UNIVERSITI PUTRA MALAYSIA

NUTRITIONAL COMPOSITION OF *STROBILANTHES CRISPUS* JUICE AND ITS EFFECTS ON HYPERGLYCAEMIA, HYPERLIPIDEMIA, WOUND HEALING AND TOXICITY IN RATS

NORFARIZAN HANOON BT NOOR AZMI

FPSK(P) 2009 4
NUTRITIONAL COMPOSITION OF *STROBILANTHES CRISPUS* JUICE AND ITS EFFECTS ON HYPERGLYCAEMIA, HYPERLIPIDEMIA, WOUND HEALING AND TOXICITY IN RATS

By

NORFARIZAN HANOON BT NOOR AZMI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

June 2009
NUTRITIONAL COMPOSITION OF *STROBILANTHES CRISPUS* JUICE AND ITS EFFECTS ON HYPERGLYCAEMIA, HYPERLIPIDEMIA, WOUND HEALING AND TOXICITY IN RATS

By

NORFARIZAN HANOON BT NOOR AZMI

June 2009

Chairperson : Professor Asmah Bt. Rahmat, PhD

Faculty : Medicine and Health Sciences

Strobilanthes crispus juice is reported to have good medicinal properties for treating diabetes mellitus and wound healing. The first part of this study evaluated the effect of *S. crispus* juice on hyperglycaemic, hyperlipidemic and antioxidant enzymes in normal and STZ-induced hyperglycaemic male and female rats at dosages of 140, 210 and 280 mg/kg of body weight (bw) for 30 days. Serum glucose, lipid profile (total cholesterol, triglyceride, HDL-cholesterol, LDL-cholesterol), antioxidant enzymes (glutathione peroxidase and superoxide dismutase) were determined on day 0, day 15 and day 30. The result showed that significant decrease of serum glucose levels in male and female diabetic rats with treated glibenclamide and all groups treated with 140, 210 and 280 mg/kg bw of *S. crispus* juice on days 15 and 30 when compared to control group and baseline data (zero day). The highest reduction of glucose level was 80.9 % on day 30 in male diabetic group treated with 280 mg/kg bw *S. crispus* juice, followed by 78.9 % reduction in group treated with 210 mg/kg bw, and 67.4 % reduction in group treated with 140 mg/kg bw of *S. crispus* juice. In
female diabetic groups, reduction of glucose level was 78.2 %, 68.9 % and 68.6 % in groups treated with 140, 210 and 280 mg/kg bw of *S. crispus* juice respectively. Administration of *S. crispus* juice also reduced total cholesterol, triglyceride, LDL-cholesterol; increased HDL-cholesterol, the activity of glutathione peroxidase and superoxide dismutase in STZ-induced diabetic and normal rats.

Second part of this study was to determine the effect of *S. crispus* juice on wound healing and antioxidant enzymes (glutathione peroxidase and superoxide dismutase) in normal and diabetic rats. Three levels of dosage (70, 100 and 140 mg/kg of body weight) were orally and repeatedly administered for 7 days. Mid-dorsal linear incisions of 2 cm in length were made on each animal. The results showed that supplementation of *S. crispus* juice enhances wound closure in normal and diabetic rats. Glutathione peroxidase and superoxide dismutase were increased in diabetic group treated with *S. crispus* juice.

