

UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION OF DIGITAL ELECTRONIC CIRCUIT STRUCTURE DESIGN USING GENETIC ALGORITHM

CHONG KOK HEN

FK 2008 82

OPTIMIZATION OF DIGITAL ELECTRONIC CIRCUIT STRUCTURE DESIGN USING GENETIC ALGORITHM

By

CHONG KOK HEN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

November 2008

This work is special dedicated to my wife Kheng Siew, my daughter Yu En and my son Kai Qian with love...

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctorate of Philosophy

OPTIMIZATION OF DIGITAL ELECTRONIC CIRCUIT STRUCTURE DESIGN USING GENETIC ALGORITHM

By

CHONG KOK HEN

November 2008

Chairman: Associate Professor Ishak Aris, PhD

Faculty: Engineering

The complexity of the digital electronic circuit is due to the number of gates used per system as well as the interconnection of the gates. Diminution of the total number of gates used and interconnection in the system would reduce the cost in the design, as well as increasing the efficiency of the overall system. As a result, the higher integration level, the better and the cheaper final product produced.

The conventional digital circuit design method is based on Boolean algebra. There are no specific procedure to choose the right theorem or postulate for the Boolean expression simplification and it is very impractical to design the digital circuits that have more than four variable. Karnaugh map can provide the simple minimization process for Boolean expression, but it encounters difficulties when the variable is more than four.

In this research, Genetic Algorithm (GA) technique is used as a tool to search for the optimal solution for the digital circuit structure. The GA process (Inter Loop GA), crossover operator (Fix Multiple Point Crossover), mutation operator (Random Discrete Mask Mutation) and fitness function (Constraint Fitness and Gate Optimization Fitness) were developed in this research.

The simulator called Optimal Digital Circuit Structure Designer (ODCSD) is also developed in this work. ODCSD is a digital circuit structure design simulation program. Further more, a prototype hardware has been designed and constructed to test the success chromosome string, which called as GA based Logic Implementer (GALI). GALI is programmed by the success chromosome bits obtained from the simulation phase. This chromosome bits are used to set up the gates arrangement in the hardware.

A number of experiments are implemented to design 3-bit, 4-bit, 5-bit and 6-bit circuits. The results show that the proposed method is able to produce the optimized circuit with lesser number of gates compared to the conventional methods. In the future development, the proposed system can be used as the discrete controller when it implemented in the process control application.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGOPTIMAKAN REKABENTUK STRUKTUR LITAR ELEKTRONIK DIGIT DENGAN MENGGUNAKAN ALGORITMA GENETIK

Oleh

CHONG KOK HEN

November 2008

Pengerusi: Profesor Madya Ishak Aris, PhD

Fakulti: Kejuruteraan

Tahap kompleks sesebuah litar elektronik adalah bergantung kepada jumlah get logik yang digunakan dalam satu sistem dan juga litar penyambungan diantaranya. Dengan mengurangkan bilangan get logik dan meringkaskan litar penyambungan di dalam sistem tersebut, kos rekabentuk boleh dikurangkan, disamping meningkatkan kecekapan kepada keseluruhan sistem. Oleh itu, produk dengan tahap integrasi yang lebih tinggi dan murah boleh dihasilkan.

Cara konvensional untuk merekabentuk litar digit adalah menggunakan algebra Boolean. Tidak ada prosedur yang tertentu untuk memilih teorem yang betul untuk meringkaskan penyataan Boolean dan ia juga tidak sesuai digunakan untuk merekabentuk litar digit yang lebih dari empat pembolehubah. Peta Karnaugh memberikan proses ringkasan yang

senang bagi penyataan Boolean, tetapi ia mengalami kerumitan jika pembolehubah melebihi empat.

Dalam kajian ini, teknik algoritma genetik telah digunakan untuk mencari penyelesaian yang optima bagi struktur litar digit. Tesis ini telah memperkenalkan kajian tentang proses algoritma genetik (Inter Loop Genetic Algorithm), operator penyebrangan (Fix Multiple Point Crossover), operator mutasi (Random Discrete Mask Mutation) dan fungsi ketahanan (Constraint Fitness and Gate Optimization Fitness).

