UNIVERSITI PUTRA MALAYSIA

CONVECTION BOUNDARY LAYER FLOWS OVER NEEDLES AND CYLINDERS IN VISCOUS FLUIDS

SYAKILA BINTI AHMAD

IPM 2009 4
CONVECTION BOUNDARY LAYER FLOWS OVER NEEDLES AND CYLINDERS IN VISCOUS FLUIDS

By

SYAKILA BINTI AHMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2009
To My Beloved Family and Friends.
CONVECTION BOUNDARY LAYER FLOWS OVER NEEDLES AND CYLINDERS IN VISCOUS FLUIDS

By
SYAKILA BINTI AHMAD

May 2009

Chairman : Norihan Md. Arifin, PhD
Institute : Institute for Mathematical Research

Convection is the heat transfer process which is frequently encountered in environmental and engineering applications. In this study, the problems of steady laminar convection boundary layer flows over needles and cylinders immersed in an incompressible and viscous fluid are theoretically considered. The dimensional partial differential equations governing the boundary layer flows are first transformed into non-dimensional equations. These equations are then transformed using non-similar transformation. Then, these transformed nonlinear systems of equations are solved using an implicit finite difference scheme known as the Keller-box method, which has been found to be very suitable in dealing with nonlinear and parabolic equations. The complete numerical method used in this study is programmed in Fortran. Numerical computations are carried out for various values of the dimensionless parameters of the problems, which include the Prandtl number Pr, the ratio of the major and minor axes of the cylinder b_c/a_c, the mixed convection parameter λ, the modified mixed convection parameter $\hat{\lambda}$, the transverse curvature parameter Λ, the parameter a representing the needle size and the viscosity/temperature parameter θ_r. Numerical results
presented in this study are the skin friction coefficient, the heat transfer coefficient, the local Nusselt number, the cylinder temperature as well as the velocity and temperature profiles. The obtained results show that the flow and the thermal characteristics are significantly influenced by these parameters.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

ALIRAN LAPISAN SEMPADAN OLAKAN PADA JARUM DAN SILINDER DALAM BENDALIR LIKAT

Oleh

SYAKILA BINTI AHMAD

Mei 2009

Pengerusi : Norihan Md. Arifin, PhD
Institut : Institut Penyelidikan Matematik

Olakan adalah suatu proses pemindahan haba yang sering berlaku dalam persekitaran dan juga dalam kebanyakan aplikasi kejuruteraan. Dalam kajian ini, masalah aliran lapisan sempadan olakan mantap dan berlamina terhadap jarum dan silinder dalam bendalir likat dan tak termampatkan telah dipertimbangkan secara teori. Persamaan pembezaan separa berdimensi yang menakluk aliran lapisan sempadan terlebih dahulu dijelmakan kepada persamaan tak berdimensi. Seterusnya, persamaan tersebut akan dijelma menggunakan penjelmaan tak serupa. Sistem persamaan terjelma tak linear yang diperoleh diselesaikan secara berangka menggunakan skim beza terhingga ter-sirat iaitu kaedah kotak Keller yang merupakan satu kaedah yang sangat sesuai untuk menyelesaikan persamaan tak linear dan parabolik. Kaedah berangka yang digunakan dalam kajian ini telah dibangunkan dalam bentuk pengaturcaraan komputer dengan menggunakan Fortran. Pengiraan berangka dilakukan untuk pelbagai nilai parameter tak berdimensi seperti nombor Prandtl Pr, nisbah paksi major dan minor silinder b_c/a_c, parameter olakan campuran λ, parameter olakan campuran ubahan $\hat{\lambda}$, parameter kelengkungan melintang Λ, parameter a yang mewakili saiz jarum dan parameter
kelikatan/suhu θ_r. Keputusan berangka yang dipersembahkan dalam kajian ini adalah pekali geseran kulit, pekali pemindahan haba, nombor Nusselt setempat, suhu silinder beserta profil halaju dan suhu. Keputusan yang diperoleh menunjukkan bahawa ciri-ciri aliran dan terma adalah sangat dipengaruhi oleh parameter-parameter yang dipertimbangkan di atas.
Bismillahirrahmanirrahim. Alhamdulillah. In the Name of Allah, the most Beneficient and the most Merciful, I would like to express my great appreciation for the guidance and assistance received throughout the journey of this thesis writing.