Third part of this study investigated the proximate composition, vitamin and mineral contents of *Strobilanthes crispus* juice. The proximate analysis showed that *S. crispus* juice contained high moisture (75.01 %), carbohydrate content (33.47 %) and dietary fibre (12.29 g/100g). The contents of vitamin A, C and E in *S. crispus* juice were found to be 2.32 mg/100g, 9.37 mg/100g and 5.89 mg/100g respectively. *S. crispus* juice was found high in minerals including, sodium (37.21 mg/100g), potassium (124.99 mg/100g), calcium (172.88 mg/100g), ferum (0.57 mg/100g), phosphorus (8.18 mg/100g), magnesium (27.86 mg/100g), copper (0.14 mg/100g) and zinc (1.49 mg/100g).
The fourth part of this study evaluated the acute toxicity of *S. crispus* juice. The LD$_{50}$ was determined with four different dosages of *S. crispus* juice (700, 2100, 3500 and 4900 mg/kg of body weight) administered orally to normal female and male rats. The rats were treated with a single dose of juice and toxic effects were observed within 7 days. The results showed that no death or toxicity signs were observed in LD$_{50}$ tested in normal rats. In the blood chemistry tests, no significant changes (p<0.05) were observed for most parameters (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine and albumin) tested in normal rats. The 30 days toxicity effect were determined by the repeated dosing study using normal and streptozotocin-induced diabetic rats of both sexes. Three level of dosage (140, 210 and 280 mg/kg of body weight) were orally and repeatedly administered for 30 days. The results showed that no significant changes in general behaviour, body weight and organ weight. No differences were noted between the test and control groups in haematological, macroscopic and histopathological findings. The administration of *S. crispus* juice to normal rats revealed insignificant change in liver and kidney functions, but significant reduction of aspartate aminotransferase (group female and male rats with administration 280 mg/kg b.w. of *S. crispus* juice), alanine aminotransferase (group female rats with 280 mg/kg b.w. of *S. crispus* juice) and alkaline phosphatase (group female rats with 210 mg/kg b.w. of *S. crispus* juice). In streptozotocin-induced diabetes, the rise in blood glucose is accompanied by an increase in serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and creatinine. After the administration of diabetic rats with *S. crispus* juice for 30 days, there was a significant reduction in AST, ALT, ALP and creatinine. In conclusion, *S. crispus* juice has high nutritional
value and found non-toxic. It shows potential as an antidiabetic drink and additional nutraceutical supplement for wound healing for diabetic patients.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KOMPOSISI NUTRIEN JUS STROBILANTHES CRISPUS DAN KESAN KE ATAS HIPERGLISEMIA, HIPERLIPIDEMIA, PENYEMBUHAN LUKA DAN KETOKSIKAN PADA TIKUS

Oleh

NORFARIZAN HANOON BT NOOR AZMI

Jun 2009

Pengerusi : Profesor Asmah Bt. Rahmat, PhD

Fakulti : Perubatan dan Sains Kesihatan

Jus Strobilanthes crispus mempunyai potensi perubatan yang tinggi di dalam merawat diabetes mellitus dan penyembuhan luka. Pada peringkat pertama kajian ini menilai kesan jus S. crispus pada dos 140, 210 dan 280 mg/kg berat badan ke atas hiperglisemik, hiperlipidemik dan enzim antioksida bagi tikus jantan dan betina yang normal dan hiperglisemik diaruh streptozotocin selama 30 hari. Serum glukosa, profil lipid (jumlah kolesterol, trigliserida, HDL-kolesterol, LDL-kolesterol), enzim antioksida (glutathione peroksida dan superoxide dismutase) ditentukan pada hari 0, 15 dan 30. Keputusan menunjukkan penurunan yang signifikan bagi tahap serum glukosa pada tikus diabetik jantan dan betina yang dirawat dengan glibenclamide dan kesemua kumpulan yang dirawat dengan jus S. crispus 140, 210 dan 280 mg/kg berat badan pada hari ke 15 dan 30 dibandingkan dengan kumpulan kawalan dan data asas. Tahap penurunan glukosa yang tertinggi adalah sebanyak 80.9 % bagi kumpulan diabetik tikus jantan yang dirawat jus S. crispus pada hari ke 30 dengan dos 280
mg/kg berat badan, diikuti oleh penurunan sebanyak 78.9 % bagi kumpulan yang
dirawat 210 mg/kg berat badan dan 67.4 % bagi kumpulan yang dirawat 140 mg/kg
berat badan. Bagi kumpulan diabetik betina, penurunan tahap glukosa adalah 78.2 %,
68.9 % dan 68.6 % pada kumpulan yang dirawat jus S. crispus 280, 210 dan 140
mg/kg b.w. Pemberian jus S. crispus juga dapat menurunkan jumlah kolesterol,
trigliserida, LDL-kolesterol; meningkatkan HDL-kolesterol, aktiviti glutathione
peroksidase dan superoxide dismutase pada tikus diabetik diaruh STZ dan tikus
normal.

