UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF AN AVIAN INFLUENZA VIRUS H5N1 DNA VACCINE AND THE USE OF MDP-1 GENE OF MYCOBACTERIUM BOVIS AS GENETIC ADJUVANT

BABAK JALILIAN

IB 2009 7
DEVELOPMENT OF AN AVIAN INFLUENZA VIRUS H5N1 DNA VACCINE AND THE USE OF MDP-1 GENE OF *Mycobacterium bovis* AS GENETIC ADJUVANT

By

BABAK JALILIAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

September 2009
Avian influenza (AI) virus subtype H5N1 is a highly pathogenic virus that causes acute infection with high mortality in susceptible birds. Additionally, the virus can also cause lethal infection in human. Effective control of AI requires various strategies which comprises of vaccination, biosecurity, education, diagnostics and surveillance. The crucial objectives of AI control strategies are to prevent introduction of AI, ease the losses and total eradication of AI. Immune response against the Hemagglutinin (HA) protein and the Neuraminidase (NA) protein by the immune components results in protection against AI. Currently, several conventional and genetically engineered AI vaccines using recombinant technology has been developed and tested in experimental trials. However, its application in commercial chickens has not been studied thoroughly except for conventional and fowlpox virus based vaccines. Vaccination using DNA vaccines is an attractive approach to induce vaccine-induced immunity. On the other hand, DNA vaccine is relatively less immunogenic. Furthermore, several inoculations are required to induce strong vaccine-induced immunity. Different approaches such as
adjuvants are available to enhance the immunogenicity of DNA vaccine. The objectives of this study were to construct and express the pcDNA3.1/H5, pcDNA3.1/N1 and pcDNA3.1/NP of H5N1 and to explore the adjuvancy role of Mycobacterial DNA binding Protein-1 (MDP1) in augmenting H5 DNA vaccine in inducing specific antibody response. Constructed pcDNA3.1/MDP1 plasmids encoding MDP1 was obtained from Osaka University, Japan. The complete genes of H5, N1 and NP gene of Malaysian H5N1 virus (A/Ck/Malaysia/5858/04) were cloned separately into pcDNA3.1+ vector. The orientation of the cloned fragments was verified by restriction mapping and DNA sequencing. The expression of protein of the cloned genes was evaluated by transfection of Vero cell lines followed by detection of bands of the expected sized using Western blotting analysis. The immunogenicity of the cloned H5 DNA vaccine was tested in SPF chickens. The chickens were divided into 5 groups namely H5, H5+MDP1, pcDNA3.1, PBS and negative control. The constructed plasmids were injected intramuscularly to 10 days old chickens followed by two booster injections at 14 and 28 days. Bleeding via wing vein was conducted every week post immunization and the collected sera were analyzed using HI test. The HI test showed successful antibody production second week after immunization with an increase in antibody titers during the course of experiment in group inoculated with H5 and H5+MDP1. The result showed that the constructed DNA vaccines were able to induce the production of detectable antibody titer. Furthermore, spleen and muscle samples from chickens inoculated with H5 and H5+MDP1 expressed H5 RNA transcripts. However, the higher antibody titers in chickens inoculated with H5+MDP1 was not
statistically significant when compared with chickens inoculated with H5 alone. The highest HI titers for both groups never exceeded 16 HI unit.
Abstrak tesis ini dipersembahkan kepada Senat Universiti Putra Malaysia untuk memenuhi syarat-syarat Ijazah Sarjana Sains

PEMBANGUNAN VAKSIN DNA BAGI VIRUS SELESEMA BURUNG H5N1 DAN PENGUNAAN GEN MDP-1 MYCOBACTERIUM BOVIS SEBAGAI ADJUVAN GENETIK

