, (4.50) mengamalkan langkah-langkah pencegahan terhadap TB. Peramal pengetahuan, sikap dan amalan pencegahan telah ditentukan dengan menggunakan analisis regresi logistik dan hasil daripada ujian khi kuasa dua dengan p < 0.25 telah dimasukkan. Tahun pengalaman bekerja (AOR = 1.98; CI = 1.231 – 3.189), saringan TB (AOR = 3.04; CI = 1.446 – 6.419) dan sejarah ahli keluarga yang dijangkiti TB (AOR = 17.35; CI = 2.274 – 132.421) didapati merupakan peramal pengetahuan mengenai TB. Imunisasi (AOR = 2.45; CI = 1.279 – 4.688) dan latihan (AOR = 4.60; CI = 2.254 – 9.385) didapati merupakan peramal sikap terhadap TB. Bagi amalan pencegahan, sejarah jangkitan TB (AOR = 5.21; CI = 1.547 – 17.560) dan sejarah ahli keluarga yang dijangkiti TB (AOR = 3.54; CI = 1.330 – 9.429) didapati merupakan peramal amalan pecegahan mengenai TB.

Kesimpulan: Kajian ini telah mengenalpasti bahawa terdapat tahap pengetahuan yang rendah, sikap negatif dan amalan pecegahan yang rendah terhadap TB dalam kalangan pekerja abatoir di Zamfara. Walau bagaimanapun, peramal pengetahuan terhadap TB adalah tahun pengalaman bekerja, saringan TB dan ahli keluarga dijangkiti TB. Peramal bagi sikap terhadap TB adalah imunisasi dan latihan. Peramal bagi amalan pencegahan TB adalah diri sendiri dan ahli keluarga yang dijangkiti oleh TB. Hasil kajian boleh membantu dalam pembangunan program intervensi bagi pengawalan TB yang berkesan (manusia dan haiwan).

Kata kunci: Pengetahuan, sikap, amalan pencegahan, tuberkulosis, abatoir, Zamfara
ACKNOWLEDGEMENT

I wish to acknowledge the support of my supervisor Assoc. Prof. Dr. Hejar Binti Abd Rahman and my co-supervisor Dr. Suhaainizam Muhamad Saliluddin for their guidance, encouragement and commitment during the period of this study.

I am sincerely grateful to Ministry of Animal Health and Livestock Development, Gusau, Zamfara State for granting me the permission to undergo this programme. Special thanks to Department of Public Health and management of Gusau Modern Abattoir for their kind support during my research.

I am very grateful to my parents, wife, kids and siblings who continued to support and encourage me in all aspects throughout my program. I would also like to appreciate the efforts of all my lecturers for the invaluable knowledge they impacted on us, colleagues and friends who helped directly or indirectly in making this study a success.
I certify that a Thesis Examination Committee has met on 22 January 2016 to conduct the final examination of Ismaila Dr Usman Gusau on his thesis entitled "Tuberculosis-Related Knowledge, Attitude and Preventive Practices among Abattoir Workers in Gusau, Nigeria" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Kulanthayan a/l K.C. Mani @ Subramanian, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Malina binti Osman, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Rahmah Mohd Amin, PhD
Associate Professor
Universiti Sultan Zainal Abidin
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 24 March 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Hejar Binti Abd Rahman, M.D., Master of Community Health
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairperson)

Suhainizam Muhamad Saliluddin, MB, BCh, BAO, MPH
Senior Lecturer (Medical)
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIN HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Ismaila Usman Gusau, GS35365
Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairperson of Supervisory Committee: Hejar Binti Abd Rahman, M.D., Master of Community Health

Signature: ___
Name of Member of Supervisory Committee: Suhainizam Muhamad Saliluddin, MB, BCh, BAO, MPH
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background
1.2 Problem Statement
1.3 Significance of the Study
1.4 Objectives of the Study
 1.4.1 General Objective
 1.4.2 Specific Objectives
1.5 Research Hypotheses

