UNIVERSITI PUTRA MALAYSIA

DIETARY AND LIFESTYLE FACTORS ASSOCIATED WITH METABOLIC SYNDROME IN URBAN MIDDLE-AGED WOMEN OF BABOL CITY, MAZANDARAN PROVINCE, IRAN

MOULOUD AGAJANI DELAVAR

FPSK(P) 2009 3
DIETARY AND LIFESTYLE FACTORS ASSOCIATED WITH METABOLIC SYNDROME IN URBAN MIDDLE-AGED WOMEN OF BABOL CITY, MAZANDARAN PROVINCE, IRAN

MOULOUD AGAJANI DELAVAR

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2009
DIETARY AND LIFESTYLE FACTORS ASSOCIATED WITH METABOLIC SYNDROME IN URBAN MIDDLE-AGED WOMEN OF BABOL CITY, MAZANDARAN PROVINCE, IRAN

By

MOULOUD AGAJANI DELAVAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2009
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

DIETARY AND LIFESTYLE FACTORS ASSOCIATED WITH METABOLIC SYNDROME IN URBAN MIDDLE AGED WOMEN OF BABOL CITY, MAZANDARAN PROVINCE, IRAN

By

MOULOUD AGAJANI DELAVAR

August 2009

Chairman: Professor Dr. Lye Munn Sann
Faculty: Medicine and Health Sciences

Metabolic syndrome is a cluster of interconnected cardiovascular risk factors. Existing data suggest that it has reached an alarming rate, and it is found more common in women than in men. Obesity plays a central role in metabolic syndrome and it has become a common factor among Iranian women. Accordingly, it is important to elucidate both lifestyle and dietary factors to the development of metabolic syndrome among middle-aged women so as to prevent and manage the syndrome in a much better way.

The research design of the present thesis was a population-based cross-sectional study, and the criteria by the NCEP ATP III were used to classify subjects with metabolic syndrome. Meanwhile, their physical activities were measured using the original International Physical Activity Questionnaires Long form. Food frequency questionnaire (FFQ) was also used in assessing individual’s habitual intake. A total of 984 individuals, aged 30-50 year old from fourteen active urban primary healthcare centres in Babol (Iran), were selected using a systematic random sampling
method and sampling proportionate to size. Thus, lifestyle factors associated with metabolic syndrome were analyzed.

Among the Babolian middle-aged women living in the urban area, the prevalence of metabolic syndrome was found to be 31.0%. Overweight and abdominal obesity were also observed, and these were found around 38.0% and 76.6%, respectively. Older age, higher waist circumference, higher systolic and diastolic blood pressure, low education level, housewife and occupation (technician) were found to be associated with the increased odds of metabolic syndrome. Nevertheless, the adjusted odds ratio (OR) showed no significant associations between metabolic syndrome and smoking or the exposure to cigarette smoking. The moderate intensity of the physical activities was positively associated with systolic blood pressure ($\rho=0.07$, $p=0.03$), cholesterol ($\rho=0.07$, $p=0.04$), and triglyceride ($\rho=0.67$, $p=0.04$). Meanwhile, vigorous physical activity was inversely correlated with waist circumference ($\rho=-0.07$, $p=0.04$). Their total physical activity was found to be positively correlated with triglyceride ($\rho=0.09$, $p=0.01$), but was inversely correlated with HDL-cholesterol ($\rho=-0.07$, $p=0.04$). The chi-square test did not reveal any statistically significant difference in the levels of the physical activities between these women, either with or without metabolic syndrome. The mean total kilocalories consumed per day were 2965. The study also suggests that a good dietary pattern which is rich in fruit, legumes, vegetables, cereals, and fish (component 1), as well as the high intakes of dairy products and eggs (component 4) decrease the likelihood of metabolic syndrome. The adjusted OR for metabolic syndrome in women with low fat intake was significantly higher than in those women with high and moderate fat intake (OR=2.923; 95% CI=1.36, 6.28). The risk
of metabolic syndrome for women in the first quartile category of calcium was found to be higher than those in the highest quartile (OR=13.200; 95% CI =7.94, 21.93), and in the lowest category of black tea was indicated as lower than those in the highest categories (OR=0.181; 95% CI =0.11, 0.31).