OLEH
BABAK JALILIAN
SEPTEMBER 2009

PENGERUSI: PROFESOR DR. ABDUL RAHMAN OMAR
INSTITUT: INSTITUT BIOSAINS

Virus selesema burung jenis H5N1 adalah virus yang sangat patogenik yang menyebabkan jangkitan akut dan mengakibatkan kadar kematian yang tinggi terhadap spesis burung. Virus ini juga boleh mengakibatkan jangkitan yang membawa maut kepada manusia. Bagi mengawal penyakit selesema burung secara efektif, pelbagai strategi diperlukan yang melibatkan kesepakatan dari segi vaksinasi, keselamatan biologi, pendidikan, diagnostik dan pengawasan yang rapi. Beberapa objektif penting dalam strategi mengawal penyakit selesema burung ialah mengelak permulaan wabak penyakit, mengatasi kelemahan, dan membasmi penyakit ini sepenuhnya. Tindak balas imun terhadap protein Hemagglutinin (HA) dan protein Neuraminidase (NA) oleh komponen imun dapat memberi kan perlindungan daripada penyakit tersebut. Kini, terdapat beberapa vaksin konvensional dan vaksin rekombinan yang terhasil dengan menggunakan teknologi kejuruteraan genetik yang telah diuji secara ujian makmal namun pengaplikasianya secara komersial terhadap ayam belum lagi dilakukan secara menyeluruh kecuali bagi vaksin konvensional dan vaksin rekombinan berasaskan virus...
Selain itu, sampel limpa dan otot daripada ayam-ayam yang telah diinokulat dengan H5 and H5+MDP1 menunjukkan transkrip RNA H5. Namun, jumlah titer antibodi yang tinggi daripada ayam yang diinokulat dengan H5+MDP1 tidak signifikan secara statistik jika dibandingkan dengan ayam yang diinokulat dengan H5 sahaja. Titer HI yang tertinggi daripada kedua-dua kumpulan tidak melebihi 16.
ACKNOWLEDGEMENTS

All praise to Almighty God, the Merciful and Benevolent. The completion of this study would not have been possible had it not been due to His will and favor.

I would like to express my sincere gratitude and appreciation to my supervisor Prof. Dr. Abdul Rahman Omar for his invaluable guidance, advice, supervision and encouragement during my study which even reduces our non academic problems by his wise help.

My sincere gratitude and appreciation to Professor Dr. Mohd Hair Bejo and Dr. Noorjahan Banu bt Mohamed Alitheen, my co-supervisors for their continuous guidance and suggestion toward the completion of this study.

I am also grateful to UPM for granting me the Graduate Research Fellowship.

I am highly indebted to Siti Mariam Bt Zakaria, for her statistical advice and feedback. I would like to thank Siti Khadijah Muhamad from Biologics Laboratory and Puan Zarina from IBS for their great assistance. I would also like thank my fellow graduate students at Mehdi Rasoli, Lim and Hidayah.

Last but not least, my deepest appreciation will always go to my family, my parent and my brother: Mr. Rasoul Jalilian, Mrs. Roughayeh Farahbakhshian and Dr. Hadi Jalilian for their support and sacrifices.
I certify that an examination committee has met on 3 September 2009 to conduct the final examination of Babak Jalilian on his Master of Science thesis entitled “Development of an Avian Influenza Virus H5N1 DNA vaccine and the use of MDP1 gene of *Mycobacterium bovis* as genetic adjuvant” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the examination committee are as follows:

Abdul Rahim Mutilib, PhD
Associate Professor
Laboratory of Veterinary Pathology and Microbiology
Faculty of Veterinary Medicine
University Putra Malaysia
43400 Serdang, Selangor, Malaysia
(Chairman)

Zunita Zakaria, PhD
Associate Professor
Laboratory of Veterinary Pathology and Microbiology
Faculty of Veterinary Medicine
University Putra Malaysia
43400 Serdang, Selangor, Malaysia
(Internal Examiner)

Ahmad Bustamam Bin Abdul, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Ishak Mat, PhD
Associate Professor
School Of Medical Sciences
Universiti Sains Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 October 2009
This thesis submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the supervisory Committee are as follows:

Abdul Rahman Omar
Professor
Institute of Bioscience
University Putra Malaysia
(Chairperson)

Mohd Hair Bejo
Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Member)

Noorjahan Banu bt Mohamed Alitheen
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
University Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 November 2009
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institution.

