

UNIVERSITI PUTRA MALAYSIA

DENSITY RESILIENT-MODULUS CORRELATION IN STONE MASTIC ASPHALT MIXTURE USING AUTOMATED ROLLER COMPACTOR

EHSAN SOLEIMANI ZADEH

FK 2009 26

DENSITY RESILIENT-MODULUS CORRELATION IN STONE MASTIC ASPHALT MIXTURE USING AUTOMATED ROLLER COMPACTOR

By

EHSAN SOLEIMANI ZADEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Partial Requirements for the Degree of Master of Science

April 2009

DEDICATION

This thesis is dedicated to:

Whom their true love and support were behind my success

My dear parents

Ľ

My beloved brother and sisters

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DENSITY RESILIENT-MODULUS CORRELATION IN STONE MASTIC ASPHALT MIXTURE USING AUTOMATED ROLLER COMPACTOR

By

EHSAN SOLEIMANI ZADEH

April 2009

Chairman: Associate Professor Ratnasamy Muniandy, PhD Faculty: Engineering

Resilient or stiffness modulus (M_R) is the key property that has been utilized to characterize asphalt mixture and other structural properties for flexible pavement design. M_R is generally obtained by testing laboratory compacted samples which are compacted to a density similar to that achieved in the field under traffic. However, resilient modulus test has been considered as a complex, timeconsuming, and expensive experiment. In addition, the poor simulation of field compaction by the present compaction methods may results in less accurate and unrealistic data for pavement design, especially in SMA mixtures. Hence, the main objective of this study was to develop correlation between density and resilient modulus properties of Stone Mastic Asphalt (SMA) slabs compacted using a newly developed roller compactor named Turamesin. Turamesin, which has proven to be iii

capable of simulating field compaction conditions in the laboratory, is also able to produce laboratory samples with desired density and uniformly distributed properties. To come up with research objectives, total numbers of five slabs with different targeted level of air voids were prepared and core specimens were subjected to different tests of bulk density, air voids, resilient modulus (at 25°C and 40°C), Marshall stability, and flow. Statistical methods including regression analysis were then conducted and from the results, it was found that the stiffness properties of Turamesin compacted SMA slabs are directly affected by physical and volumetric properties of mixtures in terms of density and air voids. To correlate density with M_R at 25°C and 40°C, two different equations were developed. These findings then were employed to establish guideline on density-resilient modulus which is included with two main and two imaginary line, making possible to determine M_R of the mixture at any temperature of 25°C, 30°C, 35°C, and 40°C without need to conduct a complex, time-consuming, and expensive resilient modulus test.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KORELASI MODULUS-KENYAL KETUMPATAN DALAM CAMPURAN STONE MASTIC ASPHALT MENGGUNAKAN PEMAMPAT GELEKAN AUTOMATIK

Oleh

EHSAN SOLEIMANI ZADEH

April 2009

Pengerusi: Profesor Madya Ratnasamy Muniandy, PhD Fakulti: Kejuruteraan

Kekenyalan ataupun modulus ketegaran (M_R) ialah suatu ciri penting yang telah digunakan untuk mencirikan campuran asphalt dan juga ciri-ciri struktur yang lain untuk rekaan turapan yang fleksibel. Secara lazim, M_R ialah didapati dengan menguji sampel yang dimampat dalam makmal yang telah dimampatkan sehingga tahap ketumpatan yang sama dengan keadaan sebenar lalulintas. Akan tetapi, ujian modulus kekenyalan disifatkan sebagai ujian yang kompleks, memakan masa yang lama, dan berkos tinggi. Selain itu, simulasi mampatan medan yang tidak utuh menggunakan kaedah mampatan pada waktu kini, mungkin akan menghasilkan data yang kurang jitu dan tidak realistik dalam rekaan turapan, terutamanya dalam campuran SMA. Maka objektif kajian ini ialah untuk mengembangkan korelasi di antara ketumpatan dan modulus kekenyalan kepingan Stone Mastic Asphalt (SMA)