The findings of the present study indicated that a high prevalence of obesity and metabolic syndrome was identified among the middle-aged women, making this syndrome one of the major public health problems in Babol. Therefore, it is necessary to emphasize on the benefits of lifestyle modifications, including weight loss, and the intakes or consumption of more fruit, legumes, vegetables, cereals, fish, dairy products, and the increase in the intakes of food containing calcium in reducing the risk of metabolic syndrome.
Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Kedoktoran

CARA HIDUP SESEORANG MERUPAKAN DAN PEMAKANAN FAKTOR BERKAITAN DENGAN SINDROM METABOLIK DI KALANGAN WANITA BERUMUE 30-50 TAHUN, BANDAR BABOL, DAERAH MAZANDARAN, IRAN

Oleh
MOULoud AGAJANI DELAVAR

Ogos 2009

Pergerusi: Professor Dr. Lye Munn Sann
Fakulti: Perubatan dan Sains Kesihatan

Sindrom metabolik merupakan faktor yang membuktikan kewujudan penyakit kardiovacular. Sindrom ini juga amat ketara di kalangan wanita berbanding lelaki. Obesiti memainkan peranan yang penting di dalam sindrom metabolik kerana ia merupakan faktor yang umumnya berlaku di kalangan wanita Iran. Oleh itu, menerangkan bahawa pemakanan dan cara hidup seseorang adalah faktor yang menyumbang kepada perkembangan sindrom metabolik di kalangan wanita pertengahan tahun adalah sangat penting. Pencegahan terhadap sindrom ini juga adalah lebih penting berbanding mengatasinya.

Dalam thesis ini, kriteria yang dikenali sebagai NCEP ATP III telah digunakan untuk menjelaskan sindrom metabolik. Aktiviti fizikal diukur menggunakan borang asal International Physical Activity Questionnaire Long. Food frequency Questionnaire (FFQ) juga digunakan untuk mengukur tabiat pemakanan seseorang. Untuk tujuan ini, sejumlah 984 individu yang berumur di antara 30-50 tahun dari 14 pusat
perkhidmatan kesihatan bandar di Babol (Iran) telah terlibat di dalam kajian yang menggunakan kaedah sampel serampang yang sistematik dan nisbah sampel yang dibuat mengikut saiz yang diperolehi. Faktor cara hidup seseorang didapati mempunyai hubungan rapat dengan sindrom metabolik.