2 LITERATURE REVIEW

2.1 Historical Perspective of TB
2.2 Etiology of TB
2.3 Global Epidemiology of Tuberculosis
2.4 Epidemiology of Tuberculosis in Africa
2.5 Epidemiology of Tuberculosis in Nigeria
2.6 Human Tuberculosis
 2.6.1 Mode of Transmission and Pathogenesis
 2.6.2 Signs and Symptoms
 2.6.3 Diagnosis of Human TB
 2.6.4 Treatment of Human TB
 2.6.5 Prevention and Control of Human TB in Nigeria
 adopted from WHO
 2.6.5.1 Primary prevention of Human TB
 2.6.5.2 Secondary prevention of Human TB
 2.6.5.3 Tertiary prevention of Human TB
2.7 Animal Tuberculosis (Bovine TB)
 2.7.1 Mode of Transmission and Pathogenesis of Bovine TB
 2.7.2 Signs and Symptoms of Bovine TB
 2.7.3 Diagnosis of Bovine TB
 2.7.4 Prevention and Control of Bovine TB in Nigeria
2.8 Zoonotic Tuberculosis (TB)
2.9 Knowledge on TB
2.10 Attitude towards TB
2.11 Preventive practices regarding TB 25
2.12 Conceptual Framework 26

3 MATERIALS AND METHODS 28
3.1 Study Location 28
3.2 Study Design 29
3.3 Study Duration 29
3.4 Study Population 29
3.5 Inclusion Criteria 29
3.6 Sampling Frame 30
3.7 Sample Size Estimation 30
3.8 Sampling Method 31
3.9 Instrument of the Study 33
3.10 Components of the Questionnaire 33
 3.10.1 Section A: Socio-Demography 33
 3.10.2 Section B: Personal and Medical Histories 33
 3.10.3 Section C: Knowledge on Tuberculosis 33
 3.10.4 Section D: Attitude regarding Tuberculosis 34
 3.10.5 Section E: Preventive Practices regarding TB 34
3.11 Data Collection 34
3.12 Study Variables 35
3.13 Dependent Variables 35
3.14 Independent Variables 35
3.15 Definition of Operational Variables 35
3.16 Quality Control 37
 3.16.1 Content Validity 37
 3.16.2 Face Validity 37
 3.16.3 Internal Consistency of the Questionnaire 37
3.17 Data Analysis 37
3.18 Ethical Consideration 38

4 RESULTS 39
4.1 Response Rate 39
4.2 Test of Normality 39
4.3 Socio-Demographic Characteristics of the Respondents 40
4.4 Personal and Medical Histories of the Respondents 41
4.5 Sources of Information on TB among Abattoir Workers 42
4.6 Knowledge on TB among Abattoir Workers 42
4.7 Level of Knowledge on TB among Abattoir Workers 45
4.8 Attitude towards TB among Abattoir Workers 45
4.9 Level of Attitude towards TB among Abattoir Workers 46
4.10 Preventive Practices regarding TB among Abattoir Workers 47
4.11 Level of Preventive Practices regarding TB among Abattoir Workers 48
4.12 Association between Socio-Demography, Personal and Medical History and Level of Knowledge of the Respondents 48
4.13 Association between Socio-Demography, Personal and Medical History and Level of Attitude of the Respondents 50
4.14 Association between Socio-Demography, Personal and Medical History and Level of Preventive Practices of the Respondents 53
4.15 Predictors of Knowledge 54
4.16 Predictors of Attitude 56
4.17 Predictors of Preventive Practices 57

5 DISCUSSION 59
5.1 Socio-Demographic Characteristics, Medical and Personal History of the Abattoir Workers 59
5.2 Sources of Information about TB 60
5.3 Knowledge of Abattoir Workers on TB 60
5.4 Factors Associated with Knowledge of the Abattoir Workers on TB 61
5.5 Attitude of Abattoir Workers towards TB 63
5.6 Factors Associated with Attitude of Abattoir Workers towards TB 63
5.7 Preventive Practices of Abattoir Workers regarding TB 64
5.8 Factors Associated with Preventive Practices of Abattoir regarding TB 65
5.9 Predictors of Knowledge, Attitude and Preventive Practices of Abattoir Workers on TB 66

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 68
6.1 Summary and Conclusion 68
6.2 Strengths and Limitation of the Study 68
6.2.1 Strength of the Study 68
6.2.2 Limitations of the Study 69
6.3 Recommendations and Further Studies 69