My deepest thanks to my respected supervisor and co-supervisors; Assoc. Prof. Dr. Norihan Md. Arifin, Assoc. Prof. Dr. Roslinda Mohd Nazar and Dr. Abdul Aziz Jaafar for their valuable guidance, knowledge, times and support, and also for making this thesis possible. I would also like to extend my appreciation to Prof. Ioan Pop from University of Cluj, Romania, for his motivation and support.

Many thanks to the Institute for Mathematical Research, Universiti Putra Malaysia (UPM) for giving me the opportunity to do my research here and also for providing me with a very good research environment and equipments. My special thanks to the staffs from the institute who have been very supportive and very helpful during my course of study here. Also thanks to all the staffs in UPM who have involved directly or indirectly during my studies and also during the preparation of this thesis. I would also like to express my sincere thanks to Universiti Sains Malaysia (USM) and Ministry of Higher Education Malaysia for the financial support throughout the course of my study.

I would like to thank all my friends and research colleagues who kindly provided valuable and helpful comments in the preparation of this thesis. Finally, thank you very much to the most important person in my life, my parent and members of the family for their unconditional love and support especially during the hard times. May Allah bless you all.
I certify that a Thesis Examination Committee has met on 27 May 2009 to conduct the final examination of Syakila binti Ahmad on her thesis entitled "Convection Boundary Layer Flows Over Needles and Cylinders in Viscous Fluids" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Noor Akma Ibrahim, PhD
Associate Professor
Institute for Mathematical Research
Universiti Putra Malaysia
(Chairman)

Malik Abu Hassan, PhD
Professor
Institute for Mathematical Research
Universiti Putra Malaysia
(Internal Examiner)

Mohd Noor Saad, PhD
Lecturer
Institute for Mathematical Research
Universiti Putra Malaysia
(Internal Examiner)

Bachok Taib, PhD
Professor
Center for Graduate Studies
Universiti Sains Islam Malaysia
Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 July 2009
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Norihan Md. Arifin, PhD
Associate Professor
Institute for Mathematical Research
Universiti Putra Malaysia
(Chairman)

Abdul Aziz Jaafar, PhD
Lecturer
Institute for Mathematical Research
Universiti Putra Malaysia
(Member)

Roslinda Mohd Nazar, PhD
Associate Professor
Institute for Mathematical Research
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 July 2009
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SYAKILA BINTI AHMAD

Date: 10 July 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Forced, Free and Mixed Convection 1
1.2 Viscous Fluid 2
1.3 Boundary Layer Theory 3
1.4 The Effects of Prandtl Number on Boundary Layer 5
1.5 Objectives and Scope 7
1.6 Literature Review 8

1.6.1 Free Convection over Cylinders of Elliptic Cross Section 9
1.6.2 Forced and Mixed Convection over Thin Needles 10
1.6.3 Mixed Convection over Slender Cylinder 11
1.6.4 Mixed Convection over Horizontal Circular Cylinder 12
1.6.5 The Keller-box Method 13
1.7 Governing Equations 14

1.7.1 The Dimensional Equations, Boundary Layer and Boussinesq Approximations 15
1.7.2 The Non-dimensional Equations 23
1.7.3 Non-similar Transformation 24