Babak Jalilian

Date: 21 December 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

2 **LITERATURE REVIEW**

 2.1 Influenza virus

 2.1.1 Structure of influenza virus
 2.1.2 Taxonomic classification
 2.1.3 Virus properties
 2.1.4 Epidemiology
 2.1.5 Diagnostic methods

 2.2 Immunity to influenza

 2.3 Vaccination

 2.3.1 Vaccines against influenza
 2.3.2 DNA vaccines
 2.3.3 Early history of DNA vaccines
 2.3.4 Routes of vaccinations
 2.3.5 Advantages of DNA vaccines
 2.3.6 Influenza DNA vaccines

 2.4 Vaccine adjuvants

 2.4.1 MDP1 (*Mycobacterium* dependent binding protein 1)

3 **MATERIALS AND METHODS**

 3.1 Cloning

 3.1.1 PCR amplification
 3.1.2 Gel purification
 3.1.3 Digestion
 3.1.4 Gel purification of digested vector and gene
 3.1.5 Ligation
 3.1.6 Preparation of TOP10F' competent cells
 3.1.7 Transformation
 3.1.8 PCR screening
 3.1.9 Propagation
 3.1.10 Extraction
3.1.11 Analysis of positive clones by RE analysis 40
3.1.12 Glycerol stock 41
3.1.13 Spectrophotometry 41
3.1.14 Sequencing 41

3.2 In vitro Expression 42
3.2.1 Cell culture 42
3.2.2 Transfection 44
3.2.3 SDS-PAGE 45
3.2.4 Western blotting 48

3.3 Animal Trial 50
3.3.1 Preparation of the DNA plasmid for injection using Endo-free® plasmid mega extraction kits 50
3.3.2 DNA vaccination using intramuscular injection 51
3.3.3 Blood samples 52
3.3.4 HA and HI tests 53
3.3.5 RT-PCR 54

4 RESULTS 57
4.1 Cloning 57
4.1.1 Amplification and cloning into pcDNA3.1+ 57
4.1.2 PCR screening of the constructed plasmids 66
4.1.3 Restriction enzyme digestion of the amplified genes 70
4.1.4 Sequence analysis of H5, N1, NP and MDP1 73

