LOCALIZATION OF NEWCASTLE DISEASE VIRUS (NDV-AF2240) IN 4T1 XENOTRANSPLANT BREAST CANCER BALB/c MICE

GHOLAMREZA MOTALLEB

FPSK(P) 2009 2
LOCALIZATION OF NEWCASTLE DISEASE VIRUS (NDV-AF2240) IN 4T1 XENOTRANSPLANT BREAST CANCER BALB/c MICE

By

GHOLAMREZA MOTALLEB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirements for the Degree of Doctor of Philosophy

September 2009
DEDICATION

With love and appreciation to:

My mother (Kobra Norouzi Ghotb abadi), Father (Nematollah Motalleb), My wife (Niloufar Nabi), My daughter (Mehrafarin), My son (Arian), My brother (Mohamadreza) and my sisters
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

LOCALIZATION OF NEWCASTLE DISEASE VIRUS (NDV-AF2240) IN 4T1 XENOTRANSPLANT BREAST CANCER BALB/c MICE

By

GHOLAMREZA MOTALLEB

September 2009

Chairman : Professor Dr. Fauziah bt. Othman, PhD
Faculty : Medicine and Health Sciences

In situ reverse transcriptase polymerase chain reaction (in situ RT-PCR), polyclonal chicken antibody and goat anti-chicken antibody conjugated with fluorescein isothiocynate (FITC) using confocal laser scanning microscopy (CLSM) and negative staining transmission electron microscopy (NSTEM) were carried out to detect the NDV-AF2240 in tumor, liver, brain and lung during intratumural injection in 4T1 xenotransplant breast tumor in female BALB/c mice. A total of 300 female BALB/c mice were divided randomly into 15 groups (5 non cancerous groups, 10 cancerous groups) consisting 20 mice per group. The normal control (NC), normal treated with 8, 16, 32 and 64HA units of NDV-AF2240 respectively named as N/NDV8, N/NDV16, N/NDV32 and N/NDV64. The mice in cancerous groups were initially inoculated sub-cutaneously with 4T1 cells; co-culture either with NDV-
AF2240 or/and tamoxifen. Cancerous groups were divided into cancer control (CC), cancer treated with only 5 µg/ml tamoxifen citrate (CT), cancer treated with 8, 16, 32 and 64HA units of NDV-AF2240 without tamoxifen respectively named C/NDV8, C/NDV16, C/NDV32, C/NDV64, cancer treated with 8, 16, 32 and 64HA units of NDV-AF2240 with tamoxifen respectively named as CT/NDV8, CT/NDV16, CT/NDV32 and CT/NDV64 daily for four weeks. The normal mice treated with 8, 16, 32 and 64 HA unit of NDV-AF2240 did not affect its lifespan. All of the cancerous and non cancerous mice survived well and completed the 4-weeks treatment. Only 4 groups of mice developed tumor that was CC, CT, CT/CNDV32 and CT/NDV64, however these groups survived until end of the 4 weeks of treatment. Significant difference (p < 0.05) in mean body weight was found between N/NDV16, N/NDV64 and NC. Whereas, for the cancerous groups, mean body weight of the mice in CC group were significantly different (p<0.05) to compare with C/NDV8, C/NDV32, CT/NDV16, CT/NDV32 and CT/NDV64 groups. The mean tumour volume and mass of CT/NDV32 and CT/NDV64 were not significantly different (p> 0.05) to compare with each other and cancer control (CC), however, there was significant difference (p <.05) in the changes of tumour volume and mass over time. The CC and CT groups had a significantly (p<0.05) higher lung weight compared with the other groups. The CC group had a significantly (p<0.05) higher of liver weight compared with all groups. There was no significant (p>0.05) different in the brain weight between CC and all cancerous groups. To localize HN gene expression of NDV-AFF2240 in tissues, *in situ* RT-PCR was applied on formalin fixed paraffin-embedded (FFPE) sections that were positive by negative staining.
transmission electron microscopy. The HN gene expression was detected in all the breast tumor cells. However, it was found mainly in the blood vessels of the brain, liver and lung. The intensity of the HN gene expression in all the organs within the same group is significantly similar except the breast tumor tissue. There was no significant different (p>0.05) in HN gene intensity between CT/NDV8 and CT/NDV16 groups, however, it was significantly different (p<0.05) compared to CT/NDV32 and CT/NDV64 groups. Virus dissemination seems to be determined by the infusion dose during intratumoral injection. β actin as internal control was expressed in breast cancer tissue, brain, lung and liver. In situ RT-PCR showed similar constant strong intensity of β actin gene expression in all mentioned tissues. Immunofluorescence and CLSM successfully detected the virus particles in tumor and all the organs of the cancerous groups during intratumoral injection. In tumor tissue the virus are found in the cells, whereas, in the lung, brain and liver are found mainly in the blood vessels. They are mainly found at the central vein (C.V.) and sinusoidal capillaries of the liver. This phenomenon was similar to results of in situ RT-PCR. Negative staining with transmission electron microscopy as a gold standard method was successfully used to detect the NDV-AF2240 at breast tumor, lung, liver and brain tissues during intratumoral injection in 4T1 xenotransplant breast cancer induced in mice. The results illustrated the presence of NDV-AF2240 in all organs of cancerous groups, but not in the normal groups treated with virus. The morphology of Newcastle disease virus was seen pleomorphic, spherical and ranging from 60-320 nm. The virion has an envelope and prominent surface projections. Occassionally, virions were seen to be rod in
shape. Besides observing the whole virus, nucleocapsids which is confined in the virion was frequently detected outside the virion and are also seen filamentous. The findings of this study showed that NDV-AF2240 suppressed the growth of breast cancer and it is disseminated in blood vessels of the brain, lung and liver, however, found in the cells of the breast cancer.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGESANAN NEWCASTLE DISEASE VIRUS (NDV-AF2240) DI DALAM PAYUDARA BARAH 4T1 XENOTRANSPLANT MENCIT BALB/c MICE

