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ABSTRACT 
 

 The combination of high leverage points and multicollinearity problem occurs 

frequently in logistic regression model. Methods that successfully address these problems 

separately are not effective for the combined problems. A robust logistic ridge regression 

(RLR) which incorporates the weighted Bianco and Yohai (WBY) robust estimator with 

fully iterated logistic ridge regression (LR) is proposed to rectify the combined problems 

of high leverage points and multicollinearity in a data. A numerical example and 

simulation study are presented to compare the performance of the RLR with the ML, the 

WBY, and the LR estimators. Results of the study indicate that the RLR outperforms the 

established estimators for the combined problems. 

 

KEY WORDS 
 

 Logistic ridge regression, Robust estimator, Diagnostic, High leverage point, 

Multicollinearity 

 

1. INTRODUCTION 
 

Two commonly occurring problems in logistic regression model are highly correlated 

predictor variables and the presence of extreme observations. Although the maximum 

likelihood (ML) estimator is fairly resistant to these problems in the moderate level, it is 

possible that only a single extreme observation (Syaiba and Habshah, 2010) or high 

correlation between two predictor variables (Schaefer et al., 1984) can render the ML 

coefficient estimates meaningless. For instance, a single extreme observation that departs 

significantly from the fit of good observations can pull the ML estimates toward itself, 

resulting biases in coefficient estimates (Habshah and Syaiba, 2012). Similarly, two 

highly correlated predictor variables can alter the ML coefficient estimates, so that they 

are not only differing from their true values by an order of magnitude, but they can 

actually switch sign (Weissfeld and Sereika, 1991; Lesaffre and Marx, 1993). 
 

The high leverage point is referred as extreme or outlying observation in  -space and 

it may cause more problems to highly correlated predictor variables.Moreover, in the 

presence of multiple high leverage points, the more extreme cases could mask the effect 
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of another or swamp good observation as high leverage points (Syaiba and Habshah, 

2010).  
 

Multicollinearity is defined as a strong correlation between two or more continuous 

predictor variables. The existence of multicollinearity inflates the variance of coefficient 

estimates (Månsson and Shukur, 2011; Kibria et al., 2012). Another effect of 

multicollinearity is having a lack of statistical significance of individual predictor’s Wald 

test while the overall model may be strongly significant (Lesaffre and Marx, 1993, Duzan 

and Shariff, 2015). Gunst (1983) identified misspecification error, sampling deficiencies, 

over-parameterized and the presence of high leverage point as the main factor of causing 

inter-correlation problem. In the last decades, some discussions appeared in the literature 

on the multicollinearity problem in the logistic regression model (Schaefer et al., 1984; 

Schaefer, 1986).Other researchers explored this problem in a generalized linear model 

(Marx and Smith, 1990; Weissfeld and Sereika, 1991; Segerstedt and Nyquist, 1992). 
 

In order to accommodate the high correlation among predictors and to improve 

estimation, a ridge regression sacrifices small amounts of bias for large reductions in 

variance (Månsson and Shukur, 2011). Holland (1973) was the first to propose a solution 

for the combined problem of multicollinearity and outliers in linear regression framework 

by suggesting a ridge method applied to a robust estimator. Askin and Montgomery 

(1980) proposed an augmented robust method allowing for the ridge regression methods 

to be combined with the M-estimator. Godínez-Jaimeset al. (2012) investigated the 

relative effect of collinearity and separation on logistic regression by simulations. The 

simulation results illustrated that the values MSE and biases strongly affected by a low 

degree of overlapped cases and a high degree of correlation, particularly in small sample 

size. The work of Al-Aabdi and Al–Shaibani (2014) considered combining robust 

estimator and ridge estimator for the estimation of regression coefficient in the presence 

of multicollinearity and outlier in a data. In order to reduce the effect of outliers, robust 

ridge parameter for   is computed, and this parameter is used to obtain smaller MSE 

compared to the MSE of Ridge estimator. However, no specific robust estimator is stated 

in their paper. For classifying samples and features selection, Park and Konishi (2015) 

employed weighting scheme on log-likelihood function based on the Principal 

Component estimator to robustify penalized logistic regression model. Further, this study 

derived selection criterion for choosing the tuning parameter. Monte Carlo simulation 

results illustrated that the proposed robust penalized logistic regression outperforms 

sparse logistic regression, in terms of having smaller variances and bias, in combination 

problems of collinearities-outliers. 
 

We expect that the standard errors of the LR estimates would be larger when 

multicollinear data is contaminated with high leverage point. Although the LR estimator 

serves as a better alternative in dealing with multicollinearity (Barker and Brown 2001; 

Vago and Kemeny, 2006; Park and Hastie, 2008; Godínez-Jaime et al., 2012; Shahmandi 

et al., 2013) there is uncertainty that the LR estimator performs equally good when 

multicollinearity and high leverage point occur together. In order to improve the 

performance of LR estimator, we propose incorporating a robust weighted Bianco and 

Yohai (WBY) estimator by Croux and Haesbroeck (2003) in the LR algorithm. 
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In Section 2, we provide a description of the LR estimator followed by a discussion in 

Section 3 of the proposed RLR estimator. A brief explanation on diagnostic approaches is 

reviewed in Section 4. Section 5 contains a simulation experiment. Applications on 

artificial data and real example data are introduced in Section 6 and Section 7. Section 8 

offers some conclusions. 

 

2. LOGISTIC RIDGE REGRESSION 
 

The ridge regression was proposed to estimate regression coefficients with smaller 

mean squared error than their least squares when predictor variables are correlated (Hoerl 

and Kennard, 1970). In logistic regression, similar problems arise when estimating 

regression coefficients in collinear data. Therefore, the linear ridge regression has been 

extended to the logistic ridge regression and demonstrated coefficient estimates with 

smaller mean squared error than the ML estimator when the predictor variables are highly 

correlated (Schaefer et al., 1984; Schaefer, 1986). Månsson and Shukur (2011) and Kibria 

et al. (2012) improved the LR estimator by introducing a selection of ridge parameters, 

while Kibria and Salleh (2012) and Locking et al. (2013) applied it in a probit regression 

model. The LR requires the specification of a penalty parameter (or ridge parameter) that 

controls the degree of shrinkage of the coefficient estimates (Cule and De Iorio, 2012). A 

number of methods have been proposed to estimate the ridge parameter in the LR based 

on a simulation study (Månsson and Shukur, 2011; Kibria et al., 2012), but no consensus 

methods provide a universally optimum choice. In this section, we describe the LR 

estimator with the best option of ridge parameter as suggested by Månsson and Shukur 

(2011) and Kibria et al. (2012), and how this method can be improved by implementing 

the robust WBY estimator in formulating the algorithm of RLR estimator. 
 