1.8 Thesis Outline 25

2 THE KELLER-BOX METHOD

2.1 Introduction 27
2.2 The Finite Difference Method 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Newton Method</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Block Elimination Method</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>Initial Conditions</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>FREE CONVECTION BOUNDARY LAYER FLOW</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Constant Surface Heat Flux</td>
<td>52</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Mathematical Formulation</td>
<td>52</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Solution Procedure</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Results and Discussion</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Temperature-dependent Viscosity</td>
<td>67</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Mathematical Formulation</td>
<td>67</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Solution Procedure</td>
<td>70</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Results and Discussion</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusions</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>FORCED CONVECTION BOUNDARY LAYER FLOW</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>85</td>
</tr>
<tr>
<td>4.2</td>
<td>Mathematical Formulation</td>
<td>87</td>
</tr>
<tr>
<td>4.3</td>
<td>Solution Procedure</td>
<td>89</td>
</tr>
<tr>
<td>4.4</td>
<td>Results and Discussion</td>
<td>91</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>MIXED CONVECTION BOUNDARY LAYER FLOW</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>Mathematical Formulation</td>
<td>101</td>
</tr>
<tr>
<td>5.3</td>
<td>Solution Procedure</td>
<td>103</td>
</tr>
<tr>
<td>5.4</td>
<td>Results and Discussion</td>
<td>105</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusions</td>
<td>111</td>
</tr>
<tr>
<td>6</td>
<td>MIXED CONVECTION BOUNDARY LAYER FLOW</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>112</td>
</tr>
<tr>
<td>6.2</td>
<td>Variable Wall Temperature</td>
<td>114</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Mathematical Formulation</td>
<td>114</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Solution Procedure</td>
<td>116</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Results and Discussion</td>
<td>117</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Values of the cylinder temperature θ_w for $Pr = 1$ with blunt orientation ($b_c/a_c = 0.1$ and 0.25) compared to Merkin (1977a)</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Values of the cylinder temperature θ_w for $Pr = 1$ with blunt orientation ($b_c/a_c = 0.5$ and 0.75) compared to Merkin (1977a)</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Values of the cylinder temperature θ_w for $Pr = 1$ with slender orientation ($b_c/a_c = 1$ and 0.75) compared to Merkin (1977a)</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Values of the cylinder temperature θ_w for $Pr = 1$ with slender orientation ($b_c/a_c = 0.5$ and 0.25) compared to Merkin (1977a)</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Values of the heat transfer q_w for $Pr = 1$ with blunt orientation ($b_c/a_c = 0.1$ and 0.25) when $\theta_r \to -\infty$</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>Values of the heat transfer q_w for $Pr = 1$ with blunt orientation ($b_c/a_c = 0.5$ and 0.75) when $\theta_r \to -\infty$</td>
<td>74</td>
</tr>
<tr>
<td>3.7</td>
<td>Values of the heat transfer q_w for $Pr = 1$ with slender orientation ($b_c/a_c = 1$ and 0.75) when $\theta_r \to -\infty$</td>
<td>75</td>
</tr>
<tr>
<td>3.8</td>
<td>Values of the heat transfer q_w for $Pr = 1$ with slender orientation ($b_c/a_c = 0.5$ and 0.25) when $\theta_r \to -\infty$</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>Skin friction coefficient $C_f Re^{1/2}$ over thin needles for $m = 0$</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>Values of $\theta'(a)$ over thin needles for $m = 0$ and $a = 0.1$</td>
<td>93</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 The velocity and thermal boundary layers</td>
<td>4</td>
</tr>
<tr>
<td>1.2 The effect of Prandtl number Pr on velocity and thermal boundary layers thicknesses</td>
<td>6</td>
</tr>
<tr>
<td>1.3 The types of fluid for various values of Prandtl number Pr</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Physical model and coordinate system for free convection over a cylinder of elliptic cross section</td>
<td>18</td>
</tr>
<tr>
<td>2.1 Net rectangle for difference approximations</td>
<td>29</td>
</tr>
<tr>
<td>2.2 Flow diagram for the Keller-box method</td>
<td>50</td>
</tr>
<tr>
<td>3.1 Physical model and coordinate system for free convection over a cylinder of elliptic cross section with constant surface heat flux</td>
<td>53</td>
</tr>
<tr>
<td>3.2 The local skin friction coefficient C_f for various Pr with blunt orientation ($b_c/a_c = 0.1$)</td>
<td>61</td>
</tr>
<tr>
<td>3.3 The cylinder temperature θ_w for various Pr with blunt orientation ($b_c/a_c = 0.1$)</td>
<td>61</td>
</tr>
<tr>
<td>3.4 The local skin friction C_f coefficient for various Pr with slender orientation ($b_c/a_c = 0.75$)</td>
<td>62</td>
</tr>
<tr>
<td>3.5 The cylinder temperature θ_w for various Pr with slender orientation ($b_c/a_c = 0.75$)</td>
<td>62</td>
</tr>
<tr>
<td>3.6 The local skin friction coefficient C_f for $Pr = 0.7$ and 6.8 with blunt orientation (various b_c/a_c)</td>
<td>64</td>
</tr>
</tbody>
</table>
3.7 The cylinder temperature θ_w for $Pr = 0.7$ and 6.8 with blunt orientation (various b_c/a_c)

3.8 The local skin friction coefficient C_f for $Pr = 0.7$ and 6.8 with slender orientation (various b_c/a_c)

3.9 The cylinder temperature θ_w for $Pr = 0.7$ and 6.8 with slender orientation (various b_c/a_c)

3.10 Velocity profiles f' at lower stagnation point of the cylinder, $x = 0$ for various Pr with $b_c/a_c = 0.1$ (blunt orientation)