Oleh

GHOLAMREZA MOTALLEB

September 2009

Pengerusi : Profesor Dr. Fauziah bt Othman, PhD
Fakulti : Medicine and Health Sciences

Kaedah in situ reverse transcriptase polymerase chain reaction (in situ RT-PCR), antibodi poliklonal ayam dan antibodi kambing anti-ayam FITC menggunakan mikroskop pengimbasan laser konfokal dan pewarnaan negatif menggunakan mikroskop elektron pancaran telah dijalankan untuk mengesan virus NDV-AF2240 di dalam barah payudara, hati, otak dan paru-paru semasa suntikan intratumoral dalam xenotransplant ketumbuhan payudara dalam mencit betina BALB/c. Sejumlah 300 mencit betina BALB/c dibahagi secara rambang ke dalam 15 kumpulan (5 kumpulan tiada barah, 10 kumpulan berbarah) yang mempunyai 20 mencit sekumpulan. Kumpulan mencit normal (NC), normal dirawat dengan titer virus 8, 16, 32 dan 64 HA unit NDV-AF2240 masing-masing dinamakan N/NDV 8, N/NDV 16, N/NDV 32 dan N/NDV 64. Mencit dalam kumpulan berbarah disuntik subkutaneus
dengan sel kanser payudara mencit 4T1; ko-kultur dengan NDV-AF2240 atau bersama tamoxifen. Kumpulan diaruh barah dibahagi kepada barah kawalan (CC), barah dirawat dengan 5µg/ml tamoxifen citrate (CT), barah dirawat dengan 8, 16, 32, 64 dan 64 HA unit NDV-AF2240 masing-masing ditambah dengan tamoxifen; CT/NDV8, CT/NDV16, CT/NDV32 dan CT/NDV64 setiap hari selama 4 minggu. Mencit normal yang dirawat dengan 8, 16, 32, 64 HA unit NDV-AF2240 tidak menjejaskan jangka hayat. Semua mencit dalam kumpulan diaruh barah dan tidak diaruh barah hidup dan menghabiskan rawatan 4 minggu tersebut. Hanya 4 kumpulan mencit tersebut ada ketumbuhan barah payudara iaitu CC, CT, CT/NDV32 dan CT/NDV64, walaubagaimanapun mencit dalam kumpulan ini hidup hingga ke hujung 4 minggu rawatan. Terdapat perbezaan signifikan (p<0.05) dalam min berat badan antara N/NDV16, N/NDV64 dan NC. Antara kumpulan diaruh barah, min berat badan mencit kumpulan CC berbeza secara signifikan (p<0.05) dibandingkan kepada kumpulan C/NDV8, C/NDV32, CT/NDV 16, CT/NDV 32, dan CT/NDV64. Min isipadu dan berat barah CT/NDV32 dan CT/NDV64 tiada perbezaan signifikan (p>0.05) apabila dibandingkan sesama kumpulan ini dan juga kumpulan barah kawalan (CC), walaubagaimanapun, terdapat perbezaan signifikan (p<0.05) dalam perubahan isipadu dan berat barah dari awal hingga hujung eksperimen. Kumpulan CC dan CT mempunyai berat paru-paru yang lebih tinggi secara signifikan (p<0.05) dibandingkan kepada kumpulan lain. Kumpulan CC mempunyai berat hati yang tinggi secara signifikan (p<0.05) dibandingkan kepada kumpulan lain. Tiada perubahan signifikan berat otak (p>0.05) antara kumpulan CC dan kumpulan diaruh barah yang lain. In situ RT-PCR dijalankan untuk menentukan