yang dimampatkan pemampat giling yang dinamakan Turamesin. Turamesin, yang terbukti mampu mensimulasi keadaan mampatan terisi di dalam makmal, juga mampu menghasilkan sampel-sampel makmal yang mempunyai ketumpatan yang dikehendaki dan ciri-ciri taburan sekata. Untuk memenuhi objektif penyelidikan, sebanyak lima kepingan dengan sasaran rongga udara yang berbeza telah dibuat dan spesimen-spesimen teras telah menjalani beberapa ujian ketumpatan kontan, rongga udaramodulus kekenyalan (pada suhu 25°C dan 40°C), kestabilan Marshall, dan keberaliran. Kaedah analisis statistical termasuk analisis regression telah dijalankan, dan daripada hasil yang diperolehi, adalah ditemui bahawa ciri-ciri ketegaran sampel campuran SMA yang dimampatkan Turamesin diberi kesan daripada ciri-ciri fizikal dan volumetrik campuran, dari segi ketumpatan dan rongga-rongga udara. Untuk mengkorrelasi ketumpatan dengan M_R pada suhu 25° dan 40° C, dua persamaan yang berbeza telah dikembangkan. Penemuan-penemuan ini kemudiannya digunakan untuk menghasilkan garis panduan bagi modulus ketumpatan-kekenyalan yang disertakan dengan dua satah utama dan dua satah khayalan, memungkinkan pengenalpastian nilai M_R campuran pada sebarang suhu, 25°C, 30°C, 35°C, and 40°C tanpa memerlukan ujikaji modulus yang kompleks, memakan masa dan berkos tinggi.

ACKNOWLEDGEMENTS

In the Name of Allah, Most Gracious, Most Merciful, all praise and thanks are due to Allah, and peace and blessings be upon His Messenger and his relations. I would like to express the most sincere appreciation to those who made this research work possible: Advisory members, Family and Friends.

I wish to express my appreciation to my supervisor Associate Professor Dr. Ratnasamy Muniandy for his encouragement, patience, guidance and critics. I am also very thankful to other members of the supervisory committee, Associate Professor Ir. Salihudin Hassim and Associate Professor Dr. Ahmad Rodzi Mahmud, for their continued support and interest.

Also, I would like to thank my fellows at the Highway and Transportation lab of Civil Engineering department, UPM. The good discussions we had, whether related to pavements or not, made my learning experience much more enjoyable.

Last but not least, I would like to extend my deepest thanks to my parents and members of family for their unconditional love and support. God bless them.

I certify that a Thesis Examination Committee has met on 28 April 2009 to conduct the final examination of Ehsan Soleimani Zadeh on his thesis entitled "Density Resilient-Modulus Correlation in Stone Mastic Asphalt Mixture Using Automated Roller Compactor" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Husaini Omar, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Hussain Hamid, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Jamaloddin Noorzaei, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Vernon Schaefer, PhD

Professor Department of Civil, Construction and Environmental Engineering Iowa State University of Science and Technology USA (External Examiner)

BUJANG KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Ratnasamy Muniandy, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Ir. Salihudin Hassim

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Ahmad Rodzi Mahmud, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 July 2009