4.2 In vitro expression 74
4.3 Animal trial 78
4.3.1 Hemagglutinin inhibition test 78
4.3.2 RT-PCR 80

5 DISCUSSION 83
6 CONCLUSION 89

REFERENCES 91

APPENDIX 118
A 118
B 119
C 120
D 121

BIODATA OF STUDENT 122
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The reservoirs of influenza A viruses</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Pandemics in the 20th century</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Primers designed for amplification of H5, N1, NP and MDP1 genes</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>The restriction sites inserted in designed primers for H5, N1, NP and MDP1</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation of PCR solution using Platinium Taq DNA polymerase high fidelity</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Optimum time and temperature for different stages of the PCR amplification</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Reagents and their volumes used in ligation</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Ligation mixture used to ligate the PCR product to the Vector</td>
<td>37</td>
</tr>
<tr>
<td>3.7</td>
<td>Reagents for digestion of plasmid and target DNA</td>
<td>40</td>
</tr>
<tr>
<td>3.8</td>
<td>Reagent used to prepare 12% resolving gel</td>
<td>46</td>
</tr>
<tr>
<td>3.9</td>
<td>Reagent used to prepare 12% stocking gel</td>
<td>46</td>
</tr>
<tr>
<td>3.10</td>
<td>Reagents used to prepare sample buffer</td>
<td>47</td>
</tr>
<tr>
<td>3.11</td>
<td>Primers for RT-PCR amplification of H5 gene</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Primers used for sequencing</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean haemagglutinin inhibition (HI) results of the serum samples from immunized chickens</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure of influenza virus</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>A schematic view of Western blotting sandwich</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>A schematic view of 1.5 ml tube after addition of chloroform and centrifugation</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Agarose gel electrophoresis of H5 amplification product using H5 forward and reverse primers</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>A schematic view of the inserted H5 in pcDNA3.1+ using Hin d III and Bam HI restriction enzymes</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Agarose gel electrophoresis of N1 amplification product using N1 forward and reverse primers</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>A schematic view of the inserted N1 in pcDNA3.1+ using Hin d III and Eco R I restriction enzymes</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Agarose gel electrophoresis of H5 amplification product using H5 forward and H5 reverse primers; and NP amplification product using NP forward and reverse primers</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>A schematic view of the inserted NP in pcDNA3.1+ using Hin d III and Bam HI restriction enzymes</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Agarose gel electrophoresis of MDP1 amplification product using MDP1 forward and MDP1 reverse primers</td>
<td>64</td>
</tr>
<tr>
<td>4.8</td>
<td>A schematic view of the inserted MDP1 in pcDNA3.1+ using Hin d III and Bam HI restriction enzymes</td>
<td>65</td>
</tr>
<tr>
<td>4.9</td>
<td>Agarose gel electrophoresis following PCR screening of the recombinant plasmid pcDNA3.1/H5.</td>
<td>66</td>
</tr>
<tr>
<td>4.10</td>
<td>Agarose gel electrophoresis following PCR screening of the recombinant plasmid pcDNA3.1/N1</td>
<td>67</td>
</tr>
</tbody>
</table>
4.11 Agarose gel electrophoresis following PCR screening of the recombinant plasmid pcDNA3.1/NP
68

4.12 Agarose gel electrophoresis following PCR screening of the recombinant plasmid pcDNA3.1/MDP1
69

4.13 Restriction enzyme analysis of recombinant plasmids with H5 and N1 genes
71

4.14 Restriction enzyme analysis of recombinant plasmids with H5, NP and MDP1 genes
72

4.15 Western blot analysis of Vero cells transfected with H5 gene
74

4.16 Western blot analysis of Vero cells transfected with N1 gene
75

4.17 Western blot analysis of Vero cells transfected with NP gene
76

4.18 Western blot analysis of cells transfected with MDP1 gene
77

4.19 Gel electrophoresis of extracted plasmids used for DNA vaccination
78

4.20 Comparison of HI titers of chickens vaccinated with different DNA vaccines
80

4.21 RT-PCR analysis of different tissues obtained from chickens vaccinated with different DNA vaccines
81

4.22 PCR analysis of different tissues obtained from chickens vaccinated with different DNA vaccines
82
LIST OF ABBREVIATIONS

