

UNIVERSITI PUTRA MALAYSIA

PERFORMANCE OF MEMBRANE BIOREACTOR IN THE TREATMENT OF HIGH STRENGTH MUNICIPAL WASTEWATER

AHMED HUSSIEN BIRIMA

FK 2008 81

PERFORMANCE OF MEMBRANE BIOREACTOR IN THE TREATMENT OF HIGH STRENGTH MUNICIPAL WASTEWATER

By

AHMED HUSSIEN BIRIMA

Thesis Submitted To the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirement for the Degree of Doctor of Philosophy

October 2008

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PERFORMANCE OF MEMBRANE BIOREACTOR IN THE TREATMENT OF HIGH STRENGTH MUNICIPAL WASTEWATER

By

AHMED HUSSIEN BIRIMA

June 2008

Chairman : Associate Professor Thamer Ahmed Mohamed, PhD

Faculty : Engineering

In some parts of Malaysia, wastewater treatment plants (WWTPs) are located in industrial areas. These WWTPs receive wastewater mostly from these industrial activities regularly or occasionally. Therefore, their biochemical oxygen demand (BOD), chemical oxygen demand (COD) and ammonia nitrogen (NH₃-N) are very high. Conventional biological treatment processes are incapable of producing desirable effluent quality with the increasingly stringent discharge requirement.

In this study, a laboratory-scale membrane bioreactor (MBR) was used for treating high strength municipal wastewater. Prepared synthetic wastewater samples which represent a high strength municipal wastewater as well as the actual high strength municipal wastewater were used in the study. The developed MBR was operated under different conditions using statistical experimental full factorial design with three factors and three levels. The factors were sludge retention time (SRT), feed temperature (T_f) and organic loading rate (OLR) and their respective levels were 25, 30 and 35 days; 20, 30 and 40 °C; and 1.73, 4.03 and 6.82 kg COD/m³.d.

To evaluate the performance of MBR under the different operating conditions, ten trials were carried out using the prepared synthetic wastewater samples. The MBR could cope with the different operating conditions with high accuracy on the experimental results. Permeate COD, BOD, NH₃-N and total suspended solids (TSS) varied from 0 to 32, 0.3 to 13.1, 0.004 to 0.856 and 0 to 26 mg/l respectively. The pH in the aeration tank increased significantly compared to that of the feeding tank. In addition, the increasing pH of the aeration tank was well correlated to that in the feeding tank. ($R^2 = 0.8336$ for low OLR trials and 0.9106 for high OLR trials).

To investigate the effects of the different operating conditions on membrane fouling, sustainable time (t_{sust}) was used as a measure to compare the different trials. Within the same OLR level, t_{sust} increased as SRT and T_f increased. Sustainable time was found to decrease as the ratio of mixed liquor volatile suspended solids to mixed liquor suspended solids (MLVSS /MLSS) increased with a correlation coefficient (R^2) of 0.808.

When MBR was used to treat the actual high strength municipal wastewater, the respective average removal efficiencies of COD, BOD and NH₃-N were 98.4, 99.7, and 99.9%. These were found to be comparable with those values obtained from the synthetic wastewater treated by MBR .

Empirical models were developed to predict the concentrations of permeate COD, BOD and NH₃-N. The predicted values were highly correlated with the observed values (R^2 of 0.9188, 0.9111 and 0.9899 respectively for the three parameters mentioned). However the models of COD and BOD were found to be more accurate than the NH₃-N model.