Kadar sindrom metabolik di kalangan wanita pertengahan tahun di kawasan bandar Babol addalah 310 %. Kajian juga mendapati bahawa berat badan yang melampau dan obesiti abdominal adalah 38.0 % dan 76.6 %. Selain itu, golongan tua, ukuran keliling pinggang yang tinggi, tekanan darah systolik dan distolik yang tinggi, tahap pendidikan yang rendah, suri rumahtangga dan pekerjaan seperti juruteknik juga didapati berkait rapat dengan penigkatan peluang berlakunya sindrom metabolik. Pelarasan nishah berkait atau odds ratio (OR) menunjukkan sindrom metabolik tidak mempunyai hubungan yang ketara dengan tabiat merokok atau pendedahan seseorang terhadap asap rokok. Intensisasi akiviti fizikal yang sederhana adalah berhubung rapat dengan tekanan darah systolik (rho=0.071, p=0.029), kolesterol (rh=0.064, p=0.037) dan triglyceride (rho=0.67, p=0.042). Sebaliknya, aktiviti fizikal yang keterlaluan tidak berkaitan dengan ukuran pinggang (rho=-0.067, p=0.040). Jumlah aktiviti fizikal adalah berkait rapat dengan triglyceride ((rho=0.09, p=0.006), tetapi tidak berkaitan dengan HDL-cholesterol (rho=0.69, p=0.036). Ujian Chisquare menunjukkan tiada perbezaan yang mendadak didapati dalam statistik antara aktiviti fizikal wanita dengan adanya dan juga tanpa sindrom metabolik. Jumlah pengambilan kilocalories sehari ialah 2965. Dapatan penyelidikan ini mengesyorkan bahawa pemakanan yang kaya dengan buah-buahan, kekacang, sayursayuran, bijirin and ikan (komponen 1) dan juga pengambilan makanan tenusu dan telur (komponen 4) yang tinggi berkemungkinan dapat menurun peluang seseorang
untuk mendapat sindrom metabolik. Pelarasan OR dalam sindrom metabolik di kalangan wanita yang mempunyai lemak rendah adalah lebih tinggi berbanding wanita yang mempunyai lemak tinggi dan sederhana (OR=2.923; 95% CI=1.36, 6.28). Sementara itu, risiko sindrom metabolik untuk wanita dalam kategori quartile tahap pertama dengan kalsium adalah lebih tinggi berbanding kategori quartile tertinggi (OR=13200; 95% CI=9.12, 21.43). Dalam kategori quartile pertama, teh hitam adalah kategori yang paling rendah daripada mereka yang berada dalam kategori tertinggi (OR=0.181; 95% CI=0.105, 0.14).

Kajian juga mengesahkan kewujudan obesiti yang tinggi dan sindrom metabolik dikesan di kalangan wanita pertengahan tahun, dan ini menjadikan sindrom ini sebagai masalah kesihatan yang utama di kalangan wanita di Babol. Oleh itu, adalah penting untuk menitikberatkan perubahan cara hidup seseorang seperti mengurangkan berat badan, memakan lebih banyak buah-buahan, kekacang, sayur-sayuran, bijirin, ikan, produk tenusu dan juga menambahkan pengambilan makanan yang mengandungi kalsium untuk mengurangkam risiko menghidapi sindrom metabolik.
ACKNOWLEDGMENTS

I would like to thank you people for their significant contribution to this thesis.

I would first like to thank my chairman Prof. Dr. Lye Munn Sann for giving me the opportunity to fulfill my ambition to be a community health scientist. I sincerely appreciate all of the patience and encouragement he has given me in my professional career as well as his invaluable knowledge and expertise.

I would next like to thank the other members of my supervisor committee, Prof. Dr. Khor Geok Lin, Prof. Dr. Syed Tajuddin B Syed Hassan, Dr. Parichehr Hanachi without their dedication to me and the field of Babol Primary Health Care centers.

I am also grateful for the opportunity given to me by Universiti Putra Malaysia.

Last but not least, a big thank you to my mother and father for all their love and support you have performed out over the years. I am so very grateful to have Manouchehehr as my best husband, thanks for putting up with me! Most importantly, I must acknowledge my children, Amirmasoud and Niloufar. I would not be able to fulfill my goals and dreams. Thank you.
I certify that an Examination Committee has met on 20th August 2009 to conduct the final examination of Mouloud Agajani Delavar on her PhD thesis entitled "Lifestyle and Dietary Factors Associated with Metabolic Syndrome in Urban Middle Aged Women of Babol, City, Mazandaran Province, Iran" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of doctor of philosophy (PhD).

