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While the scaling limits of MOSFET have been widely researched, the scaling of 

Multiple Input Floating Gate (MIFG) MOSFET devices has been receiving less 

attention. The MIFG MOSFET has short channel effect that arises from the scaling 

of the device at a more significant level than the typical MOSFET because the 

existence of the floating gate electrode widens the distance of the input gates and the 

channel. This distance weakens the ability of the gate to control the channel charge 

effectively which leads to higher short channel effects.  

 

Tri-gate MIFG MOSFET proposed in this thesis is combination technologies of a 

MIFG MOSFET planar device structure and a 3-D Tri-gate transistor. The ability to 

circumvent short channel effect of the Tri-gate MOSFET are emphasized on the 

subthreshold characteristic of the device by monitoring the DIBL and subthreshold 

slope parameter and is compared with a bulk MIFG MOSFET structure at equal 

technology parameter. The device coupling capacitor and voltage bias at control gate 

are varied in order to analyze its influence on these effects. Two different structures, 

Top Tri-gate MIFG MOSFET and Side Tri-gate MIFG MOSFET were studied. This 
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research focuses in the physical MIFG MOSFET structures and analyzes its short 

channel effect behavior by performing 3-D computer-based numerical simulations 

using Davinci simulator. 

  

There were two sets of results obtained when comparing the short channel effect of 

the two Tri-gate MIFG MOSFETs with bulk MIFG MOSFET. At C2/C1 ≤ 1 and at 

variable Vgate2, Tri-gate MIFG MOSFETs shows better results than the bulk MIFG 

MOSFET in subthreshold slope and DIBL effect with best in C2/C1 = 0.5 followed by 

C2/C1 = 1. From the electrostatic potential distribution graph of the devices, the better 

short channel effect suppression can be interpreted as a result of better gate 

controllability in the Tri-gate MIFG MOSFET than the bulk MIFG MOSFET 

channel. 

 

However, for C2/C1 > 1, overall Tri-gate MIFG MOSFETs shows worse short 

channel effects than the bulk MIFG MOSFET. The Tri-gate device structure shows 

the worst short channel effect behavior than the bulk device structure which 

contradicts with the previous results. The correlation between C2/C1≤1 and C2/C1>1  

for a two-input gates in the Tri-gate MIFG MOSFET to control short channel effects 

is that gate 1 as the signal gate has to have a large area in order to control the channel 

effectively. At the same time, the voltage applied at gate 2 has to be controlled just to 

be sufficiently enough to turn on the transistor. The placement of the input gates as 

the top and side of the floating gate does give significant effect in the simulation 

results where the Top Tri-gate MIFG MOSFET gives better or approximately same 

data with the Side Tri-gate MIFG MOSFET. 
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It can be concluded that the suppression of short channel effects of the Tri-gate 

MIFG MOSFET must not only consider the Tri-gate structure itself, but must also 

take into account the area of input gate coupling capacitance, voltage bias and 

placement of the input gates. 
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Batasan penskalaan peranti MOSFET dikaji secara meluas. Namun begitu, kajian 

terhadap pengecilan MOSFET Pelbagai Masukan Get Terapung (MIFG)  masih 

mendapat kurang perhatian. Kesan saluran pendek terhadap MOSFET MIFG akibat 

pengecilan peranti adalah lebih tinggi jika dibandingkan dengan peranti MOSFET 

biasa disebabkan oleh kehadiran elektrod terapung yang melebarkan jarak di antara 

get masukan dan saluran. Jarak ini melemahkan kebolehan get untuk mengawal cas 

saluran secara berkesan yang membawa kepada kesan saluran pendek yang lebih 

tinggi. 

 

MOSFET Tiga-get MIFG yang diperkenalkan di dalam tesis ini adalah integrasi 

teknologi struktur satah peranti MOSFET bulk MIFG dan 3-D Tiga-get.  Keupayaan 

MOSFET Tiga-get dalam memperbaiki kesan saluran pendek memberi fokus 

khususnya pada ciri subthreshold peranti dengan melihat parameter DIBL dan 

kecerunan subthresold. Kajian ini membuat perbandingan keputusan antara 

MOSFET bulk MIFG dan MOSFET Tiga-get MIFG pada parameter teknologi yang 
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sama. Kemuatan berpasangan peranti dan aplikasi voltan pada get kawalan 

dipelbagaikan bagi menganalisa pengaruhnya ke atas kesan saluran pendek. Dua 

struktur berlainan, MOSFET Tiga-get Atas MIFG dan MOSFET Tiga-get Sisi MIFG 

dikaji. Kajian ini memfokuskan terhadap struktur fizikal MIFG MOSFET dan 

menganalisa kelakuan kesan saluran pendeknya dengan melakukan simulasi 

numerical 3-D berasaskan komputer menggunakan pensimulasi Davinci. 

 

Terdapat dua set keputusan apabila membandingkan kesan saluran pendek bagi 

kedua-dua MOSFET Tiga-get MIFG dengan MOSFET bulk MIFG. Pada keadaaan 

C2/C1 ≤ 1 dan Vgate2 dipelbagaikan, MOSFET Tiga-get MIFG menunjukkan 

keputusan yang lebih baik daripada MOSFET bulk MIFG pada keputusan kecerunan 

subthreshold dan kesan DIBL. Keputusan yang terbaik diperolehi pada C2/C1 = 0.5 

diikuti dengan C2/C1 = 1. Daripada graf taburan potensi elektrostatik peranti, 

keberkesanan kesan saluran pendek tertahan yang baik boleh diterjemahkan sebagai 

hasil keupayaan get untuk mengawal saluran di dalam MOSFET Tiga-get MIFG 

dengan baik berbanding MOSFET bulk MIFG. 

