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The spatial epidemiology is the study of the occurrences of a disease in spatial 

locations.  In spatial epidemiology, the disease to be examined usually occurs 

within a map that needs spatial statistical methods to model the observed data.  

The methods used should be appropriate and catered for the variation of the 

disease.  The classical approach, which used to estimate the risk associated with 

the spread of the disease, did not seem to give a good estimation when there 

were different factors expected to influence the spread of the disease. 

 

In this research, the relative risk heterogeneity was investigated, while the 

hierarchical Bayesian models with different sources of heterogeneity were 

proposed using the Bayesian approach within the Markov Chain Monte Carlo 
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(MCMC) method.  The Bayesian models were developed in such a way that they 

allowed several factors, classified as fixed and random effects, to be included in 

the models.  The effects were the covariate effects, interregional variability and 

the spatial variability, which were all investigated in three different hierarchical 

Bayesian models.  These factors showed substantial effects in the relative risk 

estimation. 

 

The Bayesian approach, within the MCMC method, produced stable estimates 

for each individual (e.g. county) in the spatially arranged regions.  It also 

allowed for unexplained heterogeneity to be investigated in the disease maps.  

The disease maps were employed to exploratory investigate the spread of the 

disease and to clean the maps off the extra noise via the Bayesian approach to 

expose the underlying structure. 

 

Using the MCMC method, particular sets of prior densities over the space of 

possible relative risks parameters and hyper-parameters were adopted for each 

model.  The products of the likelihood and the prior densities produced the joint 

and conditional posterior densities of the parameters, from which all statistical 

inferences can be made for each model.  Convergence of the MCMC simulation 

to the stationary posterior distributions was assessed. This was achieved by 

monitoring the samples of the history graphs for posterior means of the 
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parameters, applying statistical diagnostic test and conducting sensitivity 

analysis for several trials of different choices of priors.  

 

The hierarchical models and the classical approach were applied on a spatial set 

of lip cancer data.  The spatial correlation among the counties was examined 

and found to be spatially correlated.  The results of the estimated relative risk 

for each county were compared with the result of the maximum likelihood 

estimation using the disease maps.  

 

The final model selection was accomplished by applying the deviance 

information criterion.  The performance of each model was investigated using 

the posterior predictive simulations.  The predictive simulation for each model 

was carried out using the Bayesian analysis results of the real data.  The 

graphical and numerical posterior predictive checks were used as the 

assessment tests for each model.  The numerical results showed a good 

agreement with the graphical results, in which the full model with both fixed 

and random effects was appropriate since it was found to be capable of 

providing the most similar values of the original and predicted samples 

compared to the other models.  This model was also found to be flexible since it 

can be reduced or extended according to the nature of the data. Nevertheless, 

great care must be considered in the choice of prior densities. 
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Epidemiologi reruang adalah kajian terhadap berlakunya sesuatu penyakit 

dalam lokasi reruang. Dalam epidemiologi reruang,  penyakit yang perlu dikaji 

biasanya berlaku di persekitaran sesuatu peta yang memerlukan kaedah 

berstatistik untuk memodelkan data yang tercerap. Kaedah yang digunakan 

perlulah sesuai dan boleh menampung kepelbagaian penyakit. Pendekatan 

klasik, yang digunakan untuk menganggar risiko terhadap penularan penyakit 

seolah-olah tidak memberi suatu anggaran yang baik apabila terdapat pelbagai 

faktor yang dijangka akan mempengaruhi merebaknya penyakit. 

 

Dalam kajian ini, risiko keheterogenan relatif diselidiki dan model hierarki 

Bayesan dengan punca keheterogenan berbeza dicadangkan menggunakan 

pendekatan Bayesan di dalam kaedah Rangkaian Markov Monte Carlo 
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(MCMC). Model Bayesan dibangunkan sedemikian rupa supaya ianya dapat 

mengambil kira beberapa faktor, diklasifikasi sebagai kesan tetap dan rawak ke 

dalam model. Kesan yang diambil kira adalah kesan kovariat, kesan ubahan di 

antara kawasan dan kesan ubahan reruang. Kesemuanya dikaji dalam tiga 

model Bayesan Hierarki yang berbeza. Faktor ini memperlihatkan terdapat 

kesan yang besar dalam anggaran risiko relatif. 