 In this section, we describe the algorithm which we use to compute the RLR 

coefficient estimates. In the logistic regression model, let   be a     matrix of 

predictors with rows   (        ). Let   (      ) be a vector of observed binary 

outcomes,    *   +. The i
th

 response   is a Bernoulli variable with probability of 

success  (  ). The logistic regression model related to the probability of success,  (  ) 
can be written as: 
 

  (    |  )   (  )  
    

      
 (1) 

 

where   is a vector of estimated parameter. The RLR estimates are obtained by 

maximizing the log-likelihood of the parameter vector, subject to ridge parameter. The 

penalized log-likelihood to be maximized is: 
 

 ( )  ∑     ( (  ))  ∑(    )   (   (  ))   ‖ 
 ‖ 

 

   

 

   

 (2) 

 

 One of the drawbacks of using the ML estimator is that the asymptotic variance 

becomes inflated when the predictor variables are highly correlated because some of the 

eigenvalues will be small (Månsson and Shukur, 2011). As a remedy to multicollinearity, 

Schaefer et al. (1984) suggested using the iterative LR coefficient estimates: 
 

 ̂   ( 
  ̂      )( 

  ̂    ̂  ) (3) 
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where  ̂  ,  ̂   and   are estimated by the ML estimator. The asymptotic of Mean 

Squared Error (MSE) of the LR equals: 
 

 (   
 )  ∑

  

(    )
 

 

   

     (       )     (4) 

 

where the first term is the asymptotic variance and the second term is the squared bias. 

By replacing    with      in the denominator, the asymptotic variance is no longer 

inflated. Earlier recommendation for the ridge parameter is     ̂  ⁄  where   is a 

diagonal matrix of non-negative constants,    and   is an identity matrix (Schaefer et 

al., 1984).This ridge parameter is quite conservative (relatively small) under extreme 

correlation. But, if   increases, squared bias also increases. Therefore, the choice of   is 

based on a logical balance between the decrease in the variance that should be larger than 

the increase of the squared bias (Månsson and Shukur, 2011). 
 

 In this paper, we consider the best option,   for the RLR estimates as suggested by 

Månsson and Shukur (2011) and Kibria et al. (2012) when the degree of correlation is 

high. The recommended,   is as follows: 
 

     (
 

  
) (5) 

 

where    √ ̂
  ̂   

 ⁄  and  ̂  (   ̂ )
 (   ̂ )      ⁄ . Given  ̂ 

  is an element 

of (  ̂  )
 
 where    are eigenvalues and   an eigenvector of     . It is important to 

note that the computation of ridge parameter,   does not include the intercept term. 

 

3.  ROBUST LOGISTIC RIDGE REGRESSION 
 

 The ML estimator is the most efficient estimator, but it may behave poorly in the 

presence of high leverage point. Therefore, alternative estimator needs to be constructed. 

Several robust estimators have been introduced in logistic regression, and some of these 

estimators being standard available in statistical software packages (Croux and 

Haesbroeck, 2003; Habshah and Syaiba, 2012). So far, the robust WBY estimator serves 

the best estimates when dealing with high leverage points compared to other existing 

robust estimators in the literature. The advantage of weighting scheme in WBY estimator 

where it down weights the effect of high leverage points is extensively investigated by 

Habshah and Syaiba (2012). 
 

 In this paper, the focus is on the modification of Eq. (3) which consists of replacing 

the ML estimates by the WBY estimates. The WBY estimator is a weighted version of 

the Bianco and Yohai (BY) estimator. The BY estimator is found to be much more 

resistant than the ML estimator, but it may not has a bounded influence function. In order 

to obtain an overall bounded influential function, one can add a weighting step to down 

weight the high leverage point (Croux and Haesbroeck, 2003). Weighting function has 

already been used by several authors to render estimators more robust (Carroll and 

Pederson, 1993). Initially, high leverage points need to be identified before parameter 

estimation. Hence, the WBY estimator with an overall bounded influence function is 
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obtained where the effect of high leverage points is reduced by assigning a proper 

weights to each of observation (Croux and Haesbroeck, 2003). The WBY estimator can 

be defined as: 
 

 ̂  
      
 

∑     (  
     )

 

   

 (6) 

 

where the deviance functions is given by  
 

 (  
     )        (  )  (    )   (    )  (7) 

 

 The function of     is a positive and continuously differentiable function for the BY 

estimator. It needs to satisfy  (   )   (    ) for any score   where a score value 

     
   is obtained as a linear combination of a given  . The weights are computed 

using: 
 

   {
       

          
 

         
          

    (8) 

 

 Identification of high leverage point is determined by computing the Robust 

Mahalanobis Distance (RMD) where the estimation subset is determined by minimum 

covariance determinant (MCD) by Rousseeuw and Van Driessen (1999). The MCD 

estimator selects a subset of   observations out of   which minimizes the determinant of 

the covariance matrix corresponding to these   points. The   is set at    ⁄  yielding 25% 

breakdown point estimator. The weighting is only based on   matrix without constant 

term. Since the weight function corresponding to the weighting scheme equals zero for 

large leverage points, the influence function of the WBY is bounded. For detailed 

information on algorithm and formula, we refer to Croux and Haesbroeck (2003). Then, 

we define iterative coefficients update for the RLR as follows: 
 

 ̂    ( 
  ̂      

  )
  
(   ̂     ̂   ) (9) 

 

where  ̂   ,  ̂    and   are estimated by the WBY estimator. 
 

4.  DIAGNOSTIC APPROACH 
 

 In linear regression models, the condition of the information matrix     is directly 

affected by collinearity among the predictors. However, in the logistic regression model, 

the information matrix is    X where   is a diagonal matrix of weights which is 

determined by the fitting algorithm at each iteration. It is collinearity in the weighted 

predictors       which directly affects the condition of the information matrix. The 

dissimilarity between collinearity among regressor and the ML collinearity due to ill-

conditioned information matrix is well explained by Lessafre and Marx (1993). Likewise, 

the linear regression, identification of multicollinearity in logistic regression is detected 

using condition indices (CI) and condition number (CN) by computing eigenvalues from 

    and      (Lesaffre and Marx, 1993). We summarize their algorithm as below: 
 

 Step 1.  

 Scaling the columns of   (including the intercept term) to unit length  

   
     ‖  ‖                    ⁄  
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 Step 2.  

 Compute eigenvalues  ̂     ̂  from information matrix,  ̂  (    ) and 

 ̂  (   )in decreasing order. 
 

 Step 3.  

 Define the condition indexes of     ( ̂  ̂ ⁄ )
   

 and     ( ̂  ̂ ⁄ )
   

. 
 

 Step 4.  

 Define the condition numbers of     ̂  ̂ ⁄  and     ̂  ̂ ⁄  and ratio  

        ⁄ . 
 

 Step 5.  

 Determine whether there is an ill-conditioning in  and ML. According to Lesaffre 

and Marx (1993), if      , there is collinearity in   , if       and    is not 

high, there is ML-collinearity. If both (   ) and ratio is      , there are 

collinearity exist in both   and ML. 
 