pengekspresan gen HN NDV-AF2240 dalam seksyen tisu yang diawet formalin dan dibekukan dalam lilin. Gen HN diekspreskan dan ditemui dalam semua sel-sel barah payudara, walaubagaimanapun, ia ditemui khususnya dalam saluran darah otak, hati dan paru-paru. Keamatan pengekspresan gen HN dalam semua organ dalam kumpulan yang sama adalah serupa secara signifikan kecuali dalam tisu barah payudara. Tiada perbezaan signifikan (p>0.05) dalam keamatan gen HN antara CT/NDV 8 dan CT/NDV 16, walaubagaimanapun, terdapat perbezaan signifikan (p<0.05) apabila dibandingkan kepada CT/NDV 32 dan CT/NDV 64. Nampaknya penyebaran virus ditentukan oleh dos yang diberi semasa suntikan intratumoral. β actin sebagai kawalan dalam, diekspres dalam tisu barah payudara, otak, hati dan paru-paru. In situ RT-PCR menunjukkan keamatan tinggi ekspresi gen β actin yang serupa dalam semua tisu yang disebut sebelum ini. Immunofluoresence dan mikroskop pengimbasan laser konfokol telah berjaya mengesan partikel-partikel virus di dalam barah dan kesemua organ kumpulan diaruh barah semasa suntikan intratumoral. Dalam tisu barah, virus ditemui dalam sel-sel, tetapi dalam organ paru-paru, otak dan hati, virus banyak ditemui dalam saluran darah. Virus ini khususnya ditemui dalam vena sentral dan kapilari sinusodial hati. Fenomena ini adalah sama dengan keputusan in situ RT-PCR. Perwarnaan negatif menggunakan mikroskop elektron pancaran sebagai kaedah standard emas berjaya digunakan untuk mengesan NDV-AF2240 dalam sampel tisu barah, paru-paru, hati dan otak semasa suntikan intratumoral. Keputusan menunjukkan kehadiran NDV-AF2240 di dalam semua organ dalam kumpulan diaruh barah, tetapi bukan dalam kumpulan normal dirawat dengan virus. Morfologi virus newcastle
disease ditemui dalam bentuk pleomorf, sfera dan berukuran dari 60-320 nm. Virionnya ada sampul dan permukaan unjuran yang ketara. Adakalanya, virion nampak dalam bentuk rod. Selain daripada memerhatikan virus secara keseluruhan, nukleokapsid yang biasanya di dalam virion, kerap ditemui di luar virion dan ditemui berfilamentos. Keputusan projek ini menunjukkan NDV-AF2240 disebarkan ke otak, paru-paru dan hati semasa suntikan intratumoral barah payudara 4T1 dalam mencit betina BALB/c.
ACKNOWLEDGEMENTS

Glory and praise to the Almighty Allah, the Omnipotent, Lord of all creation, Omnipresent, for his heavenly, luxurious blessings me and opening the windows of opportunity throughout my life, giving me the strength and health to achieve what I have done so far.

This research project program couldn’t be carried out without the help and cooperation of my family who assist me during my PhD thesis. I would like to express my heartfelt gratitude and appreciation my supervisor, Professor Dr. Fauziah Bt. Othman for her ideas, kindly and valuable guidance and assistance throughout the period of my project. I appreciate the innumerable seconds she spent to show me the correct way to live and also doing my research.