% Percentage
°C Celsius temperature (centigrade temperature)
µg Microgram
µl Microliter
Ab Antibody
AI Avian influenza
AIV Avian influenza virus
APS Ammonium persulfate
bp Base pair
dH₂O Distilled water
ddH₂O Deionized distilled water
DNA Deoxyribonucleic acid
dNTP Deoxyribonucleotide triphosphate
ds Double-Stranded
EDTA Ethylene diamine tetra acetic acid
ELISA Enzyme linked immunosorbent assay
G Gram
H₂O Water
HA Haemagglutinin
Ig Immunoglobulin
IM Intramuscular
Kb Kilobase pair
kDa Kilo Dalton
L Liter
LB Luria-bertani
LPS Lipopolysaccharides
M Molar
Mg Milligram
MgCl₂ Magnesium chloride
MHC Major histocompatibility complex
mL Milliliter
mM Millimolar
mRNA Messenger RNA
NA Neuraminidase
NaCl Sodium chloride
NP Nucleoprotein
O.D. Optical density
PBS Phosphate buffered saline
PCR Polymerase chain reaction
pH Puissance hydrogen (Hydrogen-ion concentration)
RBC Red blood cells
RNA Ribonucleic acid
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcriptase-polymerase chain reaction</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SPF</td>
<td>Specific-pathogen-free</td>
</tr>
<tr>
<td>Ss</td>
<td>single stranded</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA buffer</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>VRI</td>
<td>Veterinary Research Institute</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
</tbody>
</table>
Influenza virus can cause an acute, highly transmittable respiratory disease, which could result in high morbidity and mortality in both human and animals (Murphy & Webster 1996). In 1918, a pandemic of influenza H1N1 virus (Spanish flu) caused a loss of 100 million lives worldwide. More recently, the 1997 Hong Kong outbreak (H5N1) showed that avian influenza is still a potential threat to human, which is believed to be transmitted from infected birds. In that outbreak, 30% of the infected humans died, indicating that if avian influenza can be transmitted from human to human, there will be destructive consequences (Yuen et al. 1998, De Jong et al. 1997). The Hong Kong outbreak of avian influenza H5N1 was controlled by slaughtering 1.5 million chickens, which cost more than 245 million dollars (HKD) in one month. Therefore, antivirals and vaccines are prospective solutions to avoid future outbreaks of avian influenza virus. Nonetheless, logistical restrictions will prevent widespread usage of antiviral agents in pandemic regions globally.

Currently, inactivated vaccines containing HA as the main component, are the common vaccines to prevent avian influenza. However, it requires large numbers of specific-pathogen-free embryonated chicken eggs and some 6 months to propagate (De Jong et al. 1997). On the other hand, this is not an ideal method to produce inactivated vaccine for highly pathogenic strains, as they kill the embryo shortly after propagation and require a high level of biosecurity to handle (Voeten et al. 1999). Such vaccines had been successful in producing protective immunity against
infections using homologous virus but failed in preventing the outbreaks of heterologous virus (Couch & Kasel 1983, Meyer et al. 1978, Hoskins et al. 1976). Presently, various vaccines against avian influenza H5N1 virus with different level of protective immunity, such as DNA plasmid-based vaccine, baculovirus recombinant H5 vaccine, fowl pox based H5 vaccine and reverse genetic H5 vaccine have been examined experimentally and/or available commercially (Govorkova et al. 2006, Boyle et al. 2000, Kodihalli et al. 2000, Crawford et al. 1999, Ulmer et al. 1993).

In order to improve release of the vaccine, the delivery and presentation to the host immune system, vaccines are frequently formulated with adjuvants. Adjuvants can augment both humoral and cellular responses of the host immune system (Vogel et al. 2000). In general, common adjuvants in use are aluminium and calcium salts, oil
emulsions, saponin, liposomes, microparticles, cytokines, polysaccharides, immune stimulating complexes (ISCOMS) and genetic adjuvants (Aucouturier et al. 2001). Genetic adjuvants comprised of plasmid vectors encoding specific cytokines, stimulatory molecules or ligands that improve the host immune response to the antigen via encoding cytokines or plasmid-encoded protein-activated cytokines (Lillehoj et al. 2005).