Pada peringkat kedua kajian ini adalah menentukan kesan jus S. crispus pada
penyembuhan luka dan enzim antioksidan (glutathione peroxidase dan superoxide
dismutase) di dalam tikus normal dan diabetik. Tiga tahap dos (70, 105 dan 140
mg/kg berat badan) diberikan oral selama 7 hari. Luka sepanjang 2 cm dilakukan di
tengah belakang setiap tikus. Keputusan menunjukkan pemberian jus S. crispus
mengalakkan penyembuhan luka pada tikus normal dan diabetik. Enzim glutathione
peroxidase dan superoxide dismutase menunjukkan peningkatan bagi kumpulan
diabetik yang dirawat dengan jus S. crispus.

Pada peringkat ketiga kajian ini adalah menentukan komposisi proksimat, kandungan
vitamin dan mineral bagi jus S. crispus. Analisis proksimat menunjukkan jus S.
crispus mempunyai kandungan air (75.01 %), karbohidrat (33.47 %) dan gentian diet
yang tinggi (12.29 g/100g). Kandungan vitamin A, C dan E yang diperolehi bagi jus
S. crispus adalah 2.32 mg/100g, 9.37 mg/100g dan 5.89 mg/100g. Jus S. crispus
mempunyai kandungan mineral yang tinggi iaitu sodium (37.21 mg/100g), potassium
(124.99 mg/100g), kalsium (172.88 mg/100g), ferum (0.57 mg/100g), fosforus (8.18
magnesium (27.86 mg/100g), kuprum (0.14 mg/100g) dan zink (1.49 mg/100g).

Pada peringkat keempat kajian ini adalah menilai keselamatan jangka pendek (akut) bagi jus *S. crispus*. Ujian DM₅₀ ditentukan dengan menggunakan empat dos jus *S. crispus* yang berlainan (700, 2100, 3500 dan 4900 mg/kg berat badan) yang diberikan secara oral (suapan) kepada tikus betina dan jantan yang normal. Tikus tersebut diberikan jus secara dos tunggal dan sebarang kesan toksik diperhatikan dalam masa 7 hari. Keputusan menunjukkan tiada kematian atau tanda ketoksikan melalui pemerhatian pada ujian DM₅₀ pada tikus normal. Keputusan ujian kimia darah menunjukkan tiada perubahan yang signifikan yang dinilai ke atas kebanyakan parameter biokimia (aspartat aminotransferase, alanin aminotransferase, alkalin fosfatase, kreatinin dan albumin) yang diuji pada tikus normal. Pada 30 hari kesan toksikologi yang ditentukan oleh ujian subakut yang menggunakan tikus normal dan diabetik yang disuntik streptozotocin pada kedua-dua jantina. Tiga tahap dos (140, 210 dan 280 mg/kg berat badan) yang diberikan setiap hari selama 30 hari kepada tikus normal dan diabetik. Keputusan yang diperolehi menunjukkan tiada perubahan yang signifikan pada pemerhatian bagi kelakuhan, berat badan dan berat organ. Tiada perbezaan didapat di antara kumpulan ujian dengan kawalan bagi keputusan hematologi, makroskopi dan histopatologi. Pemberian jus *S. crispus* kepada tikus normal didapat tiada perbezaan yang signifikan bagi fungsi hati dan ginjal kecuali penurunan yang signifikan bagi aspartat aminotransferase (bagi kumpulan tikus betina dan jantan yang diberikan jus *S. crispus* 280 mg/kg berat badan), alanin aminotransferase (kumpulan tikus betina dengan pemberian jus *S. crispus* 280 mg/kg berat badan), dan alkalin fosfatase (kumpulan tikus betina dengan pemberian jus *S.
crispus 210 mg/kg berat badan). Pada tikus diabetik diaruh streptozotocin, peningkatan glukosa di dalam darah menyebabkan peningkatan serum aspartat aminotransferase (AST), alanin aminotransferase (ALT), alkalin fosfatase (ALP) dan kreatinin. Selepas rawatan ke atas tikus diabetik dengan jus S. crispus selama 30 hari menunjukkan penurunan yang signifikan bagi AST, ALT, ALP dan kreatinin. Kesimpulannya, jus S. crispus mempunyai nilai pemakanan yang tinggi yang berpotensi dan tidak toksik. Ia menunjukkan potensi sebagai minuman antidiabetik dan nutraceutikal yang dapat menyembuhkan luka pada pesakit diabetik.
ACKNOWLEDGEMENTS