Future work on the optimization of MLSS concentration and aeration rate as well as the improvement on the techniques for reducing the membrane fouling is recommended.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PRESTASI BIOREAKTOR MEMBRAN DALAM MENGOLAH AIR SISA DOMESTIK BERKEKUATAN TINGGI

Oleh

AHMED HUSSIEN BIRIMA

Jun 2008

Pengerusi : Professor Madya Thamer Ahmed Mohamed

Fakulti : Kejuruteraan

Di sesetengah tempat di Malaysia, loji olehan kumbahan airsisa terletak di kawasan industri. Loji-loji olehan kumbahan airsisa ini kebanyakannya menerima air sisa daripada aktiviti-aktiviti industri secara berterusan atau berkala. Oleh itu, tahap keperluan oksigen biokimia (BOD), keperluan oksigen kimia (COD) dan ammonia nitrogen (NH₃-N) adalah sangat tinggi. Proses olehan biologi konvensional tidak mampu menghasilkan kualiti effluen yang dapat memenuhi piawai kumbahan yang semakin ketat.

Di dalam kajian ini, satu bioreaktor membran skala makmal (MBR) telah direkabentuk, dibina dan diaplikasikan dalam mengolah air sisa domestik berkekuatan tinggi. Penyediaan air sisa sintetik yang mewakili air sisa domestik yang berkekuatan tinggi dan juga air sisa domestik sebenar yang berkekuatan tinggi telah digunakan di dalam kajian. MBR yang telah dibangunkan beroperasi di bawah keadaan yang berbeza dengan menggunakan rekabentuk faktorial penuh eksperimen statistik dengan tiga faktor dan tiga tahap. Faktor-faktor itu ialah masa tahanan enapcemar (SRT), suhu suapan makanan (T_f) serta kadar bebanan organik (OLR)

dan nilai-nilai tersebut ialah 25, 30 dan 35 hari; 20, 30 dan 40 °C; dan 1.73, 4.03 dan 6.82 kg COD/m³ .hari masing-masing.

Untuk menguji prestasi MBR di bawah keadaan operasi yang berbeza, sepuluh ujian telah dijalankan dengan menggunakan sample air sisa sintetik tersedia. MBR tersebut berupaya beroperasi di bawah keadaan operasi yang berbeza dengan ketepatan tinggi ke atas keputusan eksperiman. Turasan dengan nilai COD, BOD, NH₃-N dan Jumlah Pepejal Terampai (TSS) adalah berjulat dari 0 sehingga 32, 0.3 sehingga 13.1, 0.004 sehingga 0.856 dan 0 sehingga 26 mg/l masing-masing. Nilai pH di dalam tangki pengudaraan meningkat dengan ketara jika dibandingkan dengan tangki suapan makanan. Tambahan pula, peningkatan pH di dalam tangki pengudaraan dapat dikorelasikan dengan tangki suapan makanan ($\mathbb{R}^2 = 0.8336$ untuk ujian OLR rendah dan 0.9106 untuk ujian OLR tinggi).

Untuk menyiasat kesan-kesan keadaan operasi yang berbeza ke atas penyumbatan membran, masa mampan (t_{sust}) telah digunakan sebagai sukatan bandingan bagi ujian-ujian yang berbeza. Di dalam lingkungan tahap OLR yang sama, t_{sust} meningkat apabila SRT dan T_f meningkat. Masa mampan telah didapati menurun apabila nisbah pepejal terampai meruap likuor campur kepada pepejal terampai likuor campur (MLVSS/MLSS) meningkat dengan pekali korelasi (R²) 0.808.

Apabila MBR digunakan untuk mengolah air sisa domestik sebenar yang berkekuatan tinggi, purata keberkesanan penyingkiran untuk COD, BOD dan NH₃-N ialah 98.4, 99.7, dan 99.9% masing-masing. Keputusan ini didapati sejajar dengan

nilai yang telah diperolehi terlebih dahulu daripada model air sisa yang diolah dengan MBR.

Model empirikal telah dibangunkan untuk meramal kepekatan turasan COD, BOD dan NH_3 -N. Nilai yang telah diramal adalah sangat berkorelasi dengan nilai sebenar (R^2 dengan 0.9188, 0.9111 dan 0.9899 masing-masing untuk tiga parameter yang telah disebut). Walaubagaimanapun, model untuk COD dan BOD didapati lebih tepat dibandingkan dengan model NH3-N.