3.11 Temperature profiles θ at lower stagnation point of the cylinder, $x = 0$ for various Pr with $b_c/a_c = 0.1$ (blunt orientation)

3.12 Physical model and coordinate system for free convection over a cylinder of elliptic cross section with temperature-dependent viscosity

3.13 Heat transfer q_w for $Pr = 1$ (blunt: $b_c/a_c = 0.1$)

3.14 Heat transfer q_w for $Pr = 1$ (blunt: $b_c/a_c = 0.25$)

3.15 Heat transfer q_w for $Pr = 1$ (blunt: $b_c/a_c = 0.5$)

3.16 Heat transfer q_w for $Pr = 1$ (blunt: $b_c/a_c = 0.75$)

3.17 Heat transfer q_w for $Pr = 6.8$ (slender: $b_c/a_c = 1.0$)

3.18 Heat transfer q_w for $Pr = 6.8$ (slender: $b_c/a_c = 0.75$)

3.19 Heat transfer q_w for $Pr = 6.8$ (slender: $b_c/a_c = 0.5$)

3.20 Heat transfer q_w for $Pr = 6.8$ (slender: $b_c/a_c = 0.25$)

3.21 Temperature profiles θ at $\zeta \approx 0$ for blunt orientation with $b_c/a_c = 0.1$ for $Pr = 1$ and 6.8
3.22 Temperature profiles θ at $\zeta \approx 0$ for slender orientation with $b_c/a_c = 0.25$ for Pr = 1 and 6.8

4.1 Physical model and coordinate system for forced convection over a moving thin needle

4.2 Variation of the skin friction coefficient $C_f Re^{1/2}$ with a when $m = 0$

4.3 Variation of the local Nusselt number $Nu_x Re_x^{-1/2}$ with a for various values of Pr when $m = 0$

4.4 Variation of the local Nusselt number $Nu_x Re_x^{-1/2}$ with Pr for various values of a when $m = 0$

4.5 Velocity profiles f' for various values of a when $m = 0$

4.6 Temperature profiles θ for various values of a when Pr = 0.7 (air) and $m = 0$

4.7 Temperature profiles θ for various values of Pr when $m = 0$ and $a = 0.01$

5.1 Physical model and coordinate system for mixed convection along a vertical thin needle

5.2 Variation of the skin friction coefficient $C_f Re_x^{1/2}$ with λ for various values of a when Pr = 0.7 and $m = 0$ (paraboloid)

5.3 Variation of the local Nusselt number $Nu_x Re_x^{-1/2}$ with λ for various values of a when Pr = 0.7 and $m = 0$ (paraboloid)

5.4 Variation of the skin friction coefficient $C_f Re_x^{1/2}$ with λ for various values of a when Pr = 0.7 and $m = 1$ (cylinder)

5.5 Variation of the local Nusselt number $Nu_x Re_x^{-1/2}$ with λ for various values of a when Pr = 0.7 and $m = 1$ (cylinder)
5.6 Variation of the skin friction coefficient $C_f Re_x^{1/2}$ with λ for various values of a when $Pr = 0.7$ and $m = -1$ (cone)

5.7 Variation of the local Nusselt number $Nu_x Re_x^{-1/2}$ with λ for various values of a when $Pr = 0.7$ and $m = -1$ (cone)

5.8 Velocity profiles f' for various values of a with $Pr = 0.7$, $m = 1$ and $\lambda = -3$

5.9 Temperature profiles θ for various values of a with $Pr = 0.7$, $m = 1$ and $\lambda = -3$

6.1 Physical model and coordinate system for mixed convection along a vertical moving thin needle with variable wall temperature

6.2 Variation of the skin friction coefficient $C_f Re_x^{1/2}$ with λ for various values of a when $Pr = 0.7$ and $m = 0$

6.3 Variation of the local Nusselt number $Nu_x Re_x^{-1/2}$ with λ for various values of a when $Pr = 0.7$ and $m = 0$

6.4 Variation of the skin friction coefficient $C_f Re_x^{1/2}$ with Pr for various values of a when $m = 0$ and $\lambda = 2.5$ (assisting flow)

6.5 Variation of the local Nusselt number $Nu_x Re_x^{-1/2}$ with Pr for various values of a when $m = 0$ and $\lambda = 2.5$ (assisting flow)