Member of the Thesis Examination Committee were as follows:

Prof. Dr. Mohd Yunus Abdullah
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Prof. Madya Dr. Hejar Abd. Rahman
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
/Internal Examiner

Prof. Madya Dr. Muhammad Hanafiah Juni
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
/External Examiner

Prof. Dr. Khadijah Shamsuddin
Professor
Faculty of Medicine (UKMMC)
Universiti Kebangsaan Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for degree of doctor of philosophy. The members of Supervisory Committee were as follows:

Y. Bhg. Dato’ Prof. Dr. Lye Munn Sann, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Y. Bhg. Prof Dr. Khor Geok Lin, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Dr. Parichehr Hanachi, PhD
Director of Research
Women Research Center
Alzahara University, Tehran –Iran

Y. Bhg. Prof. Dr. Syed Tajuddin B Syed Hassan, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 November 2009
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOULOUD AGAJANI DELAVAR

Date: 11 September 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Conceptual framework for the metabolic syndrome 3
1.3 Statement of the problem 6
1.4 Importance of the study 9
1.5 Objectives of the study 12
1.6 Theory of the study 13
1.7 Hypotheses 14

2 LITERATURE REVIEW

2.1 Introduction 15
2.2 Definition of metabolic syndrome 16
2.3 The prevalence metabolic syndrome 27
2.4 The epidemiology of metabolic syndrome 29
2.5 Underlying risk factors and metabolic syndrome 34
 2.5.1 Role of genetic factors in the pathogenesis of metabolic syndrome 34
 2.5.2 Role of socioeconomic status in the metabolic syndrome 36
 2.5.3 Role of psychological factors in the metabolic syndrome 37
 2.5.4 Role of insulin resistance in the metabolic syndrome 38
 2.5.5 Body weight, body composition and metabolic syndrome 41
 2.5.6 Metabolic risk factors, atherosclerotic cardiovascular disease and type 2 diabetes 43
 2.5.7 Inflammation and metabolic 45
2.5.8 Other age-related factors in metabolic syndrome 46
2.6 Physical activity and metabolic syndrome 47
 2.6.1 Physical activity assessment 47
 2.6.2 The association between physical activity and metabolic syndrome 50
2.7 Cigarette smoking and metabolic syndrome 51
 2.7.1 Cigarette smoking assessment 51
 2.7.2 The association between cigarette smoking and metabolic syndrome 53
2.8 Alcohol intake and metabolic syndrome 54
 2.8.1 Measurement of alcohol consumption 54
 2.8.2 The association between alcohol intake and metabolic syndrome 55
2.9 Dietary factors and metabolic syndrome 56
 2.9.1 Dietary assessment 56
 2.9.2 The association between carbohydrate intake and metabolic syndrome 63
 2.9.3 Fat intake and metabolic syndrome 64
 2.9.4 Calcium intake and metabolic syndrome 65
 2.9.5 Tea intake and metabolic syndrome 66
2.10 Management of metabolic syndrome 68
 2.10.1 Goal of management of metabolic syndrome 68
 2.10.2 Management of underlying risk factor 69
 2.10.3 Management of metabolic risk factors 72
2.11 Summary 78

3 MATERIALS AND METHODS

3.1 The Islamic Republic of Iran’s PHC system and study location 80
3.2 General study design and duration 82
3.3 Study population 82
3.4 Sampling population 83
3.5 Flow chart selection of women 30-50 years old 85
3.6 Sample size calculation 86
3.7 Sampling method 86
3.8 Variables and definition and measurement of FFQ, IPAQ 87
 3.8.1 Operational definitions 87
 3.8.2 Lifestyle habits assessment 89
 3.8.3 Physical activity assessment 90
 3.8.4 Dietary intake assessment 90
 3.8.5 Fasting glucose and fasting lipid measurement 91
 3.8.6 Anthropometric and blood pressure measurement 92
 3.8.7 Metabolic syndrome assessment 93
 3.8.8 Calculation of physical activity 93

xiv
4 RESULTS

4.1 Descriptive on total study sample 102
 4.1.1 Population characteristics 102
 4.1.2 Lifestyle-physical activity variables 106
 4.1.3 Prevalence of component of ATP definition on total population 111
 4.1.4 Prevalence of metabolic syndrome 116
 4.1.5 Dietary variables 118