Kajian masa hadapan ke atas pengoptimuman kepekatan MLSS dan kadar pengudaraan di samping pembaikan ke atas teknik untuk mengurangkan penyumbatan membran disarankan.

ACKNOWLEDGMENTS

Foremost, I am extremely grateful to most beneficent Allah, the Almighty, who bestowed me good health, strength, and courage in accomplishing this research. Above all, I believe in Allah's boundless love and grace that have filled my soul with hope and happiness and have inspired me to live through difficult times of my life.

I also wish to express my heartfelt gratitude and sincere appreciation to those whose contributions collectively were of immeasurable value in my educational pursuits. First I wish to extend special appreciation and thanks to my supervisor Associate Professor Dr. Thamer Ahmed Mohammed for his patience and understanding during the prolong period of my study; constructive suggestions and timely help which enable me to accomplishing the objective of this research in professional manner.

Deep gratitude and sincere appreciations also extend to other members of supervisory committee, Professor Suleyman Aremu Muyibi for his superb guidance, constructive suggestions and heartfelt cooperation. Professor Azni Idris for his professional assistance and help.

I would like to extend profound thanks and sincere appreciation to Associate Professor Ir. Megat Johari for ideas, limitless assistance and beneficial advice; and full support for the research. My gratitude for him is forever.

I would like to extend special thanks to Indah Water Consortium Sdn. Bhd. (IWK) for providing me the data of wastewater samples.

My father is the constant source of support and encouragement throughout my study period. I express the deepest sense appreciation to my father Hussien Birima and my mother's soul late Mustora Abdul Allah and dedicate this piece of work to both of them.

Thanks to many of my friends, colleagues, and technicians in public health engineering laboratory KAW, Ken, Fiona, and Leong for their cooperation and handy help during this study, En. Fairuz, En. Ameen, for the technical support.

Last but not least, my gratitude extends to my brothers, sisters and uncles.

I certify that an Examination Committee met on October 24th 2008 to conduct the final examination of Ahmed Hussien Birima on his doctor of philosophy thesis entitled "Design and Development of Membrane Bioreactor for Treating High Strength Municipal Wastewater" in accordance with Universiti Pertanian Malaysia (higher degree) Act 1980 and Universiti Pertanian Malaysia (higher degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Bujang B. K. Huat, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Abdul Halim Ghazali, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Salmiaton Bt. Ali, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Mohd Razman Salim, PhD

Professor Faculty of Civil Engineering University Technology Malaysia (External Examiner)

BUJANG KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 19 February 2009

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of doctor of philosophy. The members of the Supervisory Committee are as follows:

Thamer Ahmed Mohammed, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Azni Idris, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Suleyman Aremu Muyibi, PhD

Professor Faculty of Engineering International Islamic University Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 April 2009

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AHMED HUSSIEN BIRIMA

Date:

TABLE OF CONTENTS

			Page
AB	STRA	СТ	ii
AB	STRAI	K	v
AC	KNOV	VLEDGEMENTS	viii
AP	PROV	AL	Х
DE	CLAR	ATION	xii
LIS	ST OF '	TABLES	xvi
LIS	ST OF	FIGURES	xviii
LIS	ST OF	APPENDICES	xxii
LIS	ST OF	ABBREVIATIONS	xxiii
СН	IAPTE	R	
1	INTI	RODUCTION	
1	11	Background	1
	1.1	Problem Statement	5
	1.2	Objectives of the Study	5 7
	1.5	Scope of the Study	8
	1.4	Scope of the Study	0
2	LITI	FRATURE REVIEW	11
-	21	Characteristics of Wastewaters	11
	$\frac{2.1}{2.2}$	Activated Sludge Process	15
	2.2	2.2.1 Definition of the Process	15
		2.2.1 Definition of the Process	15
		2.2.2 Flocess Mounication	10
	22	2.2.5 Conventional Activated-Studge Process	21
	2.3	Nemorane Technology	21
		2.3.1 Introduction	21
		2.3.2 Classification of Membranes	23
		2.3.3 Description of Microfiltration	24
		2.3.4 Procedures for Microfiltration	25
		2.3.5 Membrane Configuration	27
	2.4	Membrane Bioreactor Technology	28
		2.4.1 Advantages of Membrane Dispession	20
		2.4.1 Advantages of Membrane Dioreactor	29
		2.4.2 Disadvantages of Melliorate Dioreactor	50 21
		2.4.5 Factors Affecting the Filtration Capacity of MBR	21
		2.4.4 MBR Configuration and Membrane Selection	32
	2.5	2.4.5 Membrane fouling	34
	2.5	Application of Membrane Bioreactors in Municipal	20
		Wastewater Treatment	38
	2.6	Pilot and Bench Scale Studies on Using MBR in Municipal	
		Wastewater Treatment	42
	2.7	Water Quality Standards in Malaysia	52
	2.8	Advantages of The Present Study	56
2	МЕЛ		50
3	IVIE I 2 1	INUDULUG I Design Considerations of the Laboratory Model	50 50
	3.1	Design Constuer ations of the Laboratory would	59