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

EHSAN SOLEIMANI ZADEH

Date: 16 June 2009

TABLE OF CONTENTS

			Page
D	EDIC	ATION	ii
A]	BSTR	RACT	iii
A	BSTR	XAK	V
ACKNOWLEDGEMENTS APPROVAL DECLARATION LIST OF TABLES LIST OF FIGURES		vii viii	
			X
		X111	
			IST C
L	IST C	OF ABBREVIATIONS	X1X
C	HAP	ΓER	1
1	INT	RODUCTION	1
	1.1	General Background	1
	1.2	Problem Statement	5
	1.3	Objectives of Study	7
	1.4	Scope and Limitation	7
	1.5	Thesis Layout	9
2	LIT	10	
	2.1	Introduction	10
	2.2	Asphalt Mix Design Method	10
	2.3	Current Asphalt Mix Compaction Criteria	14
		2.3.1 Definition of the Compacted State	15
		2.3.2 Factors Affecting Compaction	16
	2.4	Compaction Methods and Equipments	20
		2.4.1 Conventional Methods of Compaction	20
		2.4.2 State of the Art Method of Compaction	27
		2.4.3 Limitation of Current Methods	32
		2.4.4 Various Compaction Equipments	33
	2.5	Field Compaction	40
	2.6	Density-Resilient Modulus Relationship	44
		2.6.1 Density	44
		2.6.2 Resilient Modulus	46
	2.7	Stone Mastic Asphalt (SMA) and Specifications	54
		2.7.1 Background	54
	•	2.7.2 SMA Specifications	56
	2.8	Characterization of Asphalt Mixtures	58
		2.8.1 Bulk Density and Air Voids	59
	2.0	2.8.2 Marshall Stability and Flow	60
	2.9	Statistical Analysis	6l
		2.9.1 Descriptive statistics	61 (2
		2.9.2 Hypothesis Testing	63 (F
	2 10	2.9.5 Kegression Analysis	00
	2.10	Summary	0/

3	ME'	THOD	OLOGY	69
	3.1	Introd	uction	69
	3.2	Mater	ials and Testing Procedures	70
		3.2.1	Physical Properties of Materials	71
		3.2.2	Marshal Mix Design Analysis	75
		3.2.3	Determination of Theoretical Maximum Density (TMD)	84
	3.3	Exper	imental Programs	86
		3.3.1	Slab Preparation Using Turamesin	87
		3.3.2	Sampling of Cylindrical Core Specimens	89
		3.3.3	Performance Tests and Analysis of SMA Slab Core	91
			Specimens	
4	RES	SULT A	AND DISCUSSION	97
	4.1	Introd	uction	97
	4.2	Mater	ials and Testing Procedures Result and Analysis	97
		4.2.1	Material Physical Property Test Results and Analysis	98
		4.2.2	Marshall Mix Design Analysis and Results	109
	4.3	Exper	imental Programs Results and Analysis	115
		4.3.1	Slab Preparation Results and Analysis	116
		4.3.2	Performance Tests - Bulk Density and Air Void Results and Analysis	122
		4.3.3	Performance Tests - Resilient Modulus Results and Analysis	128
		4.3.4	Performance Tests - Marshall Stability and Flow Results	133
			and Analysis	133
		4.3.5	Correlation Analysis of Density-Resilient Modulus	136
		4.3.6	Guideline Establishment on Density-Resilient Modulus	152
5	CONCLUSION			160
	5.1	Concl	usions	160
	5.2	Recon	nmendations	162
RI	EFER	RENCE	S	164
AI	APPENDICES 1			171
BI	ODA	TA OF	' STUDENT	193

xii

Table	Page
2.1. Factors Affecting Compaction	17
2.2. Marshall Mix Design Criteria	22
2.3. Effect of Compaction on Asphalt Concrete Modulus	52
2.4. Gradation Target Value Ranges for SMA	57
2.5. SMA Mixture Requirements for Marshall Compacted Designs	58
2.6. Typical Values of Standard Deviation of Test Results of Bituminous Mixtures during Paving Projects	63
2.7. Subjective Classification of the Goodness-of-fit Statistical Parameters	67
3.1. Physical Property Tests for Aggregates	72
3.2. Asphalt Binder Tests and Objectives	73
3.3. Characteristics of Palletized Cellulose Fiber (Viatop 80-20)	75
3.4. Minimum Sample Size Requirement for Maximum Theoretical Specific Gravity (ASTM D2041)	85
3.5. Indirect Tensile Stiffness Modulus Parameter	92
4.1. Los Angeles Abrasion Test Results	99
4.2. Aggregate Impact Value Test Results	100
4.3. Aggregate Crushing Value Test Results	100
4.4. Flakiness Index Test Results	101
4.5. Elongation Index Test Results	102
4.6. Aggregate Specific Gravity Test Results	102
4.7. Soundness Test Results	103
4.8. Summary of Aggregate Test Results	104
4.9. Aggregate Gradation	105
4.10. Summary of Test Results for Binder Grade 60/70	106 xiii