 Step 6.  

 Calculate the variance decomposition proportion table of  ̂ and  ̂ to show 

determine which predictors and weighted predictors that highly correlated  
 

 Statistical practitioners also rely on diagnostic approaches when dealing with 

multicollinearity or high leverage points. They tend to delete influential predictors in 

model before making inference, leaving only a few overlapped cases between     and 

    which can also cause large estimated regression coefficients and standard errors 

(Segerstedt and Nyquist, 1992; Christmann and Rousseeuw, 2001; Rousseeuw and 

Christmann, 2003).  
 

 Meanwhile, for detection of high leverage points, we recommended using robust 

logistic diagnostic (RLGD) method by Syaiba and Habshah (2010) which is capable of 

detecting high leverage points correctly. The algorithm for RLGD method is described as 

follow: 
 

Step 1.  

Identify suspected high leverage point,   using the RMD-MCD. Perform two sets, 

set   (suspected high leverage points) and set   (good observations). 
 

Step 2.  

Estimate  ̂(  ) using the ML method. 
 

Step 3. 

Compute  ̂ 
(  )     (  

  ̂(  ))   ⁄    (  
  ̂(  )) and  

 

Step 4.  

Compute   
(  )   ̂ 

(  )(   ̂ 
(  )) 

 

Step 5. 

Define  ̃        
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Step 6. 

Compute  

  
(  )    

 ( ̃ 
  ̃ )

  
   

and 

   
 (  )  {

  
(  )     

(  )⁄     

  
(  )     

 

 

Step 7.  

Compare   
 (  )     (   

 (  ))      (   
 (  )). Any group deleted points with 

   
 (  )

 exceeds the cut-off point, are finalized and declares as high leverage points 

 

5.  SIMULATION EXPERIMENT 
 

 It is a demand to conduct a Monte Carlo simulation when exact theoretical solutions 

are not available to support our expectation. In this section, the performance of RLR 

estimator is investigated to see whether we can rely on its parameter estimates when the 

predictors are highly correlated in the presence of high leverage points. Most authors 

considered various degrees of correlation, the number of sample size and the number of 

predictors as important factors that may affect the properties of the different estimates by 

the ML and LR estimators (Månsson and Shukur, 2011; Kibria et al., 2012). In this study, 

we consider another factor (the number of high leverage points) besides those already 

mentioned, when evaluating the performance of the ML, LR, WBY and RLR estimators. 
 

 The   matrix with multicollinearity is generated with various degrees of correlation 

using the following equation: 
 

    (   
 )         (10) 

 

        and         where   represent the correlation between predictors with 

     (   ) which are randomly generated from the normal distribution. The original 

idea of generating multicollinear data was given by Lawrence and Arthur (1990), which 

extensively been used by Bagheri et al. (2010), Bagheri and Midi (2012, 2015) in 

multicollinearity problem in linear regression framework. As an alternative, Månsson and 

Shukur (2011) generated the   matrix according to     √(   
 )         instead of 

Eq. (10) for conducting a simulation study in linear regression as well as in logistic 

regression. Meanwhile, the responses    are generated using the Bernoulli distribution 

       (  ) where we define the probabilities as: 
 

      (  
  )   (   (  

  )) ⁄  (11) 
 

 Here, the true values for regressors are fixed as     √ ⁄  and     . The value of 

the intercept reflects the average value of the log odds ratio. Hence, when the intercept 

equals zero, then there is an equal average probability of obtaining one and zero for 

responses. Three different degrees of correlation are considered,   (              ) 
for a number of predictors,   (     ) and sample sizes,   (                 ). In 

the contamination set,   (     ) are the number high leverage points that are generated 
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using the uniform distribution,      (     ) with a response    which is fixed at  

   . Then, the contaminated observations     are plugged on the last rows of    . 
 

 The best estimator is determined based on a comparison of lowest MSE and bias 

among the estimators (Månsson and Shukur, 2011; Kibria et al., 2012). It is important to 

note that the estimator with the lowest MSE may have a larger bias since the reduction of 

variance in the LR estimates is larger than the increase in squared bias depending on the 

number of sample size and magnitude of ridge parameter. The estimated coefficients of 

all estimators are computed over        replications and contain summary measures 

of MSE and bias combining the individual results for the estimated coefficients including 

intercept term. Bias and MSE measures are computed in Euclidean norm as follows:  
 

     ‖
 

 
∑ ̂   

 

   

‖         
 

 
∑‖ ̂   ‖

 
 

 

   

 

 

 Referring to Schaefer et al. (1984), their preliminary findings from the empirical 

study indicated that the LR estimator has smaller MSE than MSE from the ML estimator 

when sample size,       with the degree of correlation,       . As pointed out by 

Victoria-Feser (2002), the ML estimates are unstable for small sample size even without 

contamination. Since the LR estimator is using  ̂  , the LR estimates may fluctuate for 

small sample size. According to Victoria-Feser (2002), sample size,      is 

considerably very small for    . The choice for sample size starting with       and 

    is recommended by Victoria-Feser (2002) to ensure the stability of the estimators. 

Peduzzi et al. (1996) emphasized that adjusting the number of sample size is more crucial 

than correcting for the degrees of freedom to obtain meaningful estimates in logistic 

regression. In our simulation, we are successfully in showing the MSE for all estimators 

reduce when the number of sample sizes increases starting with the smallest sample size, 

    . 
 

 It is generally believed that the LR estimator should always be preferred when dealing 

with multicollinear data. However, the RLR estimator is expected to be better, since we 

are not able to ensure that multicollinear data is free from the high leverage points. In this 

section, we would like to discuss the advantages of incorporating the robust WBY 

estimator in logistic ridge regression. 
 

 Tables 1-4 present the results of simulation experiments concerning the MSEs and 

biases of the ML, the LR, the WBY and the RLR estimators. We will discuss on how 

these estimators are related to the degrees of correlation, to the number of sample sizes, 

to the number of high leverage points and to the number of predictors. 
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Table 1: Comparison of MSEs and Biases for Uncontaminated Data 