Mycobacterial DNA binding protein 1 (MDP1) is a main cellular protein produced by Mycobacterium. It has nucleic acid binding activity and up-regulates the stationary and dormant state of Mycobacterium bovis. On the other hand, the protein also prevents macro-molecular bio-synthesis and therefore suppresses bacterial growth (Matsumoto et al. 2000). MDP1 can bind to glycosaminoglycans and laminin (Aoki et al. 2004). Glycosaminoglycans is an important element in the extracellular matrix as it plays a vital role in attaching mycobacteria to nonphagocytic cells, such as fibroblasts and epithelial cells (Menozzi et al. 1996), the latter being the main reservoirs of M. tuberculosis in healthy humans (Hernández-Pando et al. 2000). Prabhakar et al., in 1998, suggested that MDP1 is useful as an immunodominant Ag with a vital influence in host defense. MDP1 can augment the production of proinflammatory cytokines through a TLR9 dependent pathway, resulting in the stimulation of cellular and humoral responses (Hemmi et al. 2000, Krieg et al. 1995, Yamamoto et al. 1992) and significantly influence the immune response by inducing the secretion of IFN-γ (Cooper et al. 1993, Flynn et al. 1993). Prior to this study, MDP1 had been shown to be a potential DNA vaccine adjuvant in BCG, which has a unique ability in blocking DNase activity, and consequently decreasing the amount of DNA necessary for vaccination (Matsumoto et al. 2005, Krieg 2002).
Immunologists have gained a large interest in the application of DNA vaccines in regulating the immune response of the host due to their numerous advantages. Hence, MDP1 may play an important role as a potential adjuvant to boost the immunotherapeutic effects of these vaccines (Klinman 2004, Halperin et al. 2003, Jahrsdorfer & Weiner 2003, Krieg 2002).

The objective of this current study is to construct eukaryotic expression vector as DNA vaccines that are able to induce immune responses against H5N1 avian influenza virus in chicken and to determine whether the response can be augmented by co-administration of MDP1 gene as a genetic adjuvant. Thus, specific objectives of this study were:

1. to construct eukaryotic DNA plasmids expressing H5, N1 and NP of Malaysian H5N1 (A/chicken/H5N1/5858/2004)
2. to express the constructed DNA plasmids in cell culture system and
3. to determine the ability of MDP1 in augmenting antibody responses in chickens following vaccination with the H5 based DNA vaccine.
CHAPTER 2

LITERATURE REVIEW

2.1 Influenza virus

2.1.1 Structure of influenza virus

The standard shape for influenza viruses is spherical and they are about 100nm in diameter but there are reports of observing them in different shapes and sizes (De jong 2000). Influenza viruses are enveloped single stranded RNA with negative polarity (ssRNA) (Geider et al. 1981). Influenza virus consists of Haemagglutinin (HA), Neuraminidase (NA), Nucleoprotein (NP), RNA polymerase subunits (PB1, PB2, PA), Matrix proteins (M1, M2) and Non-structural proteins (NS1, NS2) (Geider et al. 1981).

HA and NA are distinct surface glycoproteins, there is about 450-500 of them on each virion and they protrude about 10-14 nm out of the virions surface. For each NA there is about 4-8 HA on the surface and therefore about 25-40% of the virion’s protein mass is due to HA and 5% to NA protein (De jong 2000, Geider et al. 1981).

PB1, PB2 and PA are three large proteins that bind to the nucleoprotein and their main role is to assist the RNA of virus to transcript and replicate. Matrix protein1 (M1) has an important role in the morphology of virus as it covers the lipid envelope
of the virus from underneath (Geider et al. 1981). Meanwhile, M2 is expressed in less abundance on the virion’s envelope as an ion channel (Geider et al. 1981).

Figure 2.1: Structure of the influenza virus. The phospholipid surface has three different proteins, hemagglutinin (HA), neuraminidase (NA) and matrix protein (M2). The double layer phospholipid is from the infected host and makes the virions outer layer. The RNA segments and the rest of structural and non-structural proteins are enveloped in the bilayer lipid surface (Knipe et al. 2001)

2.1.2 Taxonomic classification

Influenza viruses are from the Orthomyxoviridae family (Wright 2002). They can be divided into three different genera called A, B and C based on two internal proteins named Nucleocapsid (NP) and Matrix proteins (M1 and M2). The different genera of influenza viruses have no cross-reactivity among themselves (Geider et al. 1981, Wright 2002). Sub-typing of influenza viruses is based on their surface