	3.2	Design	of the Experimental Unit	59
		3.2.1	Feeding Tank	60
		3.2.2	Aeration tank	59
		3.2.3	Permeate Tank	63
		3.2.4	Micro Filtration Membrane Module	63
	3.3	Equipm	ents attached experimental unit	64
	3.4	Experin	nental design	65
	3.4	Preparat	tion of the Synthetic High Strength Municipal	
		Wastew	rater	65
		3.4.1	Preparation of Synthetic wastewater Stock Solution	65
		3.4.2	Preparation of Laguna clay suspension	67
		3.4.3	The Dilution of the Synthetic wastewater	68
	3.5	Actual V	Wastewater Samples	71
	3.6	Acclima	atization of the Sludge with the synthetic wastewater	70
	3.7	Testing	of the Clean Flux Testing of the Clean Flux	72
	3.8	System	Operation	76
	3.9	Analytic	cal Methods	77
	3.10	Formula	ae used for calculating the Parameters	78
	3.11	Membra	ane Cleaning	80
4	RESU	JLTS AN	D DISCUSSION	82
	4.1.	Prelimir	nary Study	82
		4.1.1	Acclimatization of the Sludge	83
		4.1.2	Removal of COD	84
		4.1.3	Removal of Ammonia Nitrogen	86
		4.1.4	Variation of pH in MBR	89
		4.1.5	Variation of Membrane Flux with Time	90
	4.2	Perform	ance of MBR under the Different Operating	
		Condition	ons and Their Interaction Effects.	92
		4.2.1	Biomass Development	94
		4.2.2.	Dissolved Oxygen and Aeration Rate	102
		4.2.3	Removal of Chemical Oxygen Demand (COD)	104
		4.2.4	Removal of Biochemical Oxygen Demand (BOD)	111
		4.2.5	Removal of ammonia nitrogen (NH ₃ - N)	114
		4.2.6	Removal of solids	120
		4.2.7	Variation of pH under the Different Operating	
			Conditions	124
	4.3	The Effe	ects of the Operating Parameters on Membrane	128
		fouling		
		4.3.1	Sub-critical flux operation	129
		4.3.2	Development of Flux and Transmembrane Pressure under the Different Operating Conditions	130
		4.3.3	The effects of the operating parameters on the flux sustainability	138
		4.3.4	Flux-Suction Pressure Intersection Point	147
	4.4	Treatme	ent of an Actual High Strength Municipal Wastewater	150
		Using N	/IBR	
		4.4.1	Characteristics of the Actual high strength Municipal Wastewater	150
		4.4.2	Biomass development	151
			÷	

