Er/Pr-codoped borotellurite glasses as efficient laser operated nonlinear optical materials

ABSTRACT

We have discovered a rare opportunity to operate by the SHG at fundamental wavelength $10.6\,\mu\text{m}$ of microsecond CO2 laser during simultaneous irradiation by $1064/532\,\text{nm}$ bicolor laser beams of $(60\text{-x-y})\text{TeO2-10B2O3-10BaO-10ZnO-10Na2O-}(x)\text{Er2O3-}(y)\text{Pr6O11}~(x=0.5,~1.0;~y=0);~(x=0;~y=0.1,~0.2,~0.3,~0.4,~0.5);~(x=0.5,1.0;~y=0.1,~0.2,~0.3,~0.4,~0.5)~(mol\%) glasses. The effect has shown a drastic sensitivity of the effect to the Er/Pr ratio. The effect exists only during the simultaneous illumination and applied dc-electric field at <math>5\,\text{kV/cm}$. Only completely reversible changes were observed. The effect is a consequence of photopolarization during the bicolor coherent laser beams and its efficiency is determined by the transfer of excitation between the Er and Pr ions.

Keyword: Borotellurite glass; Er3+; Pr3+; XRD; TGA; Bicolor laser treatment