Tesis in juga memperkenalkan simulator "Optimal Digital Circuit Structure Designer" (ODCSD). ODCSD ialah program simulasi untuk mereka litar digit. Selain dari itu, sebuah perkakasan model percubaan telah direkabentuk dan dibina untuk menguji kromosom yang berjaya; model ini dipanggil GA based Logic Implementer (GALI). GALI diprogram oleh bit kromosom yang berjaya di fasa simulasi. Bit-bit kromosom ini digunakan untuk mensetkan susunan get pada perkakasan ini.

Ujikaji-ujikaji yang telah dilaksanakan untuk mereka bentuk struktur litar digit berbit 3, berbit 4, berbit 5 dan berbit 6. Keputusan ujikaji menunjukkan bahawa cara ini dapat menghasilkan struktur litar dengan bilangan get logik yang kurang dibandingkan dengan cara rekabentuk konvensional. Sistem ini boleh digunakan sebagai pengawal diskrik jika ia digunakan dalam bidang kawalan proses di masa depan.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my project supervisor, Prof Madya Dr. Ishak for his valuable advises, guidance and willingness to share his expertise knowledge.

I would also like to thank my project co-supervisor Prof Madya Dr. Senan and Prof Madya Dr. Hamiruce for their valuable opinions and guidance and checking the accuracy of my entire project.

I have also indebted to the Faculty of Engineering staff for providing the equipment's suggestion and valuable aid to carry out this project.

Special thanks to my beloved wife, Kheng Siew for her patience, encouragements and continuous support.

I certify that a Thesis Examination Committee has met on 24 November 2008 to conduct the final examination of Chong Kok Hen on his thesis entitled "Optimization of Digital Electronic Circuit Structure Design Genetic Algorithm" in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee are as follows:

Samsul Bahari Mohd Noor, PhD

Lecturer Faculty of Engineering, Universiti Putra Malaysia (Chairman)

Roslina bt. Mohd Sidek, PhD

Associate Professor Faculty of Engineering, Universiti Putra Malaysia (Internal Examiner)

Abdul Rahman Ramli, PhD

Associate Professor Faculty of Engineering, Universiti Putra Malaysia (Internal Examiner)

Mohd Rizal Arshad, PhD

Associate Professor Faculty of Engineering, Universiti Sains Malaysia (External Examiner)

BUJANG KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 19 March 2009

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Ishak Aris, PhD

Associate Professor Faculty of Engineering, Universiti Putra Malaysia (Chairman)

Sinan Mahmod, PhD

Associate Professor Faculty of Engineering, Universiti Putra Malaysia (Member)

Mohd Hamiruce, PhD

Associate Professor Faculty of Engineering, Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD Professor and Dean, School of Graduate Studies, Universiti Putra Malaysia

Date: 9 April 2009

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CHONG KOK HEN

Date: 24 December 2007

TABLE OF CONTENTS

Page

ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	XX

CHAPTER

1

INTI	RODUCTION	
1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objectives of the Research	6
1.4	Research Scope	7
1.5	Overview of the Research	8
1.6	Research Contributions	9
1.7	Thesis Layout	10

2 LITERATURE REVIEW

	0.1		
2.1	Other	Conventional Optimization Algorithms	12
2.2	Genet	ic Algorithm (GA)	15
2.3	The Si	imple Genetic Algorithm	18
	2.3.1	The Initial Population Representation	19
	2.3.2	The Objective and Fitness Functions Operator	21
	2.3.3	The Selection Operator	21
	2.3.4	The Crossover Operator	23
	2.3.5	The Mutation Operator	26
	2.3.6	Reinsertion	27
	2.3.7	Crossover and Mutation Rate	28
2.6	The R	eviews of Digital Circuit Optimization Design	28
2.7	Some	related works in Digital Circuit Design using EA	30
2.8	Evolu	tionary Tools for Digital Circuit Design	35
	2.8.1	Functional Level Representation	35
		2.8.1.1 Sum of Product Representation	35
		2.8.1.2 ALU Representation	36
		2.8.1.3 Multiplexer Representation	36
	2.8.2	Gate Level Representation	37
	2.8.3	Transistor Level Representation	38