I would like to take this opportunity to especially thank Professor Datin Paduka Dr. Aini Ideris, Deputy Vice Chancellor for Academic and International Affairs Division, UPM, for her advice, support, and comments. I wish to express my deepest thanks to my co supervisor Professor Dr. Asmah Rahmat for her kind assistance and guidance. Also very special acknowledgement is given to Associate Professor Dr. Rozita Rosli, Deputy Dean of Postgraduate and Research, Faculty of Medicine and Health Sciences of UPM. I wish to extend my thanks goes to President of Majlis Kanser Malaysia, Y. Bhg Dato’ Mohd Farid Ariffin who opened new windows for cancer patients to know they are not alone in Malaysia. I also would like
to express my best wishes and regards to Dr. Cheah Yoke Kqueen for his pure helping throughout my project.

Ministry of Science, Research and Technology (MSRT) of Islamic Republic of Iran is greatly acknowledged.

Special thanks go to my friends and colleagues in the Microscopy Imaging and Nanoscience Unit, Institute of Biosciences in UPM (Mr. Ho, Mrs. Aini, Mr. Rafi, and Mrs. Ida), Laboratory of Biology of Faculty of Veterinary Medicine of UPM, and Institute of Medical Molecular Biotechnology (IMMB) of UiTM, Electron Microscopy unit of IBS in UPM, Laboratory of Immunotherapeutic and Vaccines (LIVES) of UPM.

Last but not least, I would like to express my warmest and deepest gratitude to my father (Nematollah Motalleb), my mother (Kobra Norouzi Ghotb Abadi), my dear wife (Niloufar Nabi) and beloved children (Mehrafarin and Arian) my brother (Mohamadreza), my sisters (Elham and Mojgan) for being patience, understanding, support and their belief in me during the course of this research. I love you all.
I certify that an Examination Committee has met on 10 September 2009 to conduct the final examination of Gholamreza Motalleb on his Doctor of Philosophy thesis entitled “Localization of Newcastle Disease Virus (NDV-AF2240) in 4T1 Xenotransplant Breast Cancer BALB/c Mice” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

SAIDI MOIN, PhD
Associate Professor,
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

PATIMAH ISMAIL, PhD
Professor,
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

MOHD HAIR BEJO, PhD
Professor,
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

MARY NG MAH LEE, Ph.D
Professor,
Faculty of Science
National University of Singapore
(External Examiner)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 October 2009
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Fauziah Othman, PhD
Professor,
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Aini Ideris, PhD
Professor,
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Asmah Rahmat, PhD
Professor,
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean,
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 November 2009
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

GHOLAMREZA MOTALLEB

Date : 7 September 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

1.1 Background of study
1.2 Significant of the study
1.3 Statement of the problems
1.4 Objectives of the Study

2. **LITERATURE REVIEW**

2.1 Newcastle disease virus
2.1.1 HN gene of Newcastle disease virus
2.1.2 NDV- AF2240
2.2 Breast cancer
2.2.1 Breast cancer cell line
2.2.2 Animal model for breast cancer
2.2.3 Breast cancer and risk factors
2.2.3.1 Age
2.2.3.2 Family history
2.2.3.3 Previous benign breast disease
2.2.3.4 Radiation
2.2.3.5 Oral contraceptive
2.2.3.6 Hormone replacement therapy
2.2.3.7 Alcohol
2.2.3.8 Obesity
2.2.3.9 Induced abortion
2.2.3.10 Breast implants
2.2.3.11 Tobacco smoke
2.3 Breast cancer therapy
 2.3.1 Locoregional treatment
 2.3.2 Systemic treatment
 2.3.2.1 Treatment options for minimal to average risk patients
 2.3.2.2 Treatment options for high risk patients
 2.3.3 Chemotherapy: current standard
 2.3.4 Metastatic disease
 2.3.5 Hormone sensitive metastatic breast cancer
 2.3.6 Her2 positive metastatic breast cancer
 2.3.7 Treatment of skeletal metastases
 2.3.8 Virotherapy
 2.3.8.1 Ideal replication selective oncolytic virus attributes
 2.3.8.2 Mechanisms of tumor selectivity
 2.3.8.3 Use of inherently selective viruses
 2.3.8.4 RNA viruses as virotherapy agents
 2.3.8.4.1 Newcastle disease virus
 2.3.9 Gene therapy
 2.3.10 Viral dissemination during intra tumoral injection
2.4 Tamoxifen
2.5 Reverse transcription in situ polymerase chain reaction (RT in situ PCR)
2.6 Housekeeping gene
2.7 Immunohistochemistry
2.8 Negative staining and transmission electron microscopy
2.9 Confocal laser scanning microscopy