		4.4.3	Aeration rate and dissolved oxygen for the actual wastewater trial	153
		4.4.4	Removal of COD for the Actual Wastewater	154
		4.4.5	Removal of BOD for the Actual Wastewater	155
		4.4.6	Removal of Ammonia Nitrogen from the Actual	
			Wastewater	157
		4.4.7	Removal of Solids From the Actual Wastewater	158
		4.4.8	The Variation of pH for the Actual Wastewater trial	160
		4.4.9	Development of Flux and Suction Pressure for the	
			Actual Wastewater trial	162
	4.5	Propos	sed Empirical Models	163
		4.5.1	Models Development	163
		4.5.2	Validation of Results	164
	4.6	Summ	ary of Findings	173
5	CONC	CLUSI	ONS AND RECOMMENDATIONS	178
	5.1	Conclu	usions	179
	5.1	Recon	nmendations	183
REF	EREN	CES		185
APPENDICES			A.1	
BIODATA OF THE STUDENT			L.1	
LIST OF PUBLICATIONS M			M.1	

LIST OF TABLES

Table		Page
2.1	Major Constituents of Typical Domestic Wastewater	11
2.2	Average Composition of Wastewater in Amman, Jordan	12
2.3	Chemical Composition of Wastewaters in Alexandria and Giza, Egypt	13
2.4	Possible levels of Pathogens in Wastewater	14
2.5	Survival of Excreted Pathogens	15
2.6	Operational Characteristics of Activated-Sludge Process.	18
2.7	Design Parameters for Activated-Sludge Process	20
2.8	Effluents Discharge Standards to Malaysian Inland Waters	53
2.9	River Classification Based on Water Uses for Malaysia	54
2.10	Interim National River Water Quality Standards for Malaysia	55
3.1	Specifications of the Membrane Fibers	64
3.2	Equipments Attached to the Experimental Unit	65
3.3	Experimental Design	66
3.4	Composition of Synthetic Wastewater (Mg/L)	67
3.5	The Dilution Factor for the Three Levels of COD Concentrations	68
3.6	Characteristics of High Strength Municipal Wastewater for Taman Perindustrian Bukit Serdang STP	70
3.7	Data of Testing the Clean Flux before Membrane Usage and After Each Trial	74
3.8	Parameters and Their Analytical Methods	78
4.1	Variation of COD with Time during Acclimatization Period for the Preliminary trial.	83
4.2	Variation of the pH in MBR for the Preliminary Trial	90

4.3	Categorization of the Experiments Based on Synthetic wastewater strength level	93
4.4	MLVSS / MLSS Ratio for Low and High Level Strength Trials	97
4.5	The Rate of MLSS Change with Time for Low and High Level Strength trials	100
4.6	Permeate COD for Low and High Level Strength Trials	110
4.7	COD/N Ratio of the Stock Solution Used for the Study	117
4.8	Average Values of pH for the Different Units and the Percentage of Increment	127
4.9	Comparison of the Sustainable Duration between the Low Level strength and High level strength Trials.	147
4.10	Time, Flux and SP at the Flux-SP Intersection Point	149
4.11	Characteristics of the Actual High Strength Municipal Wastewater	151
4.12	Range of the Parameters of the Data Shown in Table 4.11	151
4.13	Data of TS and TSS and the Ratio of TSS to TS for the Actual Wastewater.	160
4.14	The Ranges of the Parameters for Limitations of the Models	177

LIST OF FIGURES

Figure		Page
2.1	Relationships Between Pore Diameters, Membrane Separation Process and Penetrate Size	24
2.2	Procedures for Microfiltration	26
2.3	Flow Charts for (a) Conventional Wastewater Treatment; (b) Conventional Treatment Including Tertiary Membrane Filtration; and (c) Membrane Bioreactors	29
2.4	Schematic of Integrated MBR	33
2.5	Schematic of Recirculated MBR	34
2.6	Diagram Of Fouling Mechanisms	35
2.7	Schematic Illustration of Membrane Biofouling Process	37
3.1	Flowchart of Different Stages of Experimental Study	58
3.2	Layout of the Experimental Setup	60
3.3	Actual experimental unit	61
3.4	Bioreactor (a) Elevation view (b) Side view (c) tope view	62
3.5	Hollow Fiber Membrane Module	64
3.6	Actual Wastewater Sampling Point Location of the	72
3.7	Figure 3.6. Testing the Module for the Clean Flux before Usage	74
3.8	Testing the Module for the Clean Flux after each trial (trials 1 to 5)	75
3.9	Testing the Module for the Clean Flux after each trial (trials 6 to 10)	76
4.1	Preliminary Trial Variation of COD vs. Time in MBR for the	85
4.2	Variation of Ammonia Nitrogen and Oxidized Nitrogen vs. Time in MBR for the Preliminary Trial	87
4.3	Variation of Feeding Ammonia and Percentage of Oxidized Nitrogen Removed Vs Time	89