n 
 

ML LR WBY RLR ML LR WBY RLR ML LR WBY RLR 

rho=0.75, p=2 rho=0.75, p=3 rho=0.75, p=4 

60 
MSE 0.769 0.142 0.915 0.170 1.609 0.198 2.253 0.219 2.587 0.279 3.962 0.300 

Bias 0.113 0.229 0.100 0.254 0.148 0.235 0.171 0.262 0.156 0.272 0.236 0.311 

80 
MSE 0.513 0.121 0.647 0.141 1.057 0.189 1.253 0.208 1.674 0.276 1.912 0.298 

Bias 0.064 0.153 0.071 0.169 0.108 0.150 0.112 0.165 0.120 0.170 0.222 0.191 

100 
MSE 0.362 0.118 0.433 0.132 0.723 0.188 0.873 0.207 1.263 0.256 1.517 0.268 

Bias 0.060 0.117 0.062 0.125 0.070 0.102 0.083 0.110 0.101 0.105 0.114 0.118 

150 
MSE 0.255 0.115 0.297 0.120 0.463 0.185 0.541 0.206 0.742 0.230 0.881 0.250 

Bias 0.035 0.073 0.037 0.074 0.043 0.057 0.049 0.058 0.060 0.055 0.068 0.053 

200 
MSE 0.178 0.099 0.214 0.107 0.355 0.179 0.410 0.198 0.547 0.218 0.623 0.246 

Bias 0.026 0.051 0.034 0.057 0.040 0.033 0.040 0.032 0.042 0.023 0.047 0.023 

  
rho=0.85, p=2 rho=0.85, p=3 rho=0.85, p=4 

60 
MSE 1.686 0.118 2.269 0.134 3.766 0.198 5.392 0.212 7.300 0.258 9.845 0.270 

Bias 0.117 0.249 0.148 0.270 0.145 0.286 0.191 0.331 0.197 0.333 0.259 0.416 

80 
MSE 1.202 0.114 1.397 0.131 2.519 0.172 3.211 0.188 4.261 0.209 4.802 0.251 

Bias 0.085 0.175 0.092 0.189 0.099 0.184 0.129 0.206 0.136 0.229 0.212 0.256 

100 
MSE 0.857 0.110 1.031 0.120 1.774 0.152 2.199 0.185 3.079 0.180 3.863 0.219 

Bias 0.081 0.125 0.082 0.135 0.089 0.128 0.081 0.142 0.098 0.154 0.123 0.175 

150 
MSE 0.575 0.103 0.659 0.115 1.160 0.136 1.302 0.145 1.918 0.152 2.268 0.167 

Bias 0.038 0.075 0.048 0.078 0.065 0.068 0.079 0.074 0.067 0.082 0.080 0.087 

200 
MSE 0.394 0.100 0.489 0.109 0.811 0.125 0.977 0.137 1.386 0.150 1.608 0.163 

Bias 0.034 0.045 0.042 0.046 0.053 0.045 0.057 0.046 0.061 0.042 0.071 0.046 

  
rho=0.95, p=2 rho=0.95, p=3 rho=0.95, p=4 

60 
MSE 11.922 0.176 17.820 0.201 30.449 0.264 43.095 0.287 54.907 0.329 79.674 0.368 

Bias 0.188 0.371 0.195 0.398 0.296 0.481 0.367 0.497 0.230 0.548 0.676 0.579 

80 
MSE 8.833 0.108 11.792 0.123 21.335 0.155 25.649 0.180 35.828 0.217 51.269 0.254 

Bias 0.130 0.275 0.092 0.291 0.257 0.349 0.229 0.383 0.176 0.437 0.523 0.469 

100 
MSE 6.427 0.071 7.883 0.083 14.552 0.098 17.775 0.113 26.479 0.134 32.873 0.158 

Bias 0.083 0.199 0.095 0.218 0.158 0.267 0.148 0.290 0.166 0.333 0.221 0.361 

150 
MSE 4.728 0.045 5.437 0.049 9.749 0.052 11.733 0.059 16.072 0.065 19.555 0.075 

Bias 0.070 0.128 0.086 0.134 0.139 0.161 0.121 0.176 0.142 0.202 0.139 0.224 

200 
MSE 3.176 0.037 3.896 0.040 6.894 0.041 8.053 0.044 11.196 0.043 13.387 0.048 

Bias 0.049 0.076 0.072 0.082 0.131 0.106 0.118 0.114 0.080 0.131 0.095 0.142 
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Table 2: Comparison of MSEs and Biases for Contaminated Data with Two Predictors 