 

Pendekatan Bayesan, di dalam kaedah MCMC menghasilkan anggaran yang 

stabil bagi setiap individu (cth. daerah) dalam kawasan reruang teratur. Ia juga 

mampu untuk mengkaji selanjutnya keheterogenan yang tidak boleh 

diterangkan dalam peta  penyakit. Peta penyakit digunakan untuk menjalankan 

kajian jelajahan terhadap sebaran penyakit dan membersihkan peta daripada 

ganguan berlebihan melalui pendekatan Bayesan untuk memperlihatkan 

struktur sebenar data. 

 

Menggunakan kaedah MCMC, set ketumpatan prior tertentu atas ruang 

parameter risiko relatif dan parameter-hyper yang mungkin telah digunapakai 

bagi setiap model. Hasil darab ketumpatan kebolehjadian dengan prior 

menghasilkan ketumpatan posterior tercantum, bersyarat dan marginal bagi 

parameter yang membolehkan pentakbiran statistik dilaksanakan bagi setiap 

model. Titik penumpuan simulasi MCMC kepada taburan posterior pegun 
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dinilai dengan memantau sampel dari peta sejarah bagi parameter min 

posterior. 

 

Model berhierarki dan pendekatan klasik diterapkan dengan menggunakan set 

data reruang kanser bibir. Korelasi reruang di antara daerah dikaji dan didapati 

ianya berkorelasi. Keputusan daripada risiko relatif yang dianggarkan bagi 

setiap daerah dibandingkan dengan keputusan anggaran kebolehjadian 

maksimum melalui peta penyakit. 

 

Pemilihan model yang muktamad dilaksanakan menggunakan kriteria 

informasi devian. Prestasi setiap model diselidiki menggunakan simulasi 

posterior ramalan. Simulasi ramalan bagi setiap model dijalankan 

menggunakan keputusan analisis Bayesan dari data sebenar. Pemeriksaan 

posterior ramalan secara bergraf dan berangka digunakan untuk menilai setiap 

model. Keputusan  berangka menunjukkan kesamaan dengan keputusan 

bergraf yang mana model penuh dengan kedua-dua kesan tetap dan rawak 

adalah sesuai disebabkan ia mampu memberikan keputusan yang nilainya 

hampir sama dengan model sebenar dan ramalan berbanding dengan model 

yang lain. Model ini juga didapati fleksibel kerana ia boleh dikecilkan atau 

dikembangkan mengikut keadaan data. Walau bagaimanapun pemilihan yang 

teliti adalah perlu apabila menentukan ketumpatan prior. 
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CHAPTER 1 

 

 OVERVIEW OF THE STUDY 

 

1.1 Introduction 

Statistical studies play an important tool in scientific discovery, policy 

formulation and business decisions.  Applications of statistics are ubiquitous 

that include clinical decision making, conducting an environmental risk 

assessment, setting insurance rate, etc.  

 

Statistics defined as the discipline which concerns with the treatment of 

numerical data derived from groups of individuals.  These individuals often 

include people, like those suffering from a certain disease, or those living in a 

certain area.  They may also be animals or other organisms. 

 

Statistical analysis of epidemiology has become a topic of considerable interest 

to statisticians and researchers in areas such as medical, biological and 

ecological sciences, public health, as well as environmental and geographical 

studies.  They are usually concerned about drawing conclusions from numerical 

data, and about quantities which are not observed.  These statistical conclusions 

are usually called statistical inferences. 
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Epidemiology is the study of how often diseases occur in different groups of 

people and why.  It can also be defined as the study of the occurrence of 

diseases in relation to their explanatory factors.  A key feature of epidemiology 

is the measurement of disease outcomes in relation to a population at risk.  The 

population at risk is the group of people, healthy or sick, who are counted as 

cases if they have the disease being studied.  Epidemiological information is 

used to plan and evaluate strategies to prevent an illness, and it also serves as a 

guide to the management of patients, in whom this particular disease has 

already developed. 

 

Spatial epidemiology is the study of the occurrences of disease in spatial 

locations along with the disease explanatory factors.  In spatial epidemiology, 

the disease to be examined usually occurs within a particular map, and the data 

are expressed as a point location (case event).  The data can also be aggregated 

as a count of the disease within a sub-region of the map.  Both data types need 

spatial statistical methods to model the observed data.  The methods used 

should be appropriate and catered for the variation of the disease (i.e. which is 

generated from the population at risk of the disease). 

 

Advances in statistical methodology, geographic information systems, and the 

availability of geographically referenced health and environmental data, have 

created new opportunities to investigate the variation of diseases.  However, 