4.11. Oil-Fiber Draindown Test	108
4.12. Aggregate Weight Analysis for Marshall Samples	110
4.13. Binder Weight Analysis for Marshall Samples	110
4.14. Theoretical Maximum Density (TMD) Analysis (Rice Method)	110
4.15. Results of the Marshall Mix Design Analysis	112
4.16. Summary of Marshall Mix Design Analysis	114
4.17. Optimum Mixture Characteristics	115
4.18. Weight Calculation Analysis for Slab Preparation	116
4.19. Determination of Aggregate Weight Proportion for Different Slabs	117
4.20. Summary of Slab Preparation and Compaction Monitoring	118
4.21. Thickness Analysis of SMA Slabs	120
4.22. Bulk Density and Air Voids Analysis	123
4.23. Summary of Bulk Density and Air Voids Analysis	124
4.24. Summary of One-Sample t-Test Analysis for Air Voids	126
4.25. Resilient Modulus Analysis at 25 and 40°C	130
4.26. Summary of Resilient Modulus Analysis at 25 and 40°C	131
4.27. Marshall Stability and Flow Analysis	134
4.28. Summary of Marshall Stability and Flow Analysis	135
4.29. Density and Resilient Modulus Test Results	138
4.30. Summary of Regression Analysis of Density and Resilient Modulus	153
4.31. Shift Factor Calculation for Resilient Modulus	157
A.1. Critical Values of the t-Distribution	172
A.2. Critical Values of the F-Distribution	173
C.1. Marshall Stability Correlation Ratio	182
E.1. Data for Temperature and Pressure Monitoring During Compaction	188 xiv

LIST OF FIGURES

Figure	Page
1.1. Expenditure on Road Development Plans in Malaysia, 1966-2005	2
2.1. Marshall Impact Compactor	21
2.2. California Kneading Compactor	24
2.3. Gyratory Compactor	25
2.4. Voids Distribution in a SGC Specimen	27
2.5. European Standard Roller Compactor	30
2.6. Comparative Studies of Relative Stiffness of Several Laboratory Compactions Due to Field Compaction	31
2.7. Linear Kneading Compactor	34
2.8. French Plate Compactor	35
2.9. The Overall Layout of the BP Slab Compactor	37
2.10. Turamesin	39
2.11. Correlation between Compactive Efforts and Physical Properties of the Compacted Slabs	40
2.12. Static Steel-Wheel Roller	41
2.13. Pneumatic-Tire Roller	42
2.14. Vibratory Compactor	43
2.15. Strains under repeated loads	47
2.16. Indirect Tension Test for Resilient Modulus	49
2.17. Correlation Charts for Estimating Resilient Modulus of HMA	53
2.18. Resilient Modulus vs. Air Void Content	54
2.19. Major Components of SMA Mixture	55
2.20. Comparisons between SMA vs. Conventional HMA	56
2.21. Voids in a Compacted HMA Mixture	59 xvi