In the Name of Allah, The Most Gracious and Most Merciful.

Alhamdulillah, I am grateful to Allah the Almighty for everything He has granted. I wished to thanks many people for their effort in making my research possible and success.

I would like to convey my deepest and grateful thanks to my supervisor, Prof. Dr. Asmah Rahmat for giving me advice, guidance and continuous support in the completion of this project. I also greatly thanks to Assoc. Prof. Dr. Rokiah Mohd Yusof and Prof. Dr. Fauziah Othman for their comments and suggestions.

Special thanks to my family; my beloved husband and sons, Dr. Hasdi Mohd Sani, Muhammad Hafiz Syukri, Muhammad Hariz Syukri and Muhammad Hanif Syukri who has been very understood, helped, patience and supportive throughout the completion my research and thesis. Thanks for my mother-in-law (Kalsoom Ahmad); dad (Noor Azmi Abdullah); sisters (Rohaida Hanoon, Noraini Hanoon, Faridah Hanoom, Fazlina Hanum, Mirani); brothers (Azran Azhim, Azwan Azhim, Mohd. Azri Azhim) and sisters-in-law (Nor Khairiah and Nor Aila).

Thank you to Mr. Kufli, Chemistry Pathology Lab staffs (Mrs. Safarina, Mrs. Allynna and Mr. Ehsan), Histopathology Lab staffs (Mrs. Juita, Hematology Lab staffs, Nutrition Lab staffs and Animal House staffs for their technical expertise.
I am also grateful to fellow colleagues in the Faculty of Medicine and Health Sciences for their assistance and companionships throughout my stay at Universiti Putra Malaysia. My gratitude and appreciation also go to everybody who contributed their helped, guidance and advised in completing our study. Thanks to Zura, Nurul, Tisi, Salawati, Ika, Kamilah, Khania, Junaidah, Jillian, Mohammad and Abbe.

Special acknowledgement is also given to Universiti Sains Malaysia and Ministry of Higher Education, for sponsored my study.
I certify that a Thesis Examination Committee has met on 25 June 2009 to conduct the final examination of Norfarizan Hanoon Bt Noor Azmi on her thesis entitled “Nutritional Composition of Strobilanthes crispus juice and its Effects on Hyperglycaemia, Hyperlipidemia, Wound Healing and Toxicity in Rats” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Rozita Rosli, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Patimah Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Khatiza Haida Ali, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Azimahtol Hawariah Lope Pihie, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 July 2009
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Asmah Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Fauziah Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Rokiah Mohd Yusof, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 July 2009
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NORFARIZAN HANOON BT NOOR AZMI

Date: 1 July 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 Background
 1.2 Problem statement
 1.3 Objectives of research
 1.3.1 General objective
 1.3.2 Specific objectives
 1.4 Significance of the research