6.6 Variation of the skin friction coefficient $C_f Re_x^{1/2}$ with Pr for various values of a when $m = 0$ and $\lambda = -2.5$ (opposing flow)

6.7 Variation of the local Nusselt number $Nu_x Re_x^{-1/2}$ with Pr for various values of a when $m = 0$ and $\lambda = -2.5$ (opposing flow)

6.8 Velocity profiles f' for various values of a with $Pr = 0.7$, $m = 0$ and $\lambda = 5$ (assisting flow)

6.9 Temperature profiles θ for various values of a with $Pr = 0.7$, $m = 0$ and $\lambda = 5$ (assisting flow)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10</td>
<td>Physical model and coordinate system for mixed convection along a vertical moving thin needle with variable surface heat flux</td>
</tr>
<tr>
<td>6.11</td>
<td>Variation of the skin friction coefficient $C_f \text{Re}^{1/2}$ with λ for various values of a when $Pr = 0.7$ and $m = 0$</td>
</tr>
<tr>
<td>6.12</td>
<td>Variation of the reduced surface temperature $\theta(a)$ with λ for various values of a when $Pr = 0.7$ and $m = 0$</td>
</tr>
<tr>
<td>6.13</td>
<td>Variation of the skin friction coefficient $C_f \text{Re}^{1/2}$ with Pr for various values of a when $m = 0$ and $\lambda = 3$ (assisting flow)</td>
</tr>
<tr>
<td>6.14</td>
<td>Variation of the reduced surface temperature $\theta(a)$ with Pr for various values of a when $m = 0$ and $\lambda = 3$ (assisting flow)</td>
</tr>
<tr>
<td>6.15</td>
<td>Variation of the skin friction coefficient $C_f \text{Re}^{1/2}$ with Pr for various values of a when $m = 0$ and $\lambda = -3$ (opposing flow)</td>
</tr>
<tr>
<td>6.16</td>
<td>Variation of the reduced surface temperature $\theta(a)$ with Pr for various values of a when $m = 0$ and $\lambda = -3$ (opposing flow)</td>
</tr>
<tr>
<td>6.17</td>
<td>Velocity profiles f' for various values of a with $Pr = 0.7$, $m = 0$ and $\lambda = 5$ (assisting flow)</td>
</tr>
<tr>
<td>6.18</td>
<td>Temperature profiles θ for various values of a with $Pr = 0.7$, $m = 0$ and $\lambda = 5$ (assisting flow)</td>
</tr>
<tr>
<td>7.1</td>
<td>Physical model and coordinate system for mixed convection along a moving vertical slender cylinder</td>
</tr>
<tr>
<td>7.2</td>
<td>Variation of the skin friction coefficient $C_f \text{Re}^{1/2}$ with Λ for the case of assisting flow with various values of Pr and $\hat{\lambda}$</td>
</tr>
<tr>
<td>7.3</td>
<td>Variation of the local Nusselt number $Nu_x \text{Re}_x^{-1/2}$ with Λ for the case of assisting flow with various values of Pr and $\hat{\lambda}$</td>
</tr>
<tr>
<td>7.4</td>
<td>Variation of the skin friction coefficient $C_f \text{Re}_x^{1/2}$ with Λ for the case of opposing flow with various values of Pr and $\hat{\lambda}$</td>
</tr>
</tbody>
</table>
7.5 Variation of the local Nusselt number $N_u x Re_x^{-1/2}$ with Λ for the case of opposing flow with various values of Pr and $\hat{\lambda}$

7.6 The effect of transverse curvature Λ on velocity profiles f' for the case of assisting flow with $\hat{\lambda} = 1$ and $Pr = 0.7$

7.7 The effect of transverse curvature Λ on temperature profiles θ for the case of assisting flow with $\hat{\lambda} = 1$ and $Pr = 0.7$

7.8 The effect of modified mixed convection parameter $\hat{\lambda}$ on velocity profiles f' for the case of assisting flow with $\Lambda = 3.21$ and $Pr = 0.7, 6.8, 10$

7.9 The effect of modified mixed convection parameter $\hat{\lambda}$ on temperature profiles θ for the case of assisting flow with $\Lambda = 3.21$ and $Pr = 0.7, 6.8, 10$