4.4	Variation of Membrane Flux with Time for the Preliminary Trial	92
4.5	Variation of MLSS and MLVSS with Time for Low Level Strength Trials	95
4.6	Variation of MLSS and MLVSS with Time for Medium Level Strength trials	98
4.7	Variation of MLSS and MLVSS with Time for high Level strength trials	99
4.8	d(MLSS)/ (dt) vs. MLVSS/MLSS Ratio For The High Level Strength trials	100
4.9	Variation of Dissolved Oxygen and Aeration Rate with Time for Low Level strength trials	103
4.10	Variation of Dissolved Oxygen and Aeration Rate with Time for medium Level strength trials	104
4.11	Variation of Dissolved Oxygen and Aeration Rate with Time for high Level strength trials	104
4.12	Variation of COD with Time for Low Level Strength Trials	106
4.13	Variation of COD with Time for the medium Level Strength Trials	105
4.14	Variation of COD with Time for the High Level Strength Trials	106
4.15	Permeate COD vs. DO for Low, Medium and High Level Strength Trials	111
4.16	Variation of BOD with Time for Low Level Strength Trials	112
4.17	Variation of BOD with Time for medium Level Strength Trials	112
4.18	Variation of BOD with Time for High Level Strength Trials	113
4.19	Variation of Ammonia with Time for low Level Strength Trials	116
4.20	Variation of Ammonia with Time for Medium Level Strength Trials	118
4.21	Variation of Ammonia with Time for High Level Strength Trials	120
4.22	The Variation of TSS with Time for the Low Level Strength Trials	121
4.23	The Variation of TSS with Time for the medium level Strength Trials	122

4.24	The Variation of TSS with Time for the high level Strength Trials	123
4.25	Variation of pH with Time for the Low Level Strength Trials	126
4.26	4.26. Variation of pH with Time for the medium Level Strength Figure Trials	126
4.27	Variation of pH with Time for the high Level Strength Trials	127
4.28	Correlation between Feed pH and the pH Increment in the Aeration Tank	128
4.29	Evolution of Membrane Flux and Suction Pressure Vs Time for Low Level Strength (A) Trial 1 and (B) Trial 4	132
4.30	Evolution of Membrane Flux and Suction Pressure Vs Time for low level strength (a) Trial 6 and (b) Trial 9	133
4.31	Evolution of Membrane Flux and Suction Pressure Vs Time for medium level strength (a) Trial 2 and (b) Trial 10	134
4.32 4.33	Evolution of Membrane Flux and Suction Pressure Vs Time high level strength (a) Trial 3 and (b) Trial 5 Evolution of Membrane Flux and Suction Pressure Vs Time for high level strength (a) Trial 7 and (b) Trial 8	135
4.34	Duration of Sustainable Operation (a) Trial 1 (b) Trial 2 (c) Trial 3 and (d) trial 4	130
4.35	Duration of Sustainable Operation (a) Trial 5(b) Trial 6 (c) Trial 7 and (d) trial 8	140
4.36	Duration of Sustainable Operation (a) Trial 9 (b) Trial 10	141
4.37	Sustainable Duration for the different Trials	142
4.38	Sustainable Duration Vs MLVSS/MLSS Ratio for Low and High Level strength	145
4.39	Variation of MLSS and MLVSS with Time for the Actual Wastewater Trial	153
4.40	Variation of Aeration Rate and Dissolved Oxygen with Time for the Actual Wastewater Trial Wastewater Trial	154
4.41	Variation of COD with Time for the Actual and Synthetic Wastewater Trial	155