2 LITERATURE REVIEW
 2.1 Status of herbal medicine in Malaysia
 2.2 Strobilanthes crispus
 2.2.1 Strobilanthes crispus used for medicinal purposes
 2.3 Diabetes Mellitus
 2.3.1 Major classification of diabetes mellitus
 2.3.2 Diagnostic criteria of diabetes mellitus
 2.3.3 Symptom of diabetes mellitus
 2.3.4 Complications associated with diabetes mellitus
 2.3.5 Plasma lipids, cardiovascular disease and diabetes
 2.3.6 Oxidative stress and diabetes
 2.3.7 Treatment of diabetes mellitus
 2.4 Wound and diabetes
 2.4.1 Normal wound healing
 2.4.2 Diabetic wound healing
 2.4.3 Treatment of wound
 2.5 Nutrient and disease
 2.5.1 Dietary fibre and diabetes
 2.5.2 Magnesium and diabetes
 2.5.3 Vitamin E and diabetes
 2.5.4 Vitamin E and wound healing
 2.5.5 Vitamin A and wound healing
 2.5.6 Vitamin C and wound healing
 2.5.7 Protein and wound healing
 2.5.8 Zinc and wound healing
 2.6 Toxicity study
3 EFFECT OF STROBILANTHES CRISPUS JUICE ON HYPERGLYCEMIA, HYPERLIPIDEMIA AND ANTIOXIDANT ENZYMES IN STREPTOZOTOZIN-INDUCED DIABETIC AND NORMAL MALE AND FEMALE RATS
3.1 Introduction 76
3.2 Materials and Methods
 3.2.1 Study protocol 78
 3.2.2 Statistical analysis 88
3.3 Results
 3.3.1 Effect of S. crispus juice on serum glucose level 88
 3.3.2 Effect of S. crispus juice on cholesterol level 93
 3.3.3 Effect of S. crispus juice on triglyceride level 93
 3.3.4 Effect of S. crispus juice on high density lipoprotein-cholesterol level 98
 3.3.5 Effect of S. crispus juice on low density lipoprotein-cholesterol level 98
 3.3.6 Effect of S. crispus juice on glutathione peroxidase 103
 3.3.7 Effect of S. crispus juice on superoxide dismutase 103
3.4 Discussion 109
3.5 Conclusion 112

4 EFFECTS OF STROBILANTHES CRISPUS JUICE ON WOUND HEALING AND ANTIOXIDANT ENZYMES IN NORMAL AND STREPTOZOTOZIN-INDUCED DIABETIC RATS
4.1 Introduction 114
4.2 Materials and Methods
 4.2.1 Experimental rats 116
 4.2.2 Induction of experimental diabetes 116
 4.2.3 Wound creation 117
 4.2.4 Experimental procedure 117
 4.2.5 Blood preparation 118
 4.2.6 Determination of glutathione peroxidase enzymes 118
 4.2.7 Determination of superoxide dismutase enzymes 118
 4.2.8 Statistical analysis 119
4.3 Results 120
4.4 Discussion 124
4.5 Conclusion 127

5 NUTRITIONAL COMPOSITION OF STROBILANTHES CRISPUS JUICE
5.1 Introduction 128
5.2 Materials and methods
 5.2.1 Nutrient composition 129
 5.2.2 Statistical analysis 140
5.3 Results
 5.3.1 Proximate composition and antioxidant vitamin 140
 5.3.2 Mineral content 141
5.4 Discussion 145
5.5 Conclusion 148

6 ACUTE AND 30-DAY TOXICITY STUDY OF STROBILANTHES CRISPUS JUICE IN FEMALE AND MALE RATS
6.1 Introduction 149
6.2 Methodology 150
 6.2.1 Experimental rats and study design 151
 6.2.2 Study design and dosage 151
 6.2.3 Induction of experimental diabetes 153
 6.2.4 Observations 153
 6.2.5 Gross pathological evaluations 154
 6.2.6 Biochemical analysis 154
 6.2.7 Determination of liver function test 155
 6.2.8 Determination of kidney function test 157
 6.2.9 Haematology parameter 158
 6.2.10 Histology examination 158
 6.2.11 Statistical analysis 161
6.3 Results 161
 6.3.1 Acute toxicity study 161
 6.3.2 30-day toxicity study 171
6.4 Discussion 201
6.5 Conclusion 204