2.9	Fitness Evaluation Function	38
	2.9.1 Functional Level	38
	2.9.2 Gate Level	39
	2.9.3 Transistor Level	39
2.10	MATLAB's Genetic Algorithm and	
	Direct Search Toolbox	40
2.11	Summary	40

3 METHODOLOGY

3.1	Introduction	42
3.2	The Design Procedures of the Proposed Method	43
3.3	Circuit Structure	79
3.4	The Encoding of the Circuit Structure	53
3.5	The Generation of Initial Population	56
	3.5.1 Random Bit Population Generation	57
	3.5.2 Specify Bit Population Generation	59
3.6	The Digital Structure Design	60
3.7	The Fitness Evaluation	64
3.8	Selection Process	67
3.9	Crossover Process	70
	3.9.1 Fix-Multiple Point Crossover (F-MPX)	71
3.10	Mutation Process	74
	3.10.1 Random Discrete Mask Mutation (RDMM)	75
3.11	Decoding Process	77
3.12	Optimal Digital Circuit Structure Designer (ODCSD)	86
	3.12.1 The Design of ODCSD	86
	3.12.2 The Control Panel of 4-bit ODCSD	88
	3.12.3 The Architecture of ODCSD	90
3.13	Hardware Design and Construction	96
	3.13.1 The Design of Gate Selector (GS)	98
	3.13.2 The Operation of GALI	102
3.14	Summary	108

4 **RESULT AND DISCUSSION**

4.1	Introd	uction	110
4.2	The Se	election of GA Parameters	111
	4.2.1	The Selection of Number of Population	112
	4.2.2	The Selection of Crossover Rate	115
	4.2.3	The Selection of Mutation Rate	117
	4.2.4	The Selection of Number of Inter Loop	119
4.3	3-Bit	Digital Circuit Structures Experiment	121
	4.3.1	Design 3-1: $F(a, b, c) = \sum (0, 3, 4, 5, 6)$	126
	4.3.2	Results Comparison of the 3-bit Digital	
		Circuit Designed by the Proposed Method to	
		other GA Method	133

	4.4	4-Bit Digital Circuit Structures Experiment	135
		4.4.1 Design 4-1: $F(a, b, c, d) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1$	127
		2(0, 1, 0, 7, 10, 11, 12, 13)	157
		Circuit between the Proposed Method and	
		other GA Methods	145
	4 5	5-Bit Digital Circuit Structures Experiment	147
	1.0	4.5.1 Design 5-1: $F(a \ b \ c \ d \ e) = \Sigma(1 \ 2 \ 4 \ 7 \ 8 \ 11)$	11,
		13. 14. 16. 19. 21. 22. 25. 26. 28. 31)	150
	4.6	6-Bit Digital Circuit Structures Experiment	157
		4.6.1 Design 6-1: F(a, b, c, d, e, f) = $\Sigma(0, 3, 5, 6, 9, 10, 10)$	
		12, 15, 17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36,	
		39, 40, 43, 45, 46, 48, 51, 53, 54, 57, 58, 60, 63)	159
		4.6.2 Comparison Results for 6-bit digital circuit	
		design between the Proposed Method and	
		Mentor Graphic	170
	4.7	Comparison Results for 6-bit digital circuit design	
		between the Proposed Method and Quine McCluskey	174
	4.8	Summary	178
5	CON	CLUSION AND SUGGESTION FOR FUTURE WORK	
	5.1	Conclusion of the Research	179
	5.2	Future Recommendation of the Research	182
REFERENC	CES		183
BIODATA (OF THE	STUDENT	190
APPENDIC	APPENDICES A 19		