REFERENCES 70
APPENDICES 78
BIODATA OF STUDENT 101
LIST OF PUBLICATIONS 102
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. 1: Variables used in sample size estimation</td>
<td>30</td>
</tr>
<tr>
<td>3. 2: Range of knowledge scores</td>
<td>34</td>
</tr>
<tr>
<td>3. 3: Internal consistency of questionnaire</td>
<td>37</td>
</tr>
<tr>
<td>4. 1: Test of normality</td>
<td>39</td>
</tr>
<tr>
<td>4. 2: Socio-demographic characteristics of the respondents (N = 380)</td>
<td>40</td>
</tr>
<tr>
<td>4. 3: Personal and medical histories of the respondents (N = 380)</td>
<td>41</td>
</tr>
<tr>
<td>4. 4: Sources of information on TB among abattoir workers</td>
<td>42</td>
</tr>
<tr>
<td>4. 5: Knowledge on TB among abattoir workers</td>
<td>43</td>
</tr>
<tr>
<td>4. 6: Level of knowledge on TB among abattoir workers</td>
<td>45</td>
</tr>
<tr>
<td>4. 7: Attitude towards TB among abattoir workers</td>
<td>46</td>
</tr>
<tr>
<td>4. 8: Practice regarding TB among abattoir workers</td>
<td>47</td>
</tr>
<tr>
<td>4. 9: Level of practice regarding TB among abattoir workers</td>
<td>48</td>
</tr>
<tr>
<td>4. 10: Association between socio-demography, personal and medical history and knowledge scores of the respondents</td>
<td>49</td>
</tr>
<tr>
<td>4. 11: Association between socio-demography, personal and medical history and attitude scores of the respondents</td>
<td>51</td>
</tr>
<tr>
<td>4. 12: Association between socio-demography, personal and medical history and practice scores of the respondents</td>
<td>53</td>
</tr>
<tr>
<td>4. 13: Simple logistic regression showing crude odd ratio (OR) of predictors of knowledge</td>
<td>55</td>
</tr>
<tr>
<td>4. 14: Multiple logistic regression showing adjusted odd ratio (OR) of predictors of knowledge</td>
<td>56</td>
</tr>
<tr>
<td>4. 15: Simple logistic regression showing crude odd ratio (OR) of predictors of attitude</td>
<td>56</td>
</tr>
<tr>
<td>4. 16: Multiple logistic regression showing adjusted odd ratio (OR) of predictors of attitude</td>
<td>57</td>
</tr>
</tbody>
</table>
4. 17: Simple logistic regression showing crude odd ratio (OR) of predictors of practice

4. 18: Multiple logistic regression showing adjusted odd ratio (OR) of predictors of practice
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 1:</td>
<td>Factors associated with knowledge, attitude and practices of abattoir workers on tuberculosis</td>
<td>27</td>
</tr>
<tr>
<td>3. 1:</td>
<td>Map of Nigeria showing Zamfara State</td>
<td>29</td>
</tr>
<tr>
<td>3. 2:</td>
<td>Flow chart showing proportionate stratified random sampling</td>
<td>32</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>≤</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>≥</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td>ACSM</td>
<td>Advocacy, communication and social mobilization</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>AOR</td>
<td>Adjusted odds ratio</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacillus Calmette–Guérin</td>
</tr>
<tr>
<td>BTB</td>
<td>Bovine tuberculosis</td>
</tr>
<tr>
<td>CDR</td>
<td>Case detection rate</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>COR</td>
<td>Crude odds ratio</td>
</tr>
<tr>
<td>df</td>
<td>Degree of freedom</td>
</tr>
<tr>
<td>DOTS</td>
<td>Directly observed therapy – short course</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>IQR</td>
<td>Inter quartile range</td>
</tr>
<tr>
<td>KAP</td>
<td>Knowledge, attitude and practice</td>
</tr>
<tr>
<td>LGA</td>
<td>Local government area</td>
</tr>
<tr>
<td>LGTBLs</td>
<td>Local government tuberculosis and leprosy supervisor</td>
</tr>
<tr>
<td>LTBI</td>
<td>Latent tuberculosis infection</td>
</tr>
<tr>
<td>MDR-TB</td>
<td>Multi drug resistant tuberculosis</td>
</tr>
<tr>
<td>n</td>
<td>Number</td>
</tr>
<tr>
<td>NASCAP</td>
<td>National AIDS and STDs control program</td>
</tr>
<tr>
<td>NPI</td>
<td>National program on immunization</td>
</tr>
<tr>
<td>NTBLCP</td>
<td>National tuberculosis and leprosy control program</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>p</td>
<td>Level of significance</td>
</tr>
<tr>
<td>PHC</td>
<td>Primary health care</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal protective equipment</td>
</tr>
<tr>
<td>PPM</td>
<td>Public - private mix</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PTB</td>
<td>Pulmonary tuberculosis</td>
</tr>
<tr>
<td>RM</td>
<td>Malaysian ringgit</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>STBLCP</td>
<td>State tuberculosis and leprosy control program</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TSR</td>
<td>Treatment success rate</td>
</tr>
<tr>
<td>TST</td>
<td>Tuberculin skin test</td>
</tr>
<tr>
<td>WHO</td>
<td>World health organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Tuberculosis (TB) has remained as a major public health concern globally, responsible for poor health condition suffered among millions of people every year. This disease is the second main causes of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). In 2013, about 9 million new TB cases and 1.5 million TB deaths were estimated. About 85% of the disease burden is found in Asia and Africa (WHO, 2014). The TB situation has worsened over the last three decades, which can be attributed to the HIV/AIDS pandemic (Getahun, Gunneberg, Granich, & Nunn, 2010).