3.1. Research Test Plan Flow Chart	70
3.2. Sample Preparation for Marshall Mix Design	78
3.3. Illustration of Air Voids and Voids in Mineral Aggregate	81
3.4. Marshall Stability and Flow Test	83
3.5. Test Procedures for Rice Method	86
3.6. Slab Marking and Labeling Plan	89
3.7. Sampling of Cylindrical Core Specimens from Tura SMA Slab	91
3.8. Indirect Tensile Stiffness Modulus Test Sequence	94
3.9. Marshall Stability and Flow Test Procedures	95
4.1. Aggregate Gradation on 0.45 Power Gradation Chart	105
4.2. Log-Normal Viscosity-Temperature Plot	107
4.3. Oil-Fiber Draindown Plot	108
4.4. Marshall Mix Design Analysis Plots	113
4.5. Aggregate Proportion for Different Sieve Size	117
4.6. Temperature vs. Number of Roller Passes	119
4.7. Average Slabs Thicknesses at Left and Right Sides	121
4.8. Achieved level of Density and Air Voids in Different Slabs	124
4.9. Variation of Air Voids in Different Slabs	127
4.10. Average Resilient Modulus Variation in Different Slabs	132
4.11. Plot of Marshall Stability and Flow Analysis	136
4.12. Scatter Plot of the Density and Resilient Modulus Data Points	140
4.13. Density-Resilient Modulus (25°C) Regression Analysis	142
4.14. Residual Plots for Regression Analysis of Resilient Modulus (25°C)	145
4.15. Scatter Plot of Resilient Modulus vs. Density (at 25°C)	146
4.16. Scatter Plot of the Density and Resilient Modulus Data Points	147 xvii

4.17. Density-Resilient Modulus (40°C) Regression Analysis	150
4.18. Residual Plots for Regression Analysis of Resilient Modulus (25°C)	151
4.19. Scatter Plot of Resilient Modulus vs. Density (at 40°C)	151
4.20. Illustration of Slope and Intercept for Regression Lines	154
4.21. Prediction Chart for Resilient Modulus	155
4.22. Prediction Chart for Resilient Modulus - Density	159
C.1. Determination of Optimum Mixture Characteristics	183
F.1. Normality Tests Analysis for Achieved Air Voids of Turamesin Compacted Slab Cores	191
F.2. Histogram Plots for Regression Analysis Variables	192

LIST OF ABBREVIATIONS

AASHTO	American Association of State Highway and Transportation Officials	
AC	Asphalt Concrete	
ANOVA	Analysis of Variance	
ASTM	American Society for Testing and Materials	
BS	British Standard	
COV	Coefficient of Variation	
HMA	Hot Mix Asphalt	
ITSM	Indirect Tensile Stiffness Modulus	
JMF	Job Mix Formula	
LCPC	Laboratoire Central des Ponts et Chaussees	
LVDT	Linear Variable Differential Transducer	
MATTA	Material Testing Apparatus	
NAPA	National Asphalt Pavement Association	
OAC	Optimum Asphalt Content	
RMSE	Root Mean Square Error	
SGC	Superpave Gyratory Compactor	
SLR	Simple Linear Regression	
SMA	Stone Mastic Asphalt	
SSD	Saturated Surface Dry	
TMD	Theoretical Maximum Density	
TRB	Transportation Research Board	
UPM	Universiti Putra Malaysia	
VFA	Voids Filled with Asphalt	
	xix	

- VMA Voids in Mineral Aggregates
- VTM Voids in Total Mix
- M_R Resilient Modulus
- R² Coefficient of Determination
- *s* Sample Standard Deviation
- \overline{x} Sample Average

CHAPTER 1

INTRODUCTION

1.1 General Background

The provision of infrastructures of which road network plays a significant and fundamental role is essential in today's world of globalization to increase the nation's competitiveness across the region. In Malaysia, the road network forms the bloodline of the country's economic activities carrying about 96% of transported goods and passengers (Dato' Sri Prof. Ir. Dr. Judin Abdul Karim, 2008). The main and most important mode of transportation in Malaysia is mostly by road which is affected by country's geographical feature. The annual number of passengers transported by private cars and buses in 2003 is 1,836 million and 850 million persons, respectively. The share of road transport of passengers comprises 64.8% by private car and 30.0% by bus, as compared to 4.7% by rail transport and 0.5% by air transport (Ahmad & Azmi, 2008).

Malaysia with an entire land area of 330,252 km² is linked by 87,025 km of roads in 2007, which about 67,851 km is paved, and 19,174 km unpaved. Comparing this to the year 2002, there is an increase of about 20% on total road networks only during last five years (Economic Planing Unit, 2008). Since the formation of Malaysia in 1963, road development as one of the consequential elements for the extensive economic and social development of the country was included in subsequent 5-year national development plans. Figure 1.1 shows the growth in the expenditure on road development plans which is plotted from 1966 to 2005 (Ahmad & Azmi, 2008).