n 
 

ML LR WBY RLR ML LR WBY RLR ML LR WBY RLR 

rho=0.75, p=2, h=1 rho=0.75, p=2, h=3 rho=0.75, p=2, h=5 

60 
MSE 1.379 0.966 0.909 0.156 1.475 1.206 0.931 0.160 1.487 1.278 0.975 0.166 

Bias 0.889 0.904 0.104 0.242 1.044 1.042 0.126 0.239 1.087 1.083 0.105 0.235 

80 
MSE 1.104 0.835 0.620 0.140 1.308 1.163 0.666 0.140 1.366 1.240 0.602 0.146 

Bias 0.809 0.822 0.092 0.166 1.017 1.018 0.085 0.164 1.064 1.063 0.084 0.157 

100 
MSE 0.887 0.714 0.487 0.142 1.207 1.119 0.463 0.138 1.249 1.197 0.486 0.141 

Bias 0.724 0.736 0.059 0.124 0.996 0.998 0.052 0.127 1.044 1.043 0.081 0.124 

150 
MSE 0.495 0.438 0.280 0.125 1.058 1.012 0.285 0.129 1.151 1.111 0.307 0.134 

Bias 0.538 0.551 0.035 0.075 0.945 0.947 0.041 0.082 1.008 1.009 0.040 0.077 

200 
MSE 0.337 0.307 0.200 0.113 0.927 0.899 0.203 0.112 1.071 1.041 0.204 0.119 

Bias 0.424 0.437 0.032 0.054 0.890 0.892 0.029 0.051 0.976 0.978 0.024 0.048 

  
rho=0.85, p=2, h=1 rho=0.85, p=2, h=3 rho=0.85, p=2, h=5 

60 
MSE 2.806 0.892 2.144 0.136 1.837 1.157 2.107 0.134 1.636 1.233 2.072 0.142 

Bias 0.826 0.890 0.116 0.271 1.024 1.031 0.124 0.261 1.074 1.073 0.115 0.267 

80 
MSE 2.144 0.765 1.377 0.128 1.574 1.126 1.447 0.126 1.538 1.203 1.579 0.132 

Bias 0.759 0.794 0.091 0.185 0.998 1.004 0.078 0.170 1.049 1.051 0.114 0.175 

100 
MSE 1.726 0.652 1.119 0.122 1.528 1.105 1.063 0.121 1.411 1.182 1.075 0.120 

Bias 0.665 0.702 0.069 0.137 0.972 0.981 0.055 0.135 1.029 1.031 0.069 0.134 

150 
MSE 0.925 0.435 0.607 0.115 1.358 1.031 0.644 0.111 1.268 1.121 0.635 0.119 

Bias 0.493 0.516 0.039 0.073 0.913 0.923 0.043 0.072 0.991 0.995 0.059 0.064 

200 
MSE 0.643 0.343 0.461 0.111 1.204 0.934 0.454 0.100 1.193 1.074 0.478 0.115 

Bias 0.390 0.409 0.031 0.049 0.846 0.856 0.029 0.049 0.958 0.961 0.048 0.045 

  
rho=0.95, p=2, h=1 rho=0.95, p=2, h=3 rho=0.95, p=2, h=5 

60 
MSE 33.448 0.818 17.969 0.204 8.381 1.053 17.298 0.214 3.700 1.155 18.992 0.214 

Bias 0.648 0.899 0.204 0.399 0.966 1.010 0.111 0.403 1.050 1.056 0.190 0.399 

80 
MSE 28.023 0.702 11.216 0.126 8.078 1.011 10.941 0.132 3.292 1.118 11.155 0.130 

Bias 0.612 0.827 0.148 0.293 0.933 0.985 0.086 0.293 1.023 1.034 0.081 0.282 

100 
MSE 23.890 0.593 8.558 0.089 7.943 0.973 8.354 0.088 3.240 1.093 8.107 0.089 

Bias 0.530 0.751 0.102 0.226 0.908 0.962 0.055 0.227 1.003 1.016 0.072 0.221 

150 
MSE 16.054 0.393 4.873 0.050 7.868 0.880 4.829 0.050 2.812 1.037 4.956 0.055 

Bias 0.401 0.590 0.094 0.130 0.808 0.900 0.047 0.126 0.951 0.976 0.061 0.138 

200 
MSE 12.321 0.279 3.393 0.039 7.127 0.788 3.672 0.041 2.753 0.987 3.642 0.042 

Bias 0.324 0.473 0.050 0.080 0.726 0.829 0.042 0.084 0.900 0.939 0.032 0.085 
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 Table 3: Comparison of MSEs and Biases for Contaminated Data with Three Predictors 

n  
ML LR WBY RLR ML LR WBY RLR ML LR WBY RLR 

rho=0.75, p=3, h=1 rho=0.75, p=3, h=3 rho=0.75, p=3, h=5 

60 
MSE 2.124 1.068 1.924 0.228 1.861 1.272 2.184 0.229 1.749 1.347 2.161 0.232 

Bias 0.876 0.901 0.161 0.259 1.022 1.027 0.158 0.264 1.065 1.064 0.170 0.258 

80 
MSE 1.568 0.967 1.313 0.217 1.595 1.255 1.283 0.224 1.543 1.329 1.410 0.228 

Bias 0.790 0.819 0.128 0.152 1.002 1.005 0.109 0.156 1.044 1.044 0.110 0.159 

100 
MSE 1.198 0.820 0.919 0.214 1.476 1.228 0.991 0.221 1.660 1.292 0.956 0.226 

Bias 0.714 0.728 0.073 0.119 0.981 0.985 0.094 0.113 1.017 1.019 0.081 0.109 

150 
MSE 0.724 0.548 0.586 0.205 1.251 1.129 0.573 0.211 1.424 1.278 0.588 0.216 

Bias 0.530 0.544 0.046 0.055 0.935 0.939 0.050 0.057 0.987 0.990 0.060 0.055 

200 
MSE 0.475 0.393 0.388 0.198 1.079 1.007 0.406 0.204 1.306 1.207 0.403 0.209 

Bias 0.415 0.427 0.033 0.030 0.880 0.883 0.040 0.037 0.961 0.963 0.039 0.032 

  rho=0.85, p=3, h=1 rho=0.85, p=3, h=3 rho=0.85, p=3, h=5 

60 
MSE 5.339 0.928 4.947 0.271 2.961 1.207 4.902 0.276 2.423 1.267 5.037 0.232 

Bias 0.782 0.887 0.177 0.312 0.996 1.012 0.174 0.305 1.048 1.050 0.188 0.311 

80 
MSE 3.959 0.832 3.133 0.244 2.576 1.198 3.295 0.241 2.049 1.244 3.323 0.193 

Bias 0.723 0.794 0.123 0.203 0.966 0.988 0.121 0.202 1.025 1.031 0.124 0.207 

100 
MSE 3.101 0.723 2.332 0.214 2.393 1.185 2.408 0.218 1.871 1.237 2.268 0.181 

Bias 0.649 0.699 0.083 0.152 0.944 0.967 0.108 0.143 1.010 1.014 0.108 0.129 

150 
MSE 1.824 0.543 1.452 0.193 2.067 1.173 1.375 0.193 1.696 1.229 1.440 0.173 

Bias 0.483 0.516 0.055 0.074 0.892 0.911 0.055 0.071 0.971 0.980 0.086 0.070 

200 
MSE 1.171 0.454 0.918 0.149 1.808 1.113 0.972 0.154 1.560 1.216 0.965 0.152 

Bias 0.384 0.409 0.045 0.037 0.822 0.840 0.053 0.040 0.940 0.946 0.047 0.042 

  rho=0.95, p=3, h=1 rho=0.95, p=3, h=3 rho=0.95, p=3, h=5 

60 
MSE 66.629 0.853 44.180 0.304 29.908 1.010 43.368 0.293 11.853 1.105 43.347 0.304 

Bias 0.507 0.918 0.203 0.515 0.867 0.994 0.212 0.502 0.998 1.031 0.235 0.505 

80 
MSE 56.513 0.765 25.294 0.184 26.203 0.973 26.291 0.186 11.659 1.087 27.227 0.190 

Bias 0.443 0.864 0.163 0.385 0.834 0.970 0.169 0.382 0.979 1.015 0.230 0.389 

100 
MSE 47.478 0.682 19.199 0.122 23.855 0.945 20.180 0.128 10.964 1.066 20.085 0.126 

Bias 0.408 0.809 0.146 0.299 0.798 0.951 0.150 0.299 0.954 0.998 0.189 0.299 

150 
MSE 34.994 0.495 11.958 0.061 21.375 0.875 11.483 0.060 9.311 1.027 10.953 0.062 

Bias 0.342 0.666 0.094 0.178 0.765 0.895 0.132 0.171 0.897 0.962 0.116 0.168 

200 
MSE 27.209 0.370 7.641 0.043 20.717 0.806 8.176 0.046 9.034 0.996 8.470 0.045 

Bias 0.311 0.548 0.047 0.106 0.653 0.830 0.059 0.111 0.850 0.926 0.073 0.111 
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Table 4: Comparison of MSEs and Biases for Contaminated Data with Four Predictors 

