UNIVERSITI PUTRA MALAYSIA

CALCIUM ABSORPTION AND BIOAVAILABILITY OF ISOFLAVONES FROM TEMPEH COMPARED TO MILK AMONG POSTMENOPAUSAL MALAY WOMEN

HASNAH HARON

FPSK(P) 2009 1
CALCIUM ABSORPTION AND BIOAVAILABILITY OF ISOFLAVONES
FROM TEMPEH COMPARED TO MILK AMONG
POSTMENOPAUSAL MALAY WOMEN

By

HASNAH HARON

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirements for the Degree of
Doctor of Philosophy

September 2009
CALCIUM ABSORPTION AND BIOAVAILABILITY OF ISOFlavones FROM TEMPEH COMPARED TO MILK AMONG POSTMENOPAUSAL MALAY WOMEN

By

HASNAH HARON

September 2009

Chairman : Associate Professor Amin Ismail, PhD

Faculty : Medicine and Health Sciences

The main objective of this study was to determine the absorption of calcium from tempeh compared to milk and apparent bioavailability of isoflavone in urinary excretions of postmenopausal Malay women consuming tempeh. There were three phases in this study. In phase one, food analyses on tempeh showed every 100 g of fried tempeh contained 41.8 ± 5.1% moisture, 18.6 ± 1.2% crude protein, 18.8 ± 7.2% crude fat, 19.9 ± 3.4% total carbohydrate, 0.8 ± 0.2% total ash, 63.3 ± 2.7 mg Ca, 34.57 ± 11.07 mg daidzein (DA) and 30.50 ± 11.41 mg genistein (GE), based on wet weight. Deep frying tempeh in batter for 30 minutes decreased 45% of the total isoflavones in fried tempeh (113 ± 41 mg) compared to the raw one (205 ± 56 mg). Raw tempeh contained the highest total amount of DA (25.64 ± 5.65 mg) and GE (28.41 ± 9.15 mg) compared to other studied local soy products.
In phase two, health screening was conducted to select healthy subjects for clinical trial in phase three. Ethical approval was obtained from the ethical committee of Universiti Kebangsaan Malaysia Medical Centre (UKMMC) prior to the study. A total of 125 postmenopausal Malay women screened from five locations in suburban of Kuala Lumpur and 42 of them met the inclusion criteria and were qualified to take part in the clinical trial. The mean age of the subjects was 59 ± 4 years and they were on average 10 ± 7 years postmenopausal. Average weight, height and body mass index (BMI) for these subjects were 63.7 ± 10.1 kg, 1.5 ± 0.1 m and 28.1 ± 4.2 kg/m². Majority (46%) of the women was overweight while 31% were obese and two percent were underweight.

Two-thirds of them have been taking medication for chronic diseases like hypertension (27%), diabetes mellitus (9%), heart disease (1%) and combination of the three chronic diseases (19%). Average values for fasting serum lipid for these subjects were 5.97 ± 1.23 mmol/L of total cholesterol (TC), 1.40 ± 0.33 mmol/L of high density lipoprotein cholesterol (HDLC), 3.84 ± 1.02 mmol/L of low density lipoprotein cholesterol (LDLC) and 1.77 ± 0.96 mmol/L of triglyceride (TG). About 74% of subjects were hypercholesterolemic and 58% were hypertriglyceridemic. Based on the calcaneal measurement, 37% of the subjects were osteopenic while 6% were osteoporotic.

Based on the dietary history questionnaire, average calcium intake of the subjects was 505 ± 263 mg/d when. Their main source of calcium was obtained from vegetables (37%), dairy products (32%), meat and seafood (17%), cereal (7%), fruits (5%) and beverages (2%). Using the semi food frequency questionnaire (SFFQ) for soy products,
the average estimated isoflavone intake for these subjects was 25 ± 15 mg/d. The most frequently consumed soy products for this population was tempeh (25%), fujook (17.4%), homemade soy bean drink (11.2%), unfried tofu (10.3%), fried tofu (8.9%), tofufah (8.4%), soft tofu (7.4%), boxed soy bean drink (7.2%) and egg tofu (4.3%).

In phase three, 21 healthy postmenopausal Malay women volunteered to take part in the clinical trial for calcium absorption and apparent bioavailability study. The study was carried out at the in patient clinical trial ward of UKMMC. Only 20 subjects completed the study since one subject was excluded for not completing the urine collection. The mean age of these subjects was 57 ± 3 years and they were on average 9 ± 5 years postmenopausal. Average weight, height and BMI for these subjects were 63 ± 11 kg, 1.5 ± 0.1 m and 27 ± 4 kg/m². Majority (55%) of these women was overweight while 20% were obese. Measurement of bone mineral density (BMD) using dual energy absorptiometry (DXA), indicated that 50% of the subjects was osteopenic, 35% were normal and 15% were osteoporotic. Body weight was significantly correlated to the BMD of the total body (r = 0.457, p = 0.037) and neck (r = 0.507, p = 0.019).

Based on 3-day food records, 20 postmenopausal Malay women have average low calcium intake of 426 ± 122 mg/d, and 30% of them have reported of not taking any milk. Their mean values for parathyroid hormone (PTH), serum 25-hydroxyvitamin D (25(OH)D), urinary deoxypyridinoline (DPD) and serum alkaline phosphatase (BAP) were: 59.5 ± 21.6 pg/ml, 11.1 ± 4.1 ng/ml, 11.1 ± 1.8 nmol/mmol and 37.1 ± 8.3 U/L, respectively. The majority (95%) subjects had serum 25(OH)D less than 20 ng/ml, which
are indicative of vitamin D insufficiency. Correlation analysis showed a significant inverse association between serum 25(OH)D and BMI ($r = -0.388, p = 0.045$). About 30% of the subjects had secondary hyperparathyroidism with PTH concentrations exceed 65 pg/ml.

Fractional calcium absorption from tempeh was compared to that observed from milk, using a dual stable isotope approach in a randomized cross-over design. Subjects consumed the same calcium load (130-150 mg Ca) from either milk or tempeh with a one-month washout period between each test meal. ^{42}Ca (0.036 mg/kg) was administered intravenously to subjects prior to oral administration of ^{44}Ca (0.272 mg/kg) in milk. All urine from subjects was collected for 24 h post-dosing in 8 h pools. Average percent calcium absorption from tempeh ($36.9 \pm 10.4\%$) was not significantly different ($p>0.05$) from that observed from milk ($34.3 \pm 8.4\%$). Estimated calcium balance (V_{Bal}) from taking tempeh ($108 \pm 63 \text{ mg/d}$) was significantly higher ($p<0.05$) compared to milk ($71 \pm 64 \text{ mg/d}$).

Apparent bioavailability of isoflavones was determined from the urinary isoflavone excretions following ingestion of 240 g tempeh (160 mg isoflavones) and milk. Tempeh consumption for day one was carried out at the clinical trial ward and the same three-8h urine pool collected for calcium absorption study at the ward was used for isoflavone study. Tempeh consumption and 24 h urine collection for day two and three was carried out at subjects’ home. DA, GE, equol (EQ) and flavone (FLA) standards eluted at mean retention