Statistically, the African region captured one quarter of the world’s cases, and the highest rates of cases and deaths relative to the population (280 incident cases per 100,000 on average, more than double the global average of 126) (WHO, 2014). The disease burden is high in this region due to the connection between the two diseases; TB and the human immunodeficiency virus as well as the acquired immune deficiency syndrome (HIV/AIDS), which Africa accounts for 78% of the global cases (Getahun et al., 2010). The totals in 2014 global TB report are higher than those reported in 2013, mainly because of upward revisions made to estimate the number of TB cases and deaths in Nigeria following the finalisation of results from Nigeria’s first-ever national TB prevalence survey (completed in 2012). Given the size of the population and the high TB burden in Nigeria, these revisions made have affected the estimation globally (WHO, 2014).

Tuberculosis (TB) is caused by Mycobacterium tuberculosis complex species. TB mainly affects the lungs, but it can also affect other organs located in the central nervous system, lymphatic system, and circulatory system among others. The disease is airborne transmitted, depending on the degree of infectiousness of the source patient and the current situation of the environment at the time when the TB exposure took place. This initial infection (primary TB) will progress rapidly to a full blown TB disease in some individuals (especially young and immune-compromised individuals), but it will also resolves spontaneously in most individuals. This condition whereby the organism lies dormant is called as latent TB infection (LTBI) (National Tuberculosis Controllers Association & Centers for Disease Control and Prevention (CDC), 2005).

In humans, tuberculosis (TB) is a pulmonary and systemic disease primarily caused by a bacterium called Mycobacterium tuberculosis. Small fraction of disease is caused by M. bovis (LoBue, Enarson & Thoen, 2010; Thoen, LoBue, Enarson, Kaneene & de Kantor, 2009). Pulmonary tuberculosis (PTB) is characterized by a series of symptoms namely fever, cough, night sweats and weight loss; and occasionally infected individual may cough up blood while the extra pulmonary tuberculosis (EPTB) is
characterized by pleural effusion, lymphadenopathy, pericardial effusion, miliary disease, and meningitis. TB patients will usually present with constitutional symptoms and local features related to the site of disease (Jamison, 2006).

On the other hand, animal tuberculosis (TB) also known as bovine TB is mostly caused by *Mycobacterium bovis*. The major reservoir of *M. bovis* is infected cattle. Cattle TB also has the ability of spreading to other domestic and wild animals through direct or indirect contact with the infected animal, inhalation of the infected droplets and ingestion of the contaminated milk in calves (Anaelom, Ikechukwu, Sunday, & Nnaemeka, 2010; Taylor, Murphy, Hopkins, Rutland, & Chistov, 2007). Bovine TB is an important zoonotic disease that is transmissible to humans through various routes, such as inhalation of aerosols, which will lead to pulmonary TB. While contaminated milk and meat ingested mostly will causes extra pulmonary TB. The lesions of extra pulmonary TB are mostly present in the lymph nodes, bones and joints, genitourinary system, and the meninges; Bovine TB is also transmitted through handling contaminated meat which is a less common route of traumatic inoculation into the skin. There are rare anecdotal records shown of human to human *M. bovis* transmission. The disease caused by *M. bovis* is clinically indistinguishable from that caused by *M. tuberculosis* (Ayele, Neill, Zinsstag, Weiss, & Pavlik, 2004; Grange, 2001).