7 GENERAL DISCUSSIONS 205

8 CONCLUSIONS 212
 8.1 General conclusions 212
 8.2 Recommendations for future research 213

BIBLIOGRAPHY 215
APPENDICES 236
BIODATA OF STUDENT 241
LIST OF PUBLICATIONS 242
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Etiological classification of diabetes</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison between type 1 and type 2 diabetes mellitus</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Treatment options in diabetes</td>
<td>37</td>
</tr>
<tr>
<td>2.4</td>
<td>Changes in diabetic ulcers in patients and in wounds of diabetic animals</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Serum glucose level (mmol/l) in male and female STZ-induced diabetic rats</td>
<td>90</td>
</tr>
<tr>
<td>3.2</td>
<td>Percentage of glucose reduction in treated male and female STZ-induced diabetic rats at day 15 and day 30</td>
<td>91</td>
</tr>
<tr>
<td>3.3</td>
<td>Serum glucose level (mmol/l) in male and female normal rats</td>
<td>92</td>
</tr>
<tr>
<td>3.4</td>
<td>Total cholesterol level (mmol/l) in male and female STZ-induced diabetic rats</td>
<td>94</td>
</tr>
<tr>
<td>3.5</td>
<td>Total cholesterol level (mmol/l) in male and female normal rats</td>
<td>95</td>
</tr>
<tr>
<td>3.6</td>
<td>Triglyceride level (mmol/l) in male and female STZ-induced diabetic rats</td>
<td>96</td>
</tr>
<tr>
<td>3.7</td>
<td>Triglyceride level (mmol/l) in male and female normal rats</td>
<td>97</td>
</tr>
<tr>
<td>3.8</td>
<td>HDL-cholesterol level (mmol/l) in male and female STZ-induced diabetic rats</td>
<td>99</td>
</tr>
<tr>
<td>3.9</td>
<td>HDL-cholesterol level (mmol/l) in male and female normal rats</td>
<td>100</td>
</tr>
<tr>
<td>3.10</td>
<td>LDL-cholesterol level (mmol/l) in male and female STZ-induced diabetic rats</td>
<td>101</td>
</tr>
<tr>
<td>3.11</td>
<td>LDL-cholesterol level (mmol/l) in male and female normal rats</td>
<td>102</td>
</tr>
<tr>
<td>3.12</td>
<td>Glutathione peroxidase activity (u/ml) in male and female diabetic rats.</td>
<td>105</td>
</tr>
<tr>
<td>3.13</td>
<td>Glutathione peroxidase activity (u/ml) in male and female normal rats</td>
<td>106</td>
</tr>
<tr>
<td>3.14</td>
<td>Superoxide dismutase activity (u/L) in male and female diabetic rats.</td>
<td>107</td>
</tr>
<tr>
<td>3.15</td>
<td>Superoxide dismutase activity (u/L) in male and female normal</td>
<td>108</td>
</tr>
</tbody>
</table>
4.1 Length of wound (cm) in diabetic and normal group 120
4.2 Percentage of wound closure in diabetic and normal rats 122
4.3 Glutathione peroxidase activity (u/ml) in diabetic and normal group 123
4.4 Superoxide dismutase activity (u/L) in diabetic and normal group 124
5.1 Conditions for HPLC separation 140
5.2 Chemical composition of S. crispus juice, Strobilanthes cirpus juice, Strobilanthes crspus tea and Strobilanthes crispus leaf 143
5.3 Minerals in Strobilanthes crispus juice, Strobilanthes crispus tea and Strobilanthes crispus leaf 144
6.1 Steps in tissue dehydration process 159
6.2 Hematoxylin and eosin staining process 160
6.3 Body weight (g) in female and male Sprague-dawley rats 162
6.4 Liver weight and relative liver weight in female and male rats 163
6.5 Kidney weight and relative kidney weight in female and male rats 164
6.6 Aspartate aminotransferase (AST) activity (μkat/l) in female and male Sprague-dawley rat 165
6.7 Alanine aminotransferase (ALT) activity (μkat/l) in female and male rats 167
6.8 Alkaline phosphatase (ALP) activity (μ/l) in female and male rats 168
6.9 Serum albumin level (g/l) in female and male Sprague-dawley rat 169
6.10 Creatinine level (mg/dl) in female and male rats 170
6.11 Body weight of rats fed with S. crispus juice for 30 days 172
6.12 Kidney weight (g) and ratio of kidney per body weight in female and male normal rats 173
6.13 Liver weight (g) and ratio of liver per body weight in female and male normal rats