4.2 Analytical comparison between metabolic syndrome and non metabolic syndrome 121
 4.2.1 Socioeconomic status and menopause status with metabolic syndrome 123
 4.2.2 Anthropometric and blood pressure with metabolic syndrome 125
 4.2.3 Association between lifestyle-physical activity and metabolic syndrome 127
 4.2.4 Association between dietary factors and metabolic syndrome 134

5 DISCUSSION

5.1 Introduction 147
5.2 The prevalence of metabolic syndrome 148
 5.2.1 Dyslipidemia 151
 5.2.2 Hypertension 154
5.3 Lifestyle factors 156
 5.3.1 Physical activity level 156
5.4 Dietary factors 158
 5.4.1 Dietary intake 160
 5.4.2 Carbohydrate and fat intake 167

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE 170

6.1 Summary and conclusion 170
6.2 Limitations of the study 170
6.3 Strengths of the study 172
6.4 Recommendations
 6.4.1 Population-based strategies
 6.4.2 Suggestions for future research

REFERENCES

APPENDICES
A Consent letter
B Socio-demographic questionnaire
C Screening questionnaire
D Lifestyle questionnaire
E Physical Activity Scale Questionnaire (IPAQ)
F Food Frequency Questionnaire (FFQ)
G Approval from Medical Research Ethics Committee, Universiti Putra Malaysia
H Approval from Ethical Committee of Babol University of Medical Sciences

LIST OF PUBLICATIONS AND PRESENTATION
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The clinical criteria for metabolic syndrome by WHO</td>
<td>23</td>
</tr>
<tr>
<td>2.2 ATP III clinical identification of the metabolic syndrome</td>
<td>24</td>
</tr>
<tr>
<td>2.3 AACE clinical criteria for diagnosis of the insulin resistance</td>
<td>26</td>
</tr>
<tr>
<td>syndrome</td>
<td></td>
</tr>
<tr>
<td>2.4 Therapeutic goals and recommendations for clinical</td>
<td>73</td>
</tr>
<tr>
<td>metabolic management of syndrome</td>
<td></td>
</tr>
<tr>
<td>4.1 Socioeconomic and demographic characteristic and reported</td>
<td>103</td>
</tr>
<tr>
<td>menstrual status of the subjects</td>
<td></td>
</tr>
<tr>
<td>4.2 Self reported medical conditions of the subjects</td>
<td>105</td>
</tr>
<tr>
<td>4.3 Smoking habits and alcohol intake of the subjects</td>
<td>106</td>
</tr>
<tr>
<td>4.4a MET-minutes/week physical activity by IPAQ-L of the subjects</td>
<td>108</td>
</tr>
<tr>
<td>4.4b Level physical activity by IPAQ-L of the subjects</td>
<td>108</td>
</tr>
<tr>
<td>4.5 Spearman correlations of physical activity measures</td>
<td>110</td>
</tr>
<tr>
<td>4.6 Classification of body mass index waist circumference of the</td>
<td>112</td>
</tr>
<tr>
<td>subjects</td>
<td></td>
</tr>
<tr>
<td>4.7 Classification of blood pressure of the subjects</td>
<td>113</td>
</tr>
<tr>
<td>4.8 Classification of lipid profile and fasting glucose of the subjects</td>
<td>115</td>
</tr>
<tr>
<td>4.9 Metabolic syndrome ATPIII definition</td>
<td>117</td>
</tr>
<tr>
<td>4.10 Daily intakes (grams/day) of food groups of the subjects</td>
<td>118</td>
</tr>
<tr>
<td>4.11 Carbohydrate and fat intake of the subjects</td>
<td>119</td>
</tr>
<tr>
<td>4.12 Spearman correlations of dietary component measures</td>
<td>120</td>
</tr>
<tr>
<td>4.13 Social economic status, anthropometry and lipid profile and</td>
<td>122</td>
</tr>
<tr>
<td>fasting glucose of subjects according to occurrence of metabolic</td>
<td></td>
</tr>
<tr>
<td>syndrome</td>
<td></td>
</tr>
<tr>
<td>4.14 Adjusted odds ratios (OR) for metabolic syndrome according</td>
<td>124</td>
</tr>
<tr>
<td>to socioeconomic and menopause status of the subjects</td>
<td></td>
</tr>
</tbody>
</table>
4.15 Adjusted odds ratios (OR) for metabolic syndrome according to anthropometric and blood pressure data of the subjects 126

