Incorporation of iron oxide into CNT/GNF as a high performance supercapacitor electrode

ABSTRCT

CNT/GNF/Fe₂O₃ ternary composites were synthesized via a simple hydrothermal route. The electrochemical findings reveal that the incorporation of iron oxide (Fe₂O₃) into CNT/GNF (174 F g⁻¹) boosts the specific capacitance (Cs) to 307 F g⁻¹ at 10 mV s⁻¹. The system also shows good capacity retention, as it maintained 92% of its original capacitance after 200 cyclic voltammetry cycles. Physicochemical characterization shows that Fe₂O₃ was anchored randomly on the CNT/GNF sidewalls, forming a network for facile ion diffusion. The improved supercapacitance of CNT/GNF/Fe₂O₃ can be ascribed to the synergistic effect of the double-layer capacitance of CNT/GNF and the pseudocapacitance of Fe₂O₃.

Keyword: CNT; GNF; Iron oxide; Supercapacitors; Physicochemical; Electrochemical.