LIST OF TABLES

Table		Page
2.1	Chromosomes in the Population	21
2.2	Crossover of two Chromosome Strings	26
2.3	Mutation of two Chromosome Strings	28
3.1	Length of the Bit Representation for the Encoding Process	55
3.2	Logic Gate Representation	57
3.3	Current Population	78
3.4	Random Discrete Mask (RDM)	78
3.5	Mutation Pool (MP)	78
3.6	The Combination of RDM and MP	78
3.7	New Mutated Population	78
3.8	Decode of G ₁	80
3.9	Decode of G ₂	80
3.10	Decode of G ₃	81
3.11	Decode of G ₄	81
3.12	Decode of G ₅	82
3.13	Decode of G ₆	82
3.14	Decode of G ₇	83
3.15	Decode of G ₈	83
3.16	Decode of G ₉	84
3.17	Decode of G ₁₀	84
3.18	Decode of G ₁₁	85
3.19	Decode of G ₁₂	85

3.20	Decode of G ₁₃	86
3.21	Decode of G ₁₄	86
3.22	Decode of G ₁₅	87
3.23	Decode of G ₁₆	87
3.24	The Output State of each of the gate for the Structure 6	125
4.1	The Results for Number of Population Experiment	132
4.2	The Results for Crossover Rate Experiment	135
4.3	The Results for Mutation Rate Experiment	137
4.4	The Results for Number of Inter Loop Experiment	139
4.5	The Minterm of the 3-Bit Circuit Design	144
4.6	The Successful Chromosome of Design 3-1	147
4.7	The Decoded Circuit of Design 3-1	147
4.8	The Design 3-1 Logic States at the Output Terminal	148
4.9	The Result Comparison between the Proposed Method and the Conventional Methods for Design 3-1	150
4.10	The Comparison of Gate Count for the 3-Bit Digital Circuit Structure Design Experiment	151
4.11	The Output Function for the 3-Bit Digital Circuit Structure between the Proposed Method and the Conventional Methods	151
4.12	Result Comparison between the Proposed Method, MGA and NGA for the Circuit Minterm of $F(a,b,c) = \sum(3, 5, 6)$	153
4.13	The Minterm of the 4-Bit Circuit Design	155
4.14	The Successful Chromosome of Design 4-1	158
4.15	The Decoded Circuit of Design 4-1	160
4.16	The Design 4-1 Logic States at the Output Terminal	160

4.17	The Comparison of Result between the Proposed Method and the Conventional Methods for Design 4-1	162
4.18	The Comparison of Gate Count for the 3-Bit Digital Circuit Structure Design Experiment	163
4.19	The Output Function for the 3-Bit Digital Circuit Structure between the Proposed Method and the Conventional Methods	163
4.20	Results Comparison between the Proposed Method, MGA and NGA for the Circuit Minterm of $F(a,b,c,d) = \sum (0, 1, 3, 6, 7, 8, 10, 13)$	164
4.21	Results Comparison between the Proposed Method, MGA and NGA for the Circuit Minterm of of $F(a,b,c,d) = \sum (0, 4, 5, 6, 7, 8, 9, 10, 13, 15)$	166
4.22	The Minterm of the 5-Bit Circuit Design	168
4.23	The Design 5-1 Logic States at the Output Terminal	172
4.24	The Comparison of Result between the Proposed Method and Karnaulgh Minimizer for Design 5-1	175
4.25	The Comparison of Gate Count for the 5-Bit Digital Circuit Structure between the Proposed Method and Karnaugh Minimizer	175
4.26	The Output Function for the 5-Bit Digital Circuit Structure between the Proposed Method and Karnaugh Minimizer	176
4.27	The Minterm of the 6-Bit Circuit Design	177
4.28	The Design 6-1 Logic States at the Output Terminal	182
4.29	The Comparison of Result between the Proposed Method and Karnaulgh Minimizer for Design 6-1	186
4.30	The Comparison of Gate Count for the 6-Bit Digital Circuit Structure Design Experiment	187
4.31	The Output Function for the 6-Bit Digital Circuit Structure between the Proposed Method and Karnaugh Minimizer	188
4.32	The Comparison of Gate Count for the 6-Bit Digital Circuit Structure Designed by the Proposed Method and Mentor Graphics Software	190

