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Resilient or stiffness modulus (MR) is the key property that has been utilized to 

characterize asphalt mixture and other structural properties for flexible pavement 

design. MR is generally obtained by testing laboratory compacted samples which 

are compacted to a density similar to that achieved in the field under traffic. 

However, resilient modulus test has been considered as a complex, time-

consuming, and expensive experiment. In addition, the poor simulation of field 

compaction by the present compaction methods may results in less accurate and 

unrealistic data for pavement design, especially in SMA mixtures. Hence, the main 

objective of this study was to develop correlation between density and resilient 

modulus properties of Stone Mastic Asphalt (SMA) slabs compacted using a newly 

developed roller compactor named Turamesin. Turamesin, which has proven to be 
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capable of simulating field compaction conditions in the laboratory, is also able to 

produce laboratory samples with desired density and uniformly distributed 

properties. To come up with research objectives, total numbers of five slabs with 

different targeted level of air voids were prepared and core specimens were 

subjected to different tests of bulk density, air voids, resilient modulus (at 25°C and 

40°C), Marshall stability, and flow. Statistical methods including regression 

analysis were then conducted and from the results, it was found that the stiffness 

properties of Turamesin compacted SMA slabs are directly affected by physical and 

volumetric properties of mixtures in terms of density and air voids. To correlate 

density with MR at 25°C and 40°C, two different equations were developed. These 

findings then were employed to establish guideline on density-resilient modulus 

which is included with two main and two imaginary line, making possible to 

determine MR of the mixture at any temperature of 25°C, 30°C, 35°C, and 40°C 

without need to conduct a complex, time-consuming, and expensive resilient 

modulus test. 
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Kekenyalan ataupun modulus ketegaran (MR) ialah suatu ciri penting yang telah 

digunakan untuk mencirikan campuran asphalt dan juga ciri-ciri struktur yang lain 

untuk rekaan turapan yang fleksibel. Secara lazim, MR ialah didapati dengan 

menguji sampel yang dimampat dalam makmal yang telah dimampatkan sehingga 

tahap ketumpatan yang sama dengan keadaan sebenar lalulintas. Akan tetapi, ujian 

modulus kekenyalan disifatkan sebagai ujian yang kompleks, memakan masa yang 

lama, dan berkos tinggi. Selain itu, simulasi mampatan medan yang tidak utuh 

menggunakan kaedah mampatan pada waktu kini, mungkin akan menghasilkan data 

yang kurang jitu dan tidak realistik dalam rekaan turapan, terutamanya dalam 

campuran SMA. Maka objektif kajian ini ialah untuk mengembangkan korelasi di 

antara ketumpatan dan modulus kekenyalan kepingan Stone Mastic Asphalt (SMA) 
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yang dimampatkan pemampat giling yang dinamakan Turamesin. Turamesin, yang 

terbukti mampu mensimulasi keadaan mampatan terisi di dalam makmal, juga 

mampu menghasilkan sampel-sampel makmal yang mempunyai ketumpatan yang 

dikehendaki dan ciri-ciri taburan sekata. Untuk memenuhi objektif penyelidikan, 

sebanyak lima kepingan dengan sasaran rongga udara yang berbeza telah dibuat 

dan spesimen-spesimen teras telah menjalani beberapa ujian ketumpatan kontan, 

rongga udaramodulus kekenyalan (pada suhu 25°C dan 40°C), kestabilan Marshall, 

dan keberaliran. Kaedah analisis statistical termasuk analisis regression telah 

dijalankan, dan daripada hasil yang diperolehi, adalah ditemui bahawa ciri-ciri 

ketegaran sampel campuran SMA yang dimampatkan Turamesin diberi kesan 

daripada ciri-ciri fizikal dan volumetrik campuran, dari segi ketumpatan dan 

rongga-rongga udara. Untuk mengkorrelasi ketumpatan dengan MR pada suhu 25o 

dan 40o C, dua persamaan yang berbeza telah dikembangkan. Penemuan-penemuan 

ini kemudiannya digunakan untuk menghasilkan garis panduan bagi modulus 

ketumpatan-kekenyalan yang disertakan dengan dua satah utama dan dua satah 

khayalan, memungkinkan pengenalpastian nilai MR campuran pada sebarang suhu, 

25°C, 30°C, 35°C, and 40°C tanpa memerlukan ujikaji modulus yang kompleks, 

memakan masa dan berkos tinggi. 
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CHAPTER 1 

1 INTRODUCTION              
 

1.1 General Background 
 

The provision of infrastructures of which road network plays a significant and 

fundamental role is essential in today's world of globalization to increase the nation's 

competitiveness across the region. In Malaysia, the road network forms the bloodline 

of the country’s economic activities carrying about 96% of transported goods and 

passengers (Dato' Sri Prof. Ir. Dr. Judin Abdul Karim, 2008). The main and most 

important mode of transportation in Malaysia is mostly by road which is affected by 

country’s geographical feature. The annual number of passengers transported by 

private cars and buses in 2003 is 1,836 million and 850 million persons, respectively. 