4.42	Variation of BOD with Time for the Actual and Synthetic Wastewater Trials	157
4.43	Variation of Ammonia Nitrogen with Time for the Actual and Synthetic Wastewater Trials	158
4.44	Variation of pH with Time for the actual wastewater Trial	161
4.45	Correlation between the Feed pH and the pH Increment in the Aeration Tank for the Actual Wastewater	161
4.46	Evolution of Membrane Flux and Suction Pressure Vs Time for the actual wastewater	163
4.47	Comparison between Predicted and Observed Permeate COD	165
4.48	Comparison between Predicted and Observed Permeate BOD	169
4.49	Comparison between Predicted and Observed Permeate NH ₃ -N	171

LIST OF APPENDICES

Leasting of Condense Development Transforment Direct the Developments	Page
Attached to The Experimental Unit and Those Used in the Analysis	
	A.1
Tables of Results	B.1
Standard Curves for Determination of Ammonia and Nitrate Nitrogen	G 1
	C.1
Figures for MISS Development with Time During the Sustainable Flux	D 1
	D.1
Data of Model and Actual Wastewaters Used for the Validation of Model for the Permeate COD Prediction	E.1
SPSS Output for Cod Prediction Model	F.1
Data of Model and Actual Wastewaters Used for the Validation of Model for the Permeate BOD Prediction	G 1
	0.1
SPSS Output of the Model for Permeate BOD Prediction	H.1
EES Out Put for the Model of Ammonia Nitrogen Prediction	I.1
SPSS Output for the Model of Ammonia Nitrogen Prediction	J.1
Data of particles size analysis	K 1
	11.1
Biodata of the author	L.1
List of publications	M.1

LIST OF ABBREVIATIONS

BOD	Biochemical Oxygen Demand
COD	Chemical Oxygen Demand
TOC	Total Organic Carbon
NH3-N	Ammonia Nitrogen
NO ₂ -N	Nitrite Nitrogen
NO ₃ -N	Nitrate Nitrogen
TKN	Total Kjehldahl Nitrogen
TS	Total Solids
TSS	Total Suspended Solids
ML	Mixed Liquor
MLSS	Mixed Liquor Suspended Solids
MLVSS	Mixed Liquor Volatile Suspended Solids
TMP	Trans-Membrane Pressure
CASP	Conventional Activated Sludge Process
MBR	Membrane Bioreactor
SMBR	Submerged Membrane Bioreactor
MSBR	Membrane Sequencing Batch Reactor
UF	Ultrafiltration
MF	Microfiltration
SRT	Sludge Retention Time
$T_{\rm f}$	Feed Temperature
OLR	Organic Loading Rate
VLR	Volumetric Loading Rate

xxiii

F/M	Food To Microorganism Ratio
FC	Fecal Coliforms
CFV	Cross Flow Velocity
EPS	Extracellular Polymeric Substances
UBIS	Ultra Biological System
HRT	Hydraulic Retention Time
EBPR	Enhanced Biological Phosphorus Removal
Qr	Recycling Flow Rate
Ec	Efficiency of Substrate
RMBR	Recirculated Membrane Bioreactor
CMF	Critical Membrane Flux
PAC	Powdered Activated Carbon
RBCOD	Readily Biodegradable Organic Substances
SMP	Soluble Microbial Products
DOE	Department of Environment
PE	Population Equivalent
DO	Dissolved Oxygen
TMP	Transmembrane Pressure
SP	Suction Pressure
J _c	Critical Flux
J _p	Permeate Flux
t _{sus}	Sustainable Time
SVI	Sludge Volume Index
5 V I	Sludge volume index
FSIP	Flux- Suction Pressure Intersection Point