n  
ML LR WBY RLR ML LR WBY RLR ML LR WBY RLR 

rho=0.75, p=4, h=1 rho=0.75, p=4, h=3 rho=0.75, p=4, h=5 

60 
MSE 2.854 1.136 6.817 0.350 2.292 1.332 4.695 0.360 2.171 1.374 4.010 0.367 

Bias 0.857 0.898 0.273 0.300 1.010 1.015 0.251 0.299 1.051 1.050 0.275 0.301 

80 
MSE 2.142 1.056 2.241 0.315 1.987 1.325 2.182 0.350 1.780 1.362 2.572 0.362 

Bias 0.792 0.818 0.181 0.192 0.990 0.995 0.225 0.185 1.034 1.032 0.262 0.175 

100 
MSE 1.585 0.915 1.450 0.306 1.725 1.316 1.521 0.313 1.651 1.345 1.670 0.323 

Bias 0.702 0.721 0.106 0.108 0.970 0.977 0.130 0.106 1.017 1.020 0.118 0.113 

150 
MSE 0.917 0.639 0.833 0.299 1.424 1.230 0.916 0.310 1.392 1.283 0.913 0.321 

Bias 0.531 0.546 0.061 0.052 0.929 0.934 0.072 0.047 0.988 0.991 0.072 0.049 

200 
MSE 0.638 0.487 0.628 0.274 1.253 1.117 0.636 0.270 1.293 1.212 0.634 0.290 

Bias 0.419 0.433 0.052 0.026 0.872 0.876 0.049 0.022 0.961 0.964 0.055 0.019 

  rho=0.82, p=4, h=1 rho=0.85, p=4, h=3 rho=0.85, p=4, h=5 

60 
MSE 8.758 0.959 10.581 0.278 4.781 1.177 15.181 0.284 3.327 1.271 10.390 0.282 

Bias 0.754 0.891 0.261 0.379 0.962 1.002 0.627 0.381 1.030 1.036 0.358 0.383 

80 
MSE 6.527 0.873 6.089 0.222 4.010 1.219 6.241 0.226 2.758 1.240 5.774 0.230 

Bias 0.693 0.798 0.214 0.252 0.943 0.980 0.319 0.252 1.010 1.018 0.288 0.246 

100 
MSE 4.978 0.775 3.834 0.218 3.384 1.304 3.924 0.222 2.594 1.360 4.230 0.229 

Bias 0.629 0.703 0.127 0.164 0.925 0.958 0.152 0.168 0.992 1.003 0.136 0.167 

150 
MSE 2.725 0.622 2.142 0.166 2.799 1.274 2.388 0.169 2.259 1.339 2.427 0.172 

Bias 0.486 0.527 0.089 0.084 0.874 0.904 0.089 0.079 0.957 0.970 0.090 0.081 

200 
MSE 1.780 0.543 1.560 0.163 2.539 1.258 1.652 0.165 2.057 1.291 1.599 0.168 

Bias 0.387 0.417 0.057 0.044 0.810 0.833 0.058 0.048 0.928 0.938 0.055 0.037 

  rho=0.95, p=4, h=1 rho=0.95, p=4, h=3 rho=0.95, p=4, h=5 

60 
MSE 103.368 0.881 86.503 0.361 59.963 1.000 107.554 0.409 27.256 1.071 76.004 0.401 

Bias 0.544 0.934 1.571 0.578 0.792 0.994 1.226 0.612 0.998 1.020 0.296 0.603 

80 
MSE 82.451 0.818 48.156 0.242 55.477 0.962 50.336 0.262 22.021 1.045 52.623 0.250 

Bias 0.431 0.895 0.940 0.459 0.729 0.972 0.447 0.475 0.924 1.002 0.259 0.458 

100 
MSE 68.863 0.755 33.054 0.155 48.577 0.934 34.356 0.158 21.906 1.029 36.912 0.157 

Bias 0.401 0.854 0.219 0.357 0.704 0.952 0.273 0.358 0.928 0.989 0.245 0.353 

150 
MSE 51.680 0.595 18.507 0.071 38.164 0.879 20.323 0.073 21.140 0.998 19.510 0.078 

Bias 0.384 0.735 0.190 0.216 0.696 0.899 0.124 0.214 0.858 0.956 0.166 0.221 

200 
MSE 40.738 0.457 13.020 0.049 35.224 0.832 14.115 0.051 20.792 0.984 14.243 0.051 

Bias 0.318 0.616 0.119 0.140 0.620 0.845 0.096 0.148 0.789 0.924 0.093 0.147 
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Analyses of Simulated Data 
 

 Let us first focus on the simulation result for multicollinearity as shown in Table 1. 

The estimated MSEs and biases for the ML are severely affected by the presence of 

multicollinearity evident by larger MSEs and biases as the degree of correlation and 

number of predictor increases. We do not expect that the WBY estimator to be better than 

the LR since the WBY is not robust to multicollinearity. Unexpectedly, the WBY 

estimates are even worse than the ML estimates, but getting closer to the ML estimates as 

the sample size increases. The LR estimator gives the best estimates evident by the 

smallest MSEs and biases, followed by the RLR estimates which are fairly close the LR 

estimates. All of the estimators show reduction of MSEs and biases with the increment of 

sample size. 
 

 High leverage point has a clear negative impact on the ML estimates (see Table 2). As 

can be expected, the ML estimator performs even worst with both contaminations of 

multicollinearity and high leverage points, as it gives the largest MSEs and biases for 

mild correlation,       . We observe that the high leverage point have an effect on 

reducing the MSEs of ML, especially for higher degree of correlation,       . This 

could mislead our interpretation since it is become a general understanding that high 

leverage point induces larger MSEs as the number of contamination increases. It is 

interesting to observe that in the presence of high leverage point in multicollinear data, 

the LR estimator does not perform well by looking at the estimated MSEs and biases that 

are larger compared to the LR estimator having the only multicollinearity for every 

degree of correlation increases. The WBY estimates get affected as well, particularly for 

smaller sample size at higher degree of correlation. On the other hand, the RLR estimates 

give the smallest MSEs and biases. 
 

 The final factor that we vary is the number of predictor variables (see Table 3 and 

Table 4). It is very easy to compare directly the MSEs and biases when we increase the 

number of predictors since the number of sample sizes are fixed. The ML is the most 

affected followed by the LR, as we increase the number of high leverage point from h=1 

to h=5 which becomes evident by the increased in MSEs and biases. The WBY estimates 

are also affected. There is some loss in precision (increased MSE) for the estimators 

based on weighting, certainly as the number of predictor increases. As a referee pointed 

out, this may be due to instabilities when computing the MCD estimator in higher 

dimensions. Conversely, the RLR estimator still produces the smallest MSEs and biases. 

Our results are consistent throughout the simulation experiments. 

 

6. ARTIFICIAL DATA 
 

 As in the case in linear regression, model fitting via logistic regression is also 

sensitive to multicollinearity. Most software packages have diagnostic procedure, like 

variance Inflation factor (VIF) and tolerance test to identify correlated variables. 

Nevertheless it is possible for variables to pass these tests and have the program run, but 

yields output that is clearly nonsense.  
 

 As a simple example, we fit logistic regression model to the artificial data with 

    (   ) and the outcome variable was generated by comparing    (   ) to the true 
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probability  (  )   
  (     )⁄  and if    (  ) then    , otherwise    . The 

correlated variables were generated from    and the constant as follows:       
 (      ) and       (     ). Thus,    and    are highly correlated and   is nearly 

collinear with the constant term. The results of fitting logistic regression model is using R 

language with setting a seed value is 123 with sample size of     . The artificial data 

are contaminated by four high leverage points allocated at (                   )  
(           ). Tables 5-7 show the results on multicollinearity diagnostic for artificial 

data followed by the parameter estimates, as displayed in Table 8. 