The share of road transport of passengers comprises 64.8% by private car and 30.0% 

by bus, as compared to 4.7% by rail transport and 0.5% by air transport (Ahmad & 

Azmi, 2008).  

 

Malaysia with an entire land area of 330,252 km2 is linked by 87,025 km of roads in 

2007, which about 67,851 km is paved, and 19,174 km unpaved. Comparing this to 

the year 2002, there is an increase of about 20% on total road networks only during 

last five years (Economic Planing Unit, 2008). Since the formation of Malaysia in 

1963, road development as one of the consequential elements for the extensive 

economic and social development of the country was included in subsequent 5-year 

national development plans. Figure 1.1 shows the growth in the expenditure on road 

development plans which is plotted from 1966 to 2005 (Ahmad & Azmi, 2008). 



Together with development of road network, number of vehicle ownership has been 

increased dramatically, averaging 8% per annum from 7.7 million in 1996 to 12.8 

million vehicles in 2003. This had caused into an increase in the number of road 

accidents from 189,109 cases in 1996 to 298,651 cases in 2003 (Isa, 2004). Due to 

this increase in road accidents, the need for safer, smoother, more comfortable, and 

lasting longer roads is greater than ever, which has led to demand for more durable, 

stronger and environmentally friendlier pavements, especially in terms of asphalt 

mixtures. 

 

 
 

Figure  1.1. Expenditure on Road Development Plans in Malaysia, 1966-2005 
(Source: Ahmad & Azmi, 2008) 

 

As we are entering the new millennium, the global demands on transportation 

funding and highway network are greater than ever. These demands, together with 

increasing public expectations for safety, quality, and performance, call for highway 

authorities to come up with new and efficient techniques in designing and 

constructing of roads. During recent years, philosophy in flexible pavement design 

has been gradually changed from the more empirical method to the mechanistic 

approach based on elastic theory (Mamlouk & Sarofim, 1988). The “AASHTO 

2 
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Mechanistic-Empirical Pavement Design Guide” (M-E Design Guide) was released 

in 2004 with the goal of improving the existing pavement design procedures. The M-

E Design Guide transitions from the existing empirical-based pavement design 

procedures to mechanistic-empirical based procedures (Massachusetts Highway 

Department, 2006).  

 

Elastic properties of asphalt pavements are widely used for pavement evaluation and 

maintenance. Design methods which are based upon elastic theory need the elastic 

properties of pavement materials as input. Resilient modulus measured in the indirect 

tensile mode according to ASTM D-4123 “Standard Test Method for Indirect 

Tension Test for Resilient Modulus of Bituminous Mixtures” is the most well known 

form of stress-strain measurement used to evaluate elastic properties. Also, resilient 

modulus is used as an index for evaluation of stripping, fatigue, and low temperature 

cracking of asphalt mixtures (Brown & Foo, 1989). 

 

Pavement mix design procedures are usually derived from laboratory experiments, 

since laboratory conditions are less time consuming and easy to control. However, 

laboratory experiments should be able to simulate to a high degree the conditions in 

the field, especially in term of compaction procedures of asphalt mixtures (Khan et 

al., 1998). Laboratory compaction is an important part of asphalt mix design and the 

method of compaction significantly affects engineering properties of Asphalt mixture 

such as bulk density and air voids. The amount of voids in an asphalt mixture is 

probably the single most important factor that affects performance throughout the life 

of an asphalt pavement. The voids are primarily controlled by asphalt content, 

compactive effort during construction, and additional compaction under traffic. The 
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voids in an asphalt mixture are directly related to density; thus, density must be 

closely controlled to ensure that the voids stay within an acceptable range (Brown, 

1990). 

 

Due to its performance and excellent resistance to deformation, Stone Mastic Asphalt 

(SMA) is rapidly getting to be used all over the world and it seems that almost all of 

the road agencies are changing over to it. SMA is a gap-graded mix, which contains a 

high concentration of coarse aggregate, thereby maximizing stone-to-stone contact in 

the mix and providing an efficient network for load distribution. The coarse 

aggregate particles are held together by rich mastic of mineral filler, fiber, and 

polymer in a thick asphalt film. Based on a combination of Georgia Department of 

Transportation and European experience, SMA has proven to have the following 

intrinsic benefits (Georgia Department of Transportation, 2003): 

 

• 30-40% less rutting than standard mixes; 

• Three  to five times greater fatigue life in laboratory experiments; 

• 30-40% longer service life (in Europe); and  

• Lower annualized cost. 

 

The performance of asphalt concrete (AC) pavements is a function of different 

parameters such as traffic loading and volume, the environment, the engineering 

properties of underlying layers, and the characteristics of asphalt mixtures. 

Understanding the behavior of the AC mixtures under different environmental 

conditions and loading is important for efficient design and maintenance of 

pavements. Inappropriate characterization of the asphalt layer may lead to under-