4.16 Lifestyle habits of subjects according to occurrence of metabolic syndrome 127

4.17 Adjusted odds ratios (OR) for the metabolic syndrome according to lifestyle habit data of subjects 128

4.18 Correlation between physical activity and indices of metabolic syndrome 130

4.19 MET-minutes/week physical activity by IPAQ-L of the subjects according to occurrence of metabolic syndrome 132

4.20 Categorical score- levels of physical activity of the subjects according to occurrence of metabolic syndrome 133

4.21 Correlation between dietary component measures and indexes of metabolic syndrome 135

4.22 Daily intakes of food groups (gram/day) of the subjects according to occurrence of metabolic syndrome 137

4.23 Daily intakes of nutrients of the subjects according to occurrence of metabolic syndrome 138

4.24 Carbohydrate and fat intake as percentage of total energy intake and metabolic syndrome 139

4.25 Adjusted odds ratios (OR) of the metabolic syndrome according to different intake of carbohydrate and fat of subjects 140

4.26 Characteristics of the subjects across quartile categories of calcium intake 142

4.27 Adjusted odds ratios (OR) of metabolic syndrome according to quartile categories total calcium intake of the subjects 143

4.28 Characteristics of the subjects across categories of black tea consumption 145

4.29 Adjusted odds ratios (OR) of metabolic syndrome according to black tea consumption of the subjects 146
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Metabolic syndrome in relation to lifestyle</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Conceptual Framework for dietary and lifestyle factors associated</td>
<td>6</td>
</tr>
<tr>
<td>with metabolic syndrome</td>
<td></td>
</tr>
<tr>
<td>3.1 Health network of the Islamic Republic of Iran</td>
<td>81</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AACE Association of Clinical Endocrinologists
AHA American Heart Association
AHA/NHLBI American Heart Association/National Heart, Lung, and Blood Institute
ATP III Adult Treatment Panel III
BMI Body Mass Index
CHO Carbohydrate
CVD Cardiovascular Disease
Diastolic BP Diastolic Blood Pressure
EDTA Ethylenediaminetetraacetic Acid
ETS Environmental Tobacco Smoke
FFQ Food Frequency Questionnaires
HDL High Density Lipoprotein
IDF International Diabetes Federation
IPAQ International Physical Activity Questionnaires
LDL Low Density Lipoprotein
METs-min METs*minutes*week, abbreviated
n–6 Linoleic Acids: Omega-6 Fatty Acids
NCEP National Cholesterol Education Programmed
NIH National Institutes of Health
OR Odds Ratios
PA Physical Activity
PHC Primary Healthcare Centers
PSFFQ Picture-Sort Administration of the Food Frequency Questionnaire
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSPs</td>
<td>Respirable Suspended Particulates</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>ß</td>
<td>Beta</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>Systolic Blood Pressure</td>
</tr>
<tr>
<td>TEE</td>
<td>Total Energy Expenditure</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very Low Density Lipoprotein</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WHR</td>
<td>Waist-to-hip ratio</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Metabolic syndrome is a relatively new concept, but the clustering of individual cardiovascular risk factors has been well researched. For example, in the 1920s, investigators reported the event of hypertension, hyperglycemia, and hyperuricemia in specific groups of individuals (Nilsson, 2000). In the 1960s, hyperlipidemia and obesity were found to be associated with this cluster (Avogaro et al., 1967). In 1988, Gerald Reaven presented for the first time the concept of “syndrome X” for the clustering of cardiovascular risk factors such as hypertension, glucose intolerance, high triglycerides, and low HDL-cholesterol concentrations found in individuals who tend to develop cardiovascular diseases. Thus he suggested that the common characteristic of the syndrome was resistance to the action of insulin (Reaven, 1988), and associating with other metabolic abnormalities including obesity, microalbuminuria, change in fibrinolysis, and coagulation (Björntorp, 1992; Yudkin, 1999). The syndrome has also been called insulin resistance syndrome, cardiovascular syndrome, and recently is known as metabolic syndrome (Winkler et al., 2003).