Together with development of road network, number of vehicle ownership has been increased dramatically, averaging 8% per annum from 7.7 million in 1996 to 12.8 million vehicles in 2003. This had caused into an increase in the number of road accidents from 189,109 cases in 1996 to 298,651 cases in 2003 (Isa, 2004). Due to this increase in road accidents, the need for safer, smoother, more comfortable, and lasting longer roads is greater than ever, which has led to demand for more durable, stronger and environmentally friendlier pavements, especially in terms of asphalt mixtures.

Figure 1.1. Expenditure on Road Development Plans in Malaysia, 1966-2005 (Source: Ahmad & Azmi, 2008)

As we are entering the new millennium, the global demands on transportation funding and highway network are greater than ever. These demands, together with increasing public expectations for safety, quality, and performance, call for highway authorities to come up with new and efficient techniques in designing and constructing of roads. During recent years, philosophy in flexible pavement design has been gradually changed from the more empirical method to the mechanistic approach based on elastic theory (Mamlouk & Sarofim, 1988). The "AASHTO

Mechanistic-Empirical Pavement Design Guide" (M-E Design Guide) was released in 2004 with the goal of improving the existing pavement design procedures. The M-E Design Guide transitions from the existing empirical-based pavement design procedures to mechanistic-empirical based procedures (Massachusetts Highway Department, 2006).

Elastic properties of asphalt pavements are widely used for pavement evaluation and maintenance. Design methods which are based upon elastic theory need the elastic properties of pavement materials as input. Resilient modulus measured in the indirect tensile mode according to ASTM D-4123 "Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixtures" is the most well known form of stress-strain measurement used to evaluate elastic properties. Also, resilient modulus is used as an index for evaluation of stripping, fatigue, and low temperature cracking of asphalt mixtures (Brown & Foo, 1989).

Pavement mix design procedures are usually derived from laboratory experiments, since laboratory conditions are less time consuming and easy to control. However, laboratory experiments should be able to simulate to a high degree the conditions in the field, especially in term of compaction procedures of asphalt mixtures (Khan et al., 1998). Laboratory compaction is an important part of asphalt mix design and the method of compaction significantly affects engineering properties of Asphalt mixture such as bulk density and air voids. The amount of voids in an asphalt mixture is probably the single most important factor that affects performance throughout the life of an asphalt pavement. The voids are primarily controlled by asphalt content, compactive effort during construction, and additional compaction under traffic. The

3

voids in an asphalt mixture are directly related to density; thus, density must be closely controlled to ensure that the voids stay within an acceptable range (Brown, 1990).

Due to its performance and excellent resistance to deformation, Stone Mastic Asphalt (SMA) is rapidly getting to be used all over the world and it seems that almost all of the road agencies are changing over to it. SMA is a gap-graded mix, which contains a high concentration of coarse aggregate, thereby maximizing stone-to-stone contact in the mix and providing an efficient network for load distribution. The coarse aggregate particles are held together by rich mastic of mineral filler, fiber, and polymer in a thick asphalt film. Based on a combination of Georgia Department of Transportation and European experience, SMA has proven to have the following intrinsic benefits (Georgia Department of Transportation, 2003):

- 30-40% less rutting than standard mixes;
- Three to five times greater fatigue life in laboratory experiments;
- 30-40% longer service life (in Europe); and
- Lower annualized cost.

The performance of asphalt concrete (AC) pavements is a function of different parameters such as traffic loading and volume, the environment, the engineering properties of underlying layers, and the characteristics of asphalt mixtures. Understanding the behavior of the AC mixtures under different environmental conditions and loading is important for efficient design and maintenance of pavements. Inappropriate characterization of the asphalt layer may lead to under-

4