LIST OF FIGURES

Figure	Figure		
3.1	Block Representation of the Proposed System	45	
3.2	The Flowchart of the Proposed System	47	
3.3	3-bit Digital Circuit Structure	52	
3.4	4-bit Digital Circuit Structure	53	
3.5	5-bit Digital Circuit Structure	53	
3.6	6-bit Digital Circuit Structure	54	
3.7	The Encoding for a 4-Bit Digital Circuit Structure	56	
3.8	The Chromosome String is encoded into the 4-bit Digital Circuit Structure	64	
3.9	The pivot point for fix-multiple crossover operator	73	
3.10	The pivot point for flexi-multiple crossover operator	74	
3.11	Decoding Process for 4-bit Digital Circuit Structure	79	
3.12	The Control Panel of the 4-Bit ODCSD	90	
3.13	The architecture of ODCSD	92	
3.14	Encoding Process for the Chromosome String	93	
3.15	The Structure of GALI	96	
3.16	The Schematic Diagram of GS	98	
3.17	The PCB Layout of GS	100	
3.18	Genetic Algorithm Logic Implementer	101	
3.19	The Selected Path in between Input Bits Switch and Output Bit Terminal	103	
3.20	The Simplified Circuit Structure	104	
3.21	The Encoded Schematic Diagram	105	

4.1	The Comparison Result on There Different Populations	113
4.2	The Comparison Result on There Different Crossover Rate	115
4.3	The Comparison Result on There Different Mutation Rate	117
4.4	The Comparison Result on There Different Inter Loops	119
4.5	The Comparison Result between Inter Loop GA and the Conventional GA	122
4.6	3-bit Digital Circuit Structure	123
4.7	The Control Panel of the 3-Bit ODCSD	126
4.8	The Simulation Result for Design 3-1	127
4.9	The Constraint Fitness for Design 3-1	127
4.10	The Design 3-1 Successful Chromosome Set on GALI	129
4.11	The Design 3-1 Successful Chromosome Bits on GALI	130
4.12	The K-Map Solution for Design 3-1	130
4.13	4-bit Digital Circuit Structure	135
4.14	The Control Panel of the 4-Bit ODCSD	137
4.15	The Simulation Result for Design 4-1	138
4.16	The Constraint Fitness for Design 4-1	139
4.17	The Design 4-1 Successful Chromosome Set on GALI	140
4.18	Design 4-1 Successful Chromosome Bits on GALI	142
4.19	The K-Map Solution for Design 4-1	142
4.20	5-Bit Digital Circuit Structure	142
4.21	The Control Panel of the 5-Bit ODCSD	150
4.22	The Simulation Result for Design 5-1	151
4.23	The Constraint Fitness for Design 5-1	151

4.24	The Design 5-1 Successful Chromosome Set on GALI	152
4.25	Design 5-1 Successful Chromosome Bits on GALI	154
4.26	Design 5-1 by using Karnaugh Minimizer	155
4.27	6-Bit Digital Circuit Structure	158
4.28	The Control Panel of the 6-Bit ODCSD	159
4.29	The Simulation Result for Design 6-1	160
4.30	The Constraint Fitness for Design 6-1	161
4.31	he Design 6-1 Successful Chromosome Set on GALI	162
4.32	Design 6-1 Successful Chromosome Bits on GALI	165
4.33	Design 6-1 by using Karnaugh Minimizer	166
4.34	The Simulation Result for the first Circuit Designed by Mentor Graphics	172
4.35	The Simulation Result for the second Circuit Designed by Mentor Graphics	173
4.36	The Simulation Result for the first Circuit Designed by Quine McCluskey	176
4.37	The Simulation Result for the second Circuit Designed by Quine McCluskey	177

LIST OF ABBREVIATIONS

AI	Artificial Intelligent
BCD	Binary Coded Decimal
CBR	Case Base Reasoning
CF	Constraint Fitness
COF	Constraint Optimization Fitness
EA	Evolutionary Algorithm
EHW	Evolvable Hardware
F-MPX	Fix-Multiple Point Crossover
FPGA	Field Programmable Gate Array
GA	Genetic Algorithm
GALI	Genetic Algorithm Logic Implementer
GOF	Gate Optimization Fitness
GSS	Genetic Synthesis System
GUI	Graphic User Interface
LED	Light Emitting Diode
MGA	Multiobjective Genetic Algorithm
MG	Mentor Graphics
MP	Mutation Pool
NGA	n-Cardinality Genetic Algorithm
ODCSD	Optimal Digital Circuit Structure Designer
РСВ	Printed Circuit Board
PFU	Programmable Floating Point Unit
PM	Parallel Multiobjectives