3 METHODOLOGY

3.1 Experimental design
3.2 Propagation of the virus
 3.2.1 Collection of chicken eggs
 3.2.2 Preparation of seed virus dilution
 3.2.3 Inoculation the virus
 3.2.4 Harvesting
 3.2.5 Storing of allantoic fluid
 3.2.6 Purification of the virus
 3.2.7 Virus titration
 3.2.7.1 Preparation of chicken RBC
 3.2.7.2 Heamagglutination test
3.3 Cell culture
3.4 Breast cancer induction
3.5 Drug preparation
3.6 Sample Collection
3.7 Mean Survival Time (MST) 70
3.8 Reverse transcription in situ polymerase chain reaction 71
 3.8.1 Tissue section preparation 71
 3.8.2 Primer designing 71
 3.8.3 Tissue processing 72
 3.8.4 Proteolytic digestion and DNase treatment 73
 3.8.5 One step RT in situ PCR assay 73
 3.8.5.1 Controls of in situ RT-PCR 77
 3.8.5.2 Scoring system for in situ RT-PCR 77
3.9 Immunofluorescence 78
3.10 Negative staining and transmission electron Microscopy 79

4 RESULTS 78

4.1 Profile of Experimental animals 80
 4.1.1 Mean Survival Time (MST) 80
 4.1.2 Body weight profile 81
 4.1.3 Tumor volume profile 83
 4.1.4 Tumor mass volume 87
 4.1.5 Gross weight of lung, liver and brain of mice 88
4.2 In situ RT-PCR 92
4.3 Confocal laser scanning microscopy 111
4.4 Negative staining transmission electron Microscopy 125

5 GENERAL DISCUSSION 131

5.1 Body weight, gross and tumor weight profile of mice 132
5.2 In situ reverse transcription polymerase chain Reaction 138
5.3 Confocal laser scanning microscopy 142
5.4 Negative staining and transmission electron Microscopy 145

6 CONCLUSIONS AND RECOMMENDATIONS 149

REFERENCES 153
APPENDICES 173
BIODATA OF STUDENT 185
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Origins of a number of commonly used breast cancer cell lines</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Example of replication selective viruses in clinical trials for cancer</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>Mechanisms of tumor specific viral replication</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Pathotype and pathogenecity of NDV in chickens</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>House keeping genes and cellular function</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>Oligonucleotide primer sequences of HN and β-actin gene</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>Volume and concentration of reagents used in the final RT-PCR reaction</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>Thermal cycler condition for HN gene primers in gradient PCR</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>Thermal cycler condition for β-actin gene primers in gradient PCR</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>Intensity of in situ RT-PCR of HN and β actin gene expression in female BALB/c mice</td>
<td>108</td>
</tr>
<tr>
<td>11</td>
<td>In situ RT-PCR detection of HN gene expression of NDV-AF2240</td>
<td>109</td>
</tr>
<tr>
<td>12</td>
<td>Detection of virus particles using CLSM technique</td>
<td>112</td>
</tr>
<tr>
<td>13</td>
<td>Results of NSTEM in all groups of mice</td>
<td>126</td>
</tr>
<tr>
<td>14</td>
<td>Mean body weight of 4T1 breast cancer model of mice treated with NDV-AF2240</td>
<td>180</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mean tumor volume of 4T1 breast cancer model treated with NDV-AF2240</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Gross weight profile of 4T1 breast cancer model treated with NDV-AF2240 and tamoxifen</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>The reagent involved and the tissue processing time used for the tissue processing by an automated tissue processor</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>MST and percentage of increase in lifespan in experimental groups treated with NDV-AF2240 strain</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Schematic representation of the virion structure of NDV</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>NDV genome organization and the viral transcripts</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Schematic representation of tumor-selective viral replication and oncolysis</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Schematic representation of mechanisms of tumor destruction with viral agents</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>Diagram of viral dissemination in a tumor mass</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>Strategies of oncolytic viruses for tumor specificity</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>Experimental design</td>
<td>62</td>
</tr>
<tr>
<td>8</td>
<td>The effect of NDV-AF2240 on body weight changes in 4T1 breast cancer model in BALB/c mice</td>
<td>82</td>
</tr>
<tr>
<td>9</td>
<td>The effect of NDV-AF2240 on mean tumour volume of 4T1 breast cancer induced in female BALB/c mice</td>
<td>83</td>
</tr>
<tr>
<td>10</td>
<td>4T1 cancer cell line</td>
<td>84</td>
</tr>
<tr>
<td>11</td>
<td>Female BALB/c mice with the tumor before sacrificing</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>The mice with tumor before and after sacrificing</td>
<td>86</td>
</tr>
<tr>
<td>13</td>
<td>The effect of NDV-AF2240 on mean tumour mass of 4T1 breast cancer induced in female BALB/c mice</td>
<td>87</td>
</tr>
<tr>
<td>14</td>
<td>The effect of NDV-AF2240 on mean lung weight of 4T1 breast cancer induced in female BALB/c mice</td>
<td>89</td>
</tr>
</tbody>
</table>
15 The effect of NDV-AF2240 on mean liver weight of 4T1 breast cancer induced in female BALB/c mice 90
16 The effect of NDV-AF2240 on mean brain weight of 4T1 breast cancer induced in female BALB/c mice 91
17 Representative light micrograph of \textit{in situ} RT-PCR of β actin mRNA in breast tumour tissue of CT/NDV32 and CT/NDV64 groups 94
18 Representative light micrograph of \textit{in situ} RT-PCR of HN gene in breast tumour tissue of CT/NDV32 and CT/NDV64 groups 95
19 Representative light micrograph of \textit{in situ} RT-PCR of β actin mRNA in lung tissue of CT/NDV32 and CT/NDV64 groups 96
20 Representative light micrograph of \textit{in situ} RT-PCR of HN gene in lung tissue of CT/NDV32 and CT/NDV64 groups 97
21 Representative light micrograph of \textit{in situ} RT-PCR of β actin mRNA in liver tissue of CT/NDV32 and CT/NDV64 groups 98
22 Representative light micrograph of \textit{in situ} RT-PCR of HN gene in liver tissue of CT/NDV32 and CT/NDV64 groups 99
23 Representative light micrograph of \textit{in situ} RT-PCR of β actin mRNA in brain tissue of CT/NDV32 and CT/NDV64 groups 100
24 Representative light micrograph of \textit{in situ} RT-PCR of HN gene in brain tissue of CT/NDV32 and CT/NDV64 groups 101
25 Representative light micrograph of \textit{in situ} RT-PCR of HN gene in brain tissue of CT/NDV8 102
and CT/NDV16 groups