 

Table 5 

Multicollinearity Diagnostic for Uncontaminated Artificial Data 

Eigenvalue 
Condition 

Index 

Variance Decomposition Proportion 

Intercept X1 X2 X3 

X'X 

1.386 1 0.001 0.236 0.166 0.265 

1.006 1.174 0.952 0.014 0.02 0.004 

0.885 1.252 0.033 0.245 0.757 0.041 

0.723 1.384 0.014 0.506 0.058 0.689 

X'WX 

0.310 1 0.004 0.173 0.151 0.345 

0.234 1.151 0.944 0.02 0.02 0.006 

0.205 1.229 0.052 0.278 0.683 0.014 

0.157 1.403 0 0.529 0.146 0.634 

 

 

Table 6 

Multicollinearity Diagnostic for High Correlated Artificial Data 

Eigenvalue 
Condition 

Index 

Variance Decomposition Proportion 

Intercept X1 X2 X3 

X'X 

2.085 1 0 0 0 0 

1.915 1.043 0 0 0 0 

3.22E-04 80.471 0.988 0 0 0.997 

3.13E-06 815.883 0.012 1 1 0.003 

X'WX 

0.448 1 0 0 0 0 

0.406 1.051 0 0 0 0 

6.93E-05 80.414 0.997 0 0 1 

7.00E-07 799.759 0.003 1 1 0 
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Table 7 

Multicollinearity Diagnostic for High Correlated with  

High Leverage Point for Artificial Data 

Eigenvalue 
Condition 

Index 

Variance Decomposition Proportion 

Intercept X1 X2 X3 

X'X 

1.780 1 0.123 0.049 0.08 0.128 

1.159 1.239 0.078 0.341 0.216 0.056 

0.696 1.599 0.012 0.505 0.635 0.060 

0.364 2.211 0.787 0.105 0.070 0.756 

X'WX 

0.416 1 0.13 0.028 0.083 0.137 

0.264 1.254 0.069 0.279 0.321 0.048 

0.168 1.575 0.017 0.559 0.529 0.063 

0.085 2.211 0.784 0.134 0.068 0.752 

 

Table 8 

Parameter Estimation of Artificial Data 

 

ESTIMATOR 

ML LR WBY RLR 

Uncontamination 

Intercept 0.072 (0.293) 0.065 (0.269) 0.186 (0.312) 0.173 (0.273) 

X1 0.538 (0.346) 0.476 (0.306) 0.417 (0.332) 0.381 (0.310) 

X2 -0.306 (0.365) -0.268 (0.319) -0.314 (0.437) -0.284 (0.326) 

X3 -0.133 (0.282) -0.106 (0.258) -0.016 (0.330) -0.004 (0.260) 

Multicollinearity 

Intercept -18.345 (12.022) 0.004 (0.018) -18.611 (11.681) 0.004 (0.018) 

X1 57.226 (130.215) 0.024 (0.016) 58.054 (144.113) 0.024 (0.016) 

X2 -56.772 (130.228) 0.024 (0.016) -57.593 (144.051) 0.024 (0.016) 

X3 17.800 (11.426) 0.005 (0.019) 18.057 (11.202) 0.005 (0.019) 

Multicollinearity and High Leverage Points 

Intercept 0.148 (0.376) 0.125 (0.335) -15.357 (12.176) 0.004 (0.018) 

X1 0.531 (0.353) 0.482 (0.320) 60.057 (148.500) 0.021 (0.016) 

X2 0.018 (0.134) 0.024 (0.130) -59.641 (148.407) 0.021 (0.016) 

X3 - 0.062 (0.160) -0.053 (0.150) 14.996 (11.737) 0.005 (0.018) 

 

Analyses of Artificial Data  
 

 In this section, we further discuss on the drawback of ML estimates for 

multicollinearity and the LR estimates for multicollinearity in the presence of high 

leverage points. Referring to Table 5 for uncontaminated artificial data, the condition 

number of          and          and ratio           indicating no collinearity 

problems in both information matrix. Regarding to collinearity diagnostic by Lesaffree 

and Marx (1993), the condition indices ,       are not problematic. 
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 Meanwhile, for correlated artificial data, the condition number of            and 

           are massive with very small eigenvalues show that there is serious 

multicollinearity occur in the data. The variance decomposition proportion in Table 6 

clearly confirms that    and    are severely correlated, while mild correlation can be 

found in between    and the intercept. 
 

 In the simulation results, we mentioned that the high leverage point potentially 

masked the effect of multicollinearity. We observe similar findings in artificial data as we 

contaminated multicollinear artificial data with two high leverage points in    and 

another two in   . The condition number of    and   are drastically reduce from 

815.883 to 2.211 and 799.759 to 2.211. One may think that there is no multicollinearity 

exist in this data by looking at results of the variance decomposition of proportion, as 

shown in Table 7. In the parameter estimate, we show that the diagnostic result in Table 7 

mislead our conclusion about the existence of multicollinearity in the presence of high 

leverage point. 
 

 We do not include the complete result of RLGD in identifying the high leverage 

points due to space constraint. The RMD-MCD identified cases (1,2,3,4) as suspected 

high leverage points with RMD-MCD values (4523.668, 4810.753, 331.138, 368.411) 

and these cases are finally confirmed as high leverage points with   
 (  )

 values 

(1986812.449, 2246852.671, 10926.407, 13517.088). 
 

 Table 8 presents parameter estimates for all the estimators. Under free contamination, 

the ML estimator should be referred as the best estimator. All the other estimates are 

fairly closer to the ML estimates.  
 

 Then, the model includes the highly correlated variables   and    and mild correlated 

variable    with the constant 1. The ML fails to provide a good estimate when 

multicollinearity exists in the artificial data. The WBY also not exempted from this 

problem. Both variables   and   have very large estimated slope coefficients and 

estimated standard errors. For variable    and the intercept, we see that the estimated 

coefficients are of reasonable magnitude but the estimated standard errors are much 

larger than we would expect. Moreover, the multicollinearity actually switches sign for 

   and the intercept. Under this type of contamination, one could refer to the LR as the 

best estimator. The RLR performs equally good as the LR.  
 

 Multicollinearity pattern changes when the high leverage points are plugged to 

correlated variables. Under both contaminations, the best estimator is the one that gives 

closer estimates to the LR in multicollinear data. It can be observe that the RLR estimates 

are the closest to the LR estimates in multicollinear data. Moreover, the standard errors of 

the RLR estimates are the smallest compared to other estimates. There are sharp declines 

of the ML estimates in both contaminations. In fact, there are sign different for intercept, 

   and    compared to a single contamination (multicollinearity). There are not many 

changes in the WBY estimates, but we could not rely on its estimate. The LR estimate 

also affected in both contaminations as its provide slightly bigger coefficient estimated 

and standard error with sign different for   . 
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7. REAL EXAMPLE 
 

 Our real data is cancer remission which is taken to illustrate severe multicollinearity 

in logistic regression (Lesaffre and Marx, 1993). The cancer remission data is a 

benchmark data with severe multicollinearity problem. The continuous risk factors 

associated with cancer remission are cell index, temperature, and li index. The binary 

response is 1 if the patient experiences a complete cancer remission and 0 otherwise. 

