Elastic moduli of TeO₂–PbO glass system

ABSTRACT

Binary glasses $(1 - x)(\text{TeO}_2) - x(\text{PbO})$ with x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% prepared using the melt quenching have been studied in this work. The amorphous nature of the glasses is confirmed by XRD analyses. Density, ρ and molar volume, V_m were measured for more information on structural changes. The ultrasonic velocities (longitudinal and shear) were obtained using the method of pulse-echo at 5 MHz resonating frequency. The elastic moduli, namely longitudinal (*L*), shear (*G*), Young (*E*) and the bulk (*K*) moduli were obtained from the density and ultrasonic velocities measurement. The softening temperature (T_s), Debye temperature (θ_D), Poisson's ratio (σ), fractal bond connectivity (*d*), microhardness (*H*) and acoustic impedance (*Z*) were obtained from the elastic moduli. The transition temperature (TgTg) and thermal expansion coefficient (α_P) were also calculated. The experimental elastic moduli data and the values calculated theoretically from the bond compression, Makishima– Mackenzie, and Rocherulle models were compared in this work.

Keywords: Elastic moduli; Binary glass; Glass system