The World Health Organization (WHO) gave the first definition for the metabolic syndrome which is more complex and prescriptive. It defines that for individuals with normal glucose tolerance, evidence of insulin resistance is a required component for a diagnosis of metabolic syndrome (Alberti and Zimmet, 1998). As a
result, the definition given by the WHO tends to focus much more on patients with the potential for diabetes (impaired glucose tolerance, impaired fasting glucose, or insulin resistance) (Isomaa, et al., 2001). Later, the Adult Treatment Panel III (ATP III) criteria provide a practical tool to identify patients with increased risk for cardiovascular disease. Focus of ATP III is less on type 2 diabetes and more on cardiovascular disease, whereas the criteria given by WHO and the American Association of Clinical Endocrinologists (AACE) require further oral glucose testing, impaired fasting glucose and diabetes. Impaired glucose tolerance on oral glucose tolerance test indicates greater risk for diabetes than does the metabolic syndrome without raised high fasting glucose (Alberti and Zimmet, 1998; Executive Summary, 2001; NCEP, 2002).

It is generally agreed that there are two general approaches to treatment of the metabolic syndrome. Therapeutic lifestyle change make up first-line therapy for metabolic syndrome, with increased emphasis on weight reduction, regardless of the diagnostic criteria used (Ahmad et al., 1997; Dengel et al., 1998). The second approach, drug treatment, directly treats risk factors of the metabolic syndrome such as atherogenic dyslipidemia, hypertension, the prothrombotic state, and underlying insulin resistance (Rubins et al., 1999; Arntz et al., 2000).

In a recent survey in the US, it was found that the prevalence of metabolic syndrome was around 25% in white Americans but higher in Mexican and black Americans (Ford, Giles and Dietz, 2002). According to the 2000 census data, around 47 million US adults have the metabolic syndrome. The National Cholesterol Education Programmed (NCEP) defined metabolic syndrome indirectly suggests that the risk
for coronary heart disease and diabetes has been poorly studied (NCEP, 2002). The efforts up until now undertaken in understanding this syndrome have confirmed the effect of metabolic imbalances in the development of critical chronic cardiovascular, neurological, immunologic, renal, and endocrine diseases. With pandemic increase in obesity rates, care for individual with the metabolic syndrome is very important in order to reduce the harmful effects caused by unhealthy diet, excessive eating, physical inactivity, smoking, and stress. Current clinical research studies have shown that changes in lifestyles can prevent or alter a biochemical imbalance that goes to clinical complications of the metabolic syndrome in elderly people. Weight loss can highly reduce the insulin resistance and also indirectly mitigate the metabolic syndrome risk factors. Improved long-term outcomes have been attained as a result of physicians' approval of eating and physical activity that could lead to several favorable parameters such as a healthier waist circumference and improved body mass index, lower blood pressure, improved HDL-cholesterol and triglyceride, and lower blood sugars along with a reduced C-reactive protein (Lara-Castro and Garvey, 2004; National Blueprint for Increasing Physical Activity, 2006). While the clinicians await further research into behavioral science, adiposities, hormones, and the mechanistic connection between insulin resistance and other important factors that will help them identify new goal for therapy, they can do much by advancement of improved lifestyles for all individuals.

1.2 Conceptual Framework for the Metabolic Syndrome

There are three major reasons for cardiovascular disease as a disease of societal change leading to altered lifestyle as shown in figure 1.1. The first is a good one; we