26 Representative light micrograph of *in situ* RT-PCR of β actin mRNA in lung tissue of CT/NDV8 and CT/NDV16 groups

27 Representative light micrograph of *in situ* RT-PCR of HN gene in lung tissue of CT/NDV8 and CT/NDV16 groups

28 Representative light micrograph of *in situ* RT-PCR of β actin mRNA in liver tissue of CT/NDV8 and CT/NDV16 groups

29 Representative light micrograph of *in situ* RT-PCR of HN gene in liver tissue of CT/NDV8 and CT/NDV16 groups

30 Mean intensity of HN and β actin genes

31 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of CT/NDV32 (B) and CT/NDV64 (D) in breast tumor tissue

32 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of CT/NDV32 (B) and CT/NDV64 (D) in liver tissue

33 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of CT/NDV32 (B) and CT/NDV64 (D) in brain tissue

34 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of CT/NDV32 (B) and CT/NDV64 (D) in lung tissue

35 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of CT/NDV8 (B) and CT/NDV16 (D) in lung tissue
36 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of CT/NDV8 (B) and CT/NDV16 (D) in brain tissue

37 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of CT/NDV8 (B) and CT/NDV16 (D) in liver tissue

38 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of C/NDV8 (B) and C/NDV16 (D) in lung tissue

39 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of C/NDV8 (B) and C/NDV16 (D) in liver tissue

40 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of C/NDV8 (B) and C/NDV16 (D) in brain tissue

41 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of C/NDV32 (B) and C/NDV64 (D) in liver tissue

42 Confocal laser scanning micrographs of NDV-AF2240 in 5μm of FFPE of C/NDV32 (B) and C/NDV64 (D) in brain tissue

43 Transmission electron micrograph of NDV-AF2240 isolated from tumor, lung, brain and liver at CT/NDV32 group

44 Transmission electron micrograph of NDV-AF2240 isolated from the lung of CT/NDV8 group by NSTEM

45 Transmission electron micrograph of NDV-AF2240 isolated from the liver of CT/NDV64 group by NSTEM

46 Transmission electron micrograph of rod shape NDV-AF2240