In industrialized countries such as the UK, through several initiatives such as milk pasteurization, animal TB control and elimination programmes, have managed to reduce the incidence of disease caused by *M. bovis* drastically in both cattle and humans, where control measures and herd testing have been practiced since the 1930s. Bovine TB accounts for less than1% of human TB cases, and tends to be a disease that is associated with individuals being in close proximity to livestock, such as farmers, veterinary surgeons and abattoir workers (Taylor et al., 2007). However, in tropical countries, the risk factors for *M. bovis* in both animals and humans are visible. Although there is lack of data regarding the spread of bovine TB amongst the human population in the developing country, the global estimation reveals around 2.1% of population infected with pulmonary TB and 9.4% of extra-pulmonary TB cases are attributed to *M. bovis* (Anaelom et al., 2010).

The role of human behaviour has been increasingly recognized as part of the contributing factors in health and illness. Health is no longer considered simply as a biomedical problem; rather, it is also influenced by other factors such as social, cultural, physiological, economic and political factors that determine the behaviour of the people concerned (Suleiman, Sahal, Sodemann, Elsony, & Aro, 2014). In social and behavioural sciences, several models have been developed to explain and enhance health behaviours and sustained behavioural changes, also in different cultural contexts (Petrie, Jago & Devcich, 2007; Whitehead, 2001). Some of the models widely used that support program planning processes in health promotion and education are health belief model, social learning theory, social cognitive theory, theory of reasoned action, theory of planned behavior and the transtheoretical model (Glanz, Rimer & Viswanath, 2008).
The task of health behavior and health education is both to understand health behavior and to transform the knowledge about the behavior into effective strategies that will improve health, to close the gap between what is known about ideal health practice and what is actually practiced. Application of effective health behavior interventions can reduce substantial suffering, premature mortality and medical costs. Changes in the lifestyle can be facilitated by a combination of efforts to enhance awareness, change behavior and create environment that support good health practices (Glanz et al., 2008).

Knowledge, Attitude and Practice (KAP) surveys in TB can identify factors that may facilitate understanding and action, as well as pose problems or create barriers for TB control efforts. Among the factors are knowledge gaps, cultural beliefs, or behavioral patterns. They can identify factors influencing behavior that are not known and, reasons for the attitudes. Communication processes and sources also assessed by the KAP survey as the key to define effective activities and messages in TB prevention and control. These surveys may be used to identify problems, need, as well as barriers in program delivery and solutions for improving quality and accessibility of services. From the data collected, this will allow program managers to determine TB program priorities, to calculate resources needed for various activities, to choose the most effective communication channels and messages, to set up baseline levels and to ascertain change that results from the interventions. For advocacy purposes, KAP data provides national TB program managers and their staff with key information that is required in order to make strategic decisions (WHO, 2008).

Knowledge and perception among the community members in regards to the causes of TB is very important and it may reduce or increase the transmission of the disease. In developing countries like Nigeria, among the factors that may delay the diagnosis of TB are practices and beliefs by the community such as high stigma attached to the disease, poor sanitation, crowded dwellings and failure to recognize symptoms early hence increasing the spread of the disease in the community. Due to that, it increases the spread of the disease in the community.

Other factors would be due to close proximity between animals and humans as large proportion of the populations of this settings are depending on agriculture as their livelihoods, the practice of drinking unpasteurised milk and eating uncooked or partially cooked meat, and social as well as economic challenges that limit use of effective control measures such as poverty and low health literacy. The high HIV infection rates and the associated increase in vulnerability to TB and other disease infections is also a critical factor in these settings (Abubakar et al., 2011; Shitaye, Tsegaye & Pavlik, 2007; Woith & Larson, 2008).

1.2 Problem Statement

Tuberculosis has been portrayed as a complex, long standing problem in Nigeria as it is embedded in deep social, economic and cultural determinants such as high stigma of the society that is attached to the disease, low awareness and low health knowledge,
poverty, poor hygiene, and crowded dwellings. The disease is exacerbated due to poor knowledge, negative attitude and social and economic challenges that constrain use of effective control measures (Ayele et al., 2004; Grange, 2001; Mangtani et al., 2014; Shitaye et al., 2007).