6.14 Aspartate aminotransferase (AST) level (µkat/l) in female and male normal rats

6.15 Alanine aminotransferase (ALT) level (µkat/l) in female and male normal rats

6.16 Alkaline phosphatase (ALP) level (µkat/l) in female and male normal rats

6.17 Albumin level (g/dL) in female and male normal rats

6.18 Creatinine level (mg/dl) in female and male normal rats

6.19 Hematology parameter in female normal rats

6.20 Hematology parameter in male normal rats

6.21 Body weight (g) in male and female diabetic rats

6.22 Relative kidney and liver weight in female and male diabetic rats

6.23 Aspartate aminotransferase (AST) level (µkat/l) in male and female diabetic rats

6.24 Alanine aminotransferase (ALT) level (µkat/l) in male and female diabetic rats

6.25 Alkaline phosphatase (ALP) level (u/l) in female and male diabetic rats.

6.26 Serum albumin level (g/l) in male and female diabetic rat

6.27 Creatinine level (mg/dl) in female and male diabetic rats

xx
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pathways of ROS formation, the lipid peroxidation process and the role of glutathione and other antioxidants in management of oxidative stress</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Overview of growth factor involvement in normal epidermal wound healing</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>Stages of wound repair</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Photo of wound closure in diabetic rats</td>
<td>121</td>
</tr>
<tr>
<td>6.1</td>
<td>Light micrographs of the rat liver in male and female control, and after administration with 1.0, 1.5 and 2.0 ml.kg S. crispus juice</td>
<td>182</td>
</tr>
<tr>
<td>6.2</td>
<td>Light micrographs of the rat kidney (cortical part) in male and female control, and after administration with 1.0, 1.5 and 2.0 ml.kg S. crispus juice</td>
<td>187</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACUC</td>
<td>Animal Care and Use Committee</td>
</tr>
<tr>
<td>ADA</td>
<td>American Diabetes Association</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>H$_2$SO$_4$</td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>IMR</td>
<td>Institute of Medical Research</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>K$_2$SO$_4$</td>
<td>Potassium sulphate</td>
</tr>
<tr>
<td>LD$_{50}$</td>
<td>Median lethal dose</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>µkat/L</td>
<td>Microkat per liter</td>
</tr>
<tr>
<td>MCH</td>
<td>Mean corpuscular hemoglobin</td>
</tr>
<tr>
<td>MCHC</td>
<td>Mean corpuscular hemoglobin concentration</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean corpuscular volume</td>
</tr>
<tr>
<td>MES-TRIS</td>
<td>Morpholino ethansulfonic acid- TRIS-hydroxy-methyl aminomethane</td>
</tr>
<tr>
<td>pg</td>
<td>Pico gram</td>
</tr>
<tr>
<td>SCJ</td>
<td>Strobilanthes crispus juice</td>
</tr>
</tbody>
</table>
SOD Superoxide dismutase

WHO World Health Organization
CHAPTER 1

INTRODUCTION

1.1 Background

Herbs refer to non-woody seed-producing plants that are annual, biennial or perennial and die at the end of each growing season. Several parts of the plant such as the flower, stem, seed or root are used for medical or aromatherapy qualities. In general, health care professionals consider herbs to be a crude drug, which is used to prevent diseases, treat infection or maintain a state of health (McCann, 2004). Herbs can be used as extracts, juices, tea, lozenges, inhalation, oils, salves, capsules and herbal baths.

Herbs have found its place in modern day biomedical medications. About one-fourth of all biomedical medications commonly prescribed today, contain at least an active ingredient derived from plants and the additional contents are chemically synthesized in the laboratory (McCann, 2004). Herbs are advertised as being able to improve overall health, cure illness and control diseases from diabetes to AIDS (Magee and Loiacono, 2004).

Herbal medicine are plant derived material or preparations with therapeutic or other human health benefit which contain either raw or processed ingredients from one or more plants. In some traditions material of inorganic or animal origin may also be present (WHO, 2005). Herbal medicine as the major remedy in traditional medical