There were 27 patients involved and 9 of which experienced a complete cancer 

remission. Three extreme high leverage points are plugged on a temperature with 

(           )  (     ). 
 

 Tables 9-10 show the results on multicollinearity diagnostic for cancer remission data, 

followed by the parameter estimates, as displayed in Table 11.  

 

Table 9 

Multicollinearity Diagnostic for High Correlated Cancer Remission Data 

Eigenvalue 
Condition 

Index 

Variance Decomposition Proportion 

Intercept LI TEMP CELL 

X'X 

3.843 1 0 0.010 0 0.003 

0.129 5.448 0 0.979 0 0.020 

0.028 11.799 0.001 0.003 0.001 0.969 

1.06E-04 190.776 0.999 0.008 0.999 0.008 

X'WX 

0.576 1 0 0.005 0 0 

0.015 6.165 0 0.454 0 0.007 

5.52E-04 32.287 0.005 0.097 0.003 0.816 

5.29E-06 329.954 0.995 0.444 0.997 0.176 

 

Table 10  

Multicollinearity Diagnostic for High Correlated with  

High Leverage Points Cancer Remission Data 

Eigenvalue 
Condition 

Index 

Variance Decomposition Proportion 

Intercept LI TEMP CELL 

X'X 

3.293 1 0.003 0.014 0.031 0.003 

0.572 2.400 0.004 0.012 0.952 0.003 

0.115 5.346 0.049 0.970 0.002 0.057 

2.06E-02 12.652 0.943 0.004 0.016 0.936 

X'WX 

0.419 1 0.001 0.015 0 0.001 

0.013 5.644 0.009 0.897 0.001 0.022 

1.07E-03 19.785 0.005 0.006 0.861 0.158 

5.89E-04 26.668 0.985 0.082 0.137 0.819 
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Table 11 

Parameter Estimation of Cancer Remission Data 

 

ESTIMATOR 

ML LR WBY RLR 

Multicollinearity 

Intercept 67.634 (56.888) -2.99E-03 (6.76E-03) 66.745 (73.569) -3.06E-03 (6.87E-03) 

LI 3.867 (1.778) 1.34E-03 (8.43E-03) 3.818 (2.238) 1.34E-03 (8.56E-03) 

TEMP -82.074 (61.712) -2.94E-03 (6.72E-03) -80.967 (81.163) -3.02E-03 (6.82E-03) 

CELL 9.652 (7.751) -2.71E-03 (6.44E-03) 9.494 (6.497) -2.77E-03 (6.54E-03) 

Multicollinearity and High Leverage Points 

Intercept -8.752 (6.054) -7.07E-02 (4.90E-02) 51.425 (82.316) -6.593E-03 (1.00E-02) 

LI 2.862 (1.298) -1.07E-02 (6.08E-02) 3.631 (2.331) 4.800E-04 (1.253E-02) 

TEMP 0.716 (1.963) -6.22E-02 (5.22E-02) -62.963 (89.662) -6.501E-03 (9.986E-03) 

CELL 4.408 (5.724) -6.26E-02 (4.62E-02) 6.977 (6.705) -6.039-03 (9.483E-03) 

 

Analyses of Real Data  
 

 RLGD identified two high leverage points in the original data. Cases 14 and 19 have 

RMD-MCD values (7.108, 4.217) while   
 (  )

 values are given as (37.851, 

16.399).Meanwhile, the modified data identified cases (14, 19, 25, 26) as high leverage 

points. Their RMD-MCD values and    
 (  )

 are computed as (6.902, 4.079, 574.714, 

638.440) and (36.496, 15.629, 303918.591, 376423.356). 
 

 The condition number of            and           with ratio          

determined the ill-conditioning in matrix   and information matrix of ML (see Table 9). 

The variance decomposition proportion table shows high correlation between temperature 

variable and the intercept term. In the presence of high leverage points (see Table 10), the 

condition numbers reduce to           and          . It is quite difficult to judge 

as to which variables are correlated from the variance decomposition proportion table. 
 

 The LR is always expected to give the best estimates in multicollinear data. Referring 

to Table 11, the RLR estimates are fairly closer to the LR estimates. On the other hand, 

the ML and the WBY fail to provide good estimates as they have larger values for both 

estimated coefficients and standard errors, while the estimated coefficient of Intercept 

and cell variable change sign. 
 

 A good estimator for multicollinear high leverage points is the one that has smallest 

standard errors and estimated coefficients which are closest to estimated coefficient for 

the LR in multicollinear data. As to be expected, the RLR outperforms other estimators in 

both contamination scenarios. Even though the RLR standard errors are slightly larger 

compared to the LR standard errors in multicollinearity, the RLR estimated coefficients 

are not strayed too far and or changed sign. The WBY estimated coefficients and 

standard errors do not changes much from its previous estimated coefficients and 

standard errors in multicollinear data, but they give faulty inference. Meanwhile, there 

are reductions on the ML standard errors and sign different for estimated coefficients of 

temperature and cell variables. The LR also affected by the presence of high leverage 
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points in correlated data, evident by having larger standard errors and different sign for 

estimated coefficient of li variable compared to the RLR standard errors and estimated 

coefficients in multicollinearity. 

 

8. CONCLUSION 
 

 Many circumstances in logistic regression model encountered a problem of having a 

severe multicollinearity and high leverage points. The proposed RLR technique offers 

substantial improvement over the ML, the WBY, and the LR estimation methods for the 

combined problems of multicollinearity and high leverage points. The findings obtained 

from the simulation study, artificial data and real example indicate that the RLR method 

is the overall best-performing technique. The fully iterated of the robust WBY estimator 

which protects against huge high leverage points in the RLR for severe multicollinearity 

is really pays-off. Using a particularly challenging data with high correlation, the RLR 

properly shrinks the parameter coefficients using ridge parameter, reduce the standard 

errors and uses its robust capability to correctly identify high leverage points. 
 

 As a general remark, we emphasize on the advantages of each estimator. In free 

contamination, the ML is the best estimator, while we suggest using the LR when 

multicollinearity exists in a data. The WBY estimator is designed to tackle the issue of 

the high leverage points by assigning a proper weight to each observation. Meanwhile, 

the RLR estimator provides reliable estimates for multicollinear-high leverage data. As 

we dealing with the logistic regression, all estimators have convergence issue due to a 

higher degree of correlations (       ), a number of high leverage points (    ), a 

number of predictor variables (   ), a number of sample sizes (     ) and a 

number of overlapped cases in (   ) and (   ). 
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