The World Health Organisation reported that Nigeria has a population of over 170 million people and ranked 3rd among the world’s six countries with high rate of TB burden. This report also revealed that among all African countries, Nigeria has the highest estimated number of new TB cases, with nearly 590,000 new TB cases annually (WHO, 2014). While there is shortage of data with regards to the contribution of animal TB to the total overall human TB prevalence in Nigeria, molecular analysis of mycobacterial strains isolated from both pulmonary and extra pulmonary TB cases have shown that up to 14% of them belong to *M. bovis* and it is associated with individuals in close proximity to livestock (including abattoir workers) (Abubakar et al., 2011; Taylor et al., 2007).

Prevalence of the disease among abattoir workers has not been documented in Nigeria; however prevalence of the disease among livestock traders who are among the high risk group due to their close proximity to livestock was reported to be 10%. Among which 7.1% was caused by *M. tuberculosis* and 2.9% due to *M. bovis* (Adesokan et al., 2012).

Prevention of spread of TB can only be achieved with high level of knowledge on various modes of transmission, treatment and preventive measures, positive attitude towards the disease and preventive practices especially among the high risk group such as the abattoir workers. Although, high awareness about TB was reported among meat handlers in Nigeria (80%), knowledge on transmission of the disease from animals to humans and consumption of meat infected with TB as a source of BTB in humans was low (31% and 34.1% respectively) (Hambolu et al., 2013). Similarly, 36.7% and 34.7% among meat handlers do not agree that they have an increased risk of contracting the BTB because of their work and the disease is treatable respectively. About 21.5% among them reported eating the visible infected parts of the lung in-order to convince customers to buy meat (Hambolu et al., 2013). It has also been reported in another study conducted among butchers in Nigeria that, only 15.5% practice hand washing, 14.4% wear personal protective equipment (PPE) and 12.6% were immunized against TB (Rosiji & Adesokan, 2012).

Despite this, currently there is no study that assessed the level of knowledge, attitude and preventive practices on tuberculosis among abattoir workers in Guasu, Zamfara State, Nigeria.
1.3 Significance of the Study

The significance of this study is to determine the level of knowledge, attitude and preventive practices on TB among abattoir workers in Gusau, Zamfara State, Nigeria. The study is necessary as no research has been conducted in this area and other studies revealed low level of knowledge, negative attitude and little or no compliance with TB preventive practices among different study populations.

Therefore, the results from this study if proven positive would provide evidence base information which would help to enhance the development of effective interventional programs between veterinary and medical professions for efficient control of TB in the state and Nigeria as a whole.

1.4 Objectives of the Study

1.4.1 General Objective

The aim of this research is to determine the level of knowledge, attitude and preventive practices on tuberculosis among abattoir workers in Gusau, Zamfara State.

1.4.2 Specific Objectives

i. To determine the socio-demographic characteristics (such as age, gender, marital status, occupation, ethnicity, level of education and monthly income), personal and medical histories (working experience, training on meat handling, TB screening and immunization) of the abattoir workers.

ii. To determine the level of knowledge on human and animal TB (in terms of clinical signs, mode of transmission, treatment and preventive measures) among abattoir workers.

iii. To determine the level of attitude towards human and animal tuberculosis with respect to risk of contraction and preventive measures among abattoir workers.

iv. To determine the preventive practices of abattoir workers about human and animal TB.

v. To determine the relationship between socio-demographic characteristic, personal and medical histories and knowledge of abattoir workers on TB.

vi. To determine the relationship between socio-demographic characteristics, personal and medical histories and attitude of abattoir workers towards TB.

vii. To determine the relationship between socio-demographic characteristics, personal and medical histories and preventive practices of abattoir workers regarding TB.

viii. To determine the predictors of knowledge, attitude and preventive practices of abattoir workers in Zamfara State, Nigeria towards TB.
1.5 Research Hypotheses

i. There is a significant association between socio-demographic characteristics, personal and medical histories and knowledge on TB among abattoir workers in Zamfara State, Nigeria.

ii. There is a significant association between socio-demographic characteristics, personal and medical histories and attitude towards TB among abattoir workers in Zamfara State, Nigeria.

iii. There is a significant association between socio-demographic characteristics, personal and medical histories and preventive practices regarding TB among abattoir workers in Zamfara State, Nigeria.
REFERENCES

Beals, F. (2007). The risk of bovine tuberculosis from raw milk consumption with a focus on Michigan in wise traditions in food, farming and the healing arts, the quarterly magazine of the Weston A. Price Foundation.