 

Namun begitu, Tri-get MOSFET MIFG pada C2/C1 > 1, secara keseluruhannya 

menunjukkan kesan saluran pendek yang lebih buruk berbanding MOSFET bulk 

MIFG dimana ia bertentangan dengan keputusan sebelum ini. Hubungkait antara 

C2/C1 ≤ 1 dan C2/C1>1 bagi kedua-dua input get di dalam Tiga-get MOSFET MIFG 

bagi mengawal kesan saluran pendek adalah get 1 yang bertindak sebagai get isyarat 

memerlukan ruang yang besar bagi mengawal saluran secara efektif. Pada masa yang 

sama, Vgate2 perlu dikawal supaya ia hanya memadai untuk menghidupkan peranti. 

Kedudukkan input get pada atas dan sebelah get terapung memberi kesan terhadap 
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keputusan simulasi dimana Tiga-get Atas MOSFET MIFG memberikan keputusan 

yang lebih baik atau sama dengan Tiga-get Sisi MOSFET MIFG. 

 

Kesimpulannya, pengurangan kesan saluran pendek yang baik dalam Tiga-get 

MOSFET MIFG tidak boleh dianalisa dengan hanya mempertimbangkan struktur 

fizikal Tiga-get sahaja, tetapi juga perlu  mengambil kira keluasan get masukan 

kemuatan berpasangan, aplikasi voltan dan kedudukkan input get. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Evolution of MOSFET 

 

The modern metal-oxide-semiconductor-field-effect-transistor (MOSFET) was first 

demonstrated in 1960 at Solid State Device Research Conference [1]. This technology 

came into industry in 1960 with the development of a workable silicon dioxide growth 

on silicon. This finding to produce the insulating layer in situ on the substrate opened up 

the earlier works, making the concept of the MOSFET device a practical reality [1].  

 

The MOSFET technology consistently improves over these years and continuously 

expands with intense research progress. In 1992, Shibata, T. and Ohmi, T. [2] introduced 

a unique MOSFET which they called Neuron MOS (vMOS) transistor due to its 

functional similarity to a simple neuron model. Now, vMOS transistor is also widely 

known as Multiple-Input Floating Gate MOSFET (MIFG MOSFET) [3]. MIFG 

MOSFET structure can be visually described as a conventional MOSFET with several 

input gates attached to the floating gate of the MOSFET. The electrode is known as a 

floating gate because no connection is in contact with it as illustrated in Figure 1.1 

where two-input gates are separated by the floating gate through an oxide layer. 

 



 

Figure 1.1: Two-input MIFG MOSFET (a) Device Structure (b) Circuit Symbol 

 

1.2 MIFG MOSFET Contributions in VLSI Technology 

 

MIFG MOSFET has proven to be very successful reducing the VLSI burden in carrying 

out intelligent circuit designs. Many researches [4, 5, and 6] have been done to expand 

this transistor concept technology for circuit application. Shouli, Y and Edgar S.S [7] 

reported that MIFG MOSFET offers an alternative solution for circuit designers to 

produce efficient low voltage circuits with also reduced power supply restriction via 

adjusting the transistor threshold voltage.  

 

The threshold voltage seen from the input gates can be changed by varying the amount 

of static charge on the floating gate through ultra violet shining, hot-electron injection 

and Fowler-Nordheim process [7]. Other than this, the threshold voltage could also be 

varied by applying an external bias voltage at the input gates of the transistor. The 

applied voltage creates an electric potential that influences the charge to invert the 

silicon surface channel which then turns on the transistor. The advantage of this 
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technique is that it can be done after fabrication of the transistor to compensate for both 

manufacturing problems as well as a given operating environment. Through these 

programming techniques, it gives the ability for MIFG MOSFET to operate in 

compatible low voltage supply by lowering the threshold voltage at a desired value.  

 

Several circuits implementing floating gates in its design have been reported to have 

improved area consumption while having better circuit performance when compared to 

the conventional MOSFET. The active resistor introduced by Popa, C [4] is described to 

have reduced area consumption, improved linearity and frequency response by replacing 

the conventional MOSFETs with MIFG MOSFETs. Ochiai, T and Hatano, H [5] had 

successfully designed a multiplier circuit using MIFG MOSFETs. The circuit was 

claimed to have layout area 60% of the conventional CMOS multiplier and with 

improved 15% speed performance than that for the CMOS multiplier with the same 

design rule. With the shrinking of VLSI circuits and denser integrated circuits, these 

findings are welcoming for the future technology in decreasing the minimum feature 

size and realizing Gordon Moore’s law (that states the number of components per chip 

double every three years) [8]. 

 

Another interesting fact on the MIFG MOSFET is that the multiple gates available by its 

natural structure enable it to be used in multiple valued logic technology. Multiple 

Valued Logic is an interesting developing technology that has a potential advantage over 

binary logic which means that it can provide an increasing data processing capability per 

unit area with a reduced number of interconnections. The Multi-Valued Flip-Flop circuit 
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