POS	Product of Sum
RDMM	Random Discrete Mask Mutation
RDM	Random Discrete Mask
RWS	Roulette Wheel Selection
SA	Simulated Annealing
SimE	Fuzzified Simulation Evolutions
SGA	Simple Genetic Algorithm
SOP	Sum of Product
SSR	Stochastic Sampling with Replacement
SUS	Stochastic Universal Sampling
XOVDP	Double Point Crossover
XOVDPRS	Double Point Reduced Surrogate Crossover
XOVMP	General Multi Point Crossover
XOVSH	Shuffle Crossover

XOVSHRS Shuffle Reduce Surrogate Crossover

CHAPTER 1

INTRODUCTION

1.1 Introduction

The complexity of digital electronic circuits is due to the number of gates used per system as well as the interconnection of the gates. Diminution of the total number of gates used and interconnection in the system are able to reduce the cost in the design, as well as to increase the efficiency of the overall system. As a result, the higher the integration level is, the better and cheaper the final product can be produced.

The convention method to design a digital circuit is by using Boolean algebra and Karnaugh Mapping. Boolean algebra is an algebraic structure defined by a set of elements together with two binary operators, '+' and '.', which was introduced by George Boole in 1854. It can be used to obtain a simpler expression for the same function and thus reduce the number of gates in the circuit. Since there are 6 theorems and 4 postulates of Boolean algebra, to choose the right theorem or postulate for expression simplification is sometime depended on the previous experience of the designer. In other words, this procedure of minimization is awkward because it lacks specific rules to predict each succeeding step in the manipulative process (Mano, 2002)(Floyd, 2006).

Karnaugh Map provides a simple straightforward procedure for minimizing Boolean functions. The map presents a visual diagram which is made up of squares of all possible

ways a function may be expressed in standard form. Maps for more than four variables are not simple to use. When the number of variables becomes large, the number of squares becomes excessively large and the geometry for combining adjacent square becomes more involved (Mano, 2002)(Floyd, 2006).

In this work the selected optimization method is based on Genetic Algorithm (GA). GAs are adaptive heuristic search algorithms premised on the evolutionary idea of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest.

The GAs are operated by creating many random solutions to the problem. These solutions will then be subjected to an imitation of the evolution of species. All these solutions are coded as genetic chromosomes and it will be made to mate by hybridization, also throwing in the occasional spontaneous mutation. The offspring generated will include some solutions that are better than the original.

Designing logic circuits is often done using Karnaugh Maps to take the desired output values and place them in the table corresponding to the input logic. With GAs the designer does not really need to know anything about methods to do logic design because GAs use only the set of combination input and the desired output and continue to strive toward the best solution combining the gates in thousands of random ways.

1.2 Problems Statement

Many previous researches done on the digital circuit structure by using genetic algorithm, however there is limitation of some of the GA methods as stated below:

i) The combination of GA with knowledge-based systems and used a masked crossover operator to solve the combination logic circuit. But, this method can only solve the functional output for the combination logic but not on the optimization of the gate usage (Louis, 1993).

ii) The implementation of Genetic Synthesis System (GSS) in GA uses an encoding scheme to represent combinational logic designs are not functionally equivalent to the given specification (Vemuri, 1994).

iii) The implementation of CBR in GA in the digital circuit design can guide the GA's search by the information learned from a previous search and consequently improving the current search. However, this combination method needs bigger memory space to store the previous solution (Liu and Louis, 1996).

iv) The Fuzzified Simulated Evolution (SimE) algorithm uses Multilevel Logic Based Goodness Measure which is based on the assumption that the higher the level of a gate in a multilevel logic circuit, the more minterms are covered at the output of that gate. Therefore, the goodness of a gate is affected by the number of minterms covered at its output and the level where the gate is located (Sadiq et.al, 2002).