8.1 Physical model and coordinate system for mixed convection past a horizontal circular cylinder

8.2 The skin friction coefficient C_f for various values of λ when $Pr = 1$ (case of constant viscosity)

8.3 The Nusselt number N_u for various values of λ when $Pr = 1$ (case of constant viscosity)

8.4 The skin friction coefficient C_f for various values of θ_r when $Pr = 0.7$ and $\lambda = 0.5$ (assisting flow), $\lambda = -1.0$ (opposing flow)

8.5 The Nusselt number N_u for various values of θ_r when $Pr = 0.7$ and $\lambda = 0.5$ (assisting flow), $\lambda = -1.0$ (opposing flow)

8.6 The skin friction coefficient C_f for various values of θ_r when $Pr = 7$ and $\lambda = 0.5$ (assisting flow), $\lambda = -1.0$ (opposing flow)

8.7 The Nusselt number N_u for various values of θ_r when $Pr = 7$ and $\lambda = 0.5$ (assisting flow), $\lambda = -1.0$ (opposing flow)
8.8 Variation of the separation point x_s with λ for $Pr = 0.7$ when $|\theta_r| = 2, 4$ and $|\theta_r| \to \infty$ (constant viscosity)

8.9 Variation of the separation point x_s with λ for $Pr = 7$ when $|\theta_r| = 2, 4$ and $|\theta_r| \to \infty$ (constant viscosity)

8.10 Variation of the separation point x_s with λ for $Pr = 1$ when $|\theta_r| \to \infty$ (constant viscosity)
LIST OF ABBREVIATIONS

\(a \) dimensionless needle size
\(a_c \) length of semi-major axis for a cylinder of elliptic cross section
\(a_{cc} \) radius of the circular cylinder
\(b_c \) length of semi-minor axis for a cylinder of elliptic cross section
\(C_f \) skin friction coefficient
\(f \) non-dimensional stream function
\(g \) acceleration due to gravity
\(Gr \) Grashof number
\(k \) thermal conductivity of the fluid
\(m \) power index
\(Nu \) Nusselt number
\(Nu_x \) local Nusselt number
\(Pr \) Prandtl number
\(q_w \) heat flux from the cylinder
\(R(x) \) non-dimensional needle radius
\(Re \) Reynolds number
\(Re_x \) local Reynolds number
\(T \) non-dimensional fluid temperature
\(T_r \) reference temperature
\(T_w \) needle or cylinder temperature
\(T_\infty \) ambient temperature
\(u, v \) non-dimensional velocity components along the \(x \)- and \(y \)- directions, respectively, for a cylinder of elliptic cross section and a circular cylinder
\(u, v \) non-dimensional velocity components along the \(x \)– and \(r \)– directions, respectively, for a thin needle and a slender cylinder

\(u_e(x) \) non-dimensional velocity outside boundary layer

\(U_\infty \) free stream velocity

\(x, y \) non-dimensional Cartesian coordinates along the surface of the cylinder and normal to it, respectively, for a cylinder of elliptic cross section and a circular cylinder

\(x, r \) non-dimensional axial and radial coordinates, respectively, for a thin needle and a slender cylinder

\(x_s \) boundary layer separation point

Greek symbols

\(\alpha \) thermal diffusivity

\(\beta \) thermal expansion coefficient

\(\delta_h \) velocity boundary layer thickness

\(\delta_T \) thermal boundary layer thickness

\(\Delta T \) characteristic temperature

\(\eta \) similarity variable

\(\gamma \) thermal property of the fluid

\(\theta \) non-dimensional temperature

\(\theta_r \) viscosity/temperature parameter

\(\lambda \) mixed convection parameter

\(\hat{\lambda} \) modified mixed convection parameter

\(\Lambda \) transverse curvature parameter

\(\nu \) kinematic viscosity

\(\nu_\infty \) constant kinematic viscosity of the ambient fluid
\(\mu \)
Dynamic viscosity

\(\mu_\infty \)
Constant dynamic viscosity of the ambient fluid

\(\xi \)
Non-dimensional coordinate

\(\rho \)
Fluid density

\(\tau_w \)
Wall shear stress

\(\psi \)
Stream function

\(\zeta \)
Eccentric angle of a cylinder of elliptic cross section

Subscripts

\(c \)
Refers to a cylinder of elliptic cross section

\(cc \)
Refers to a circular cylinder

\(w \)
Condition at the surface of the cylinder

\(\infty \)
Ambient/free stream condition

Superscripts

\(' \)
Differentiation with respect to \(y \)

\(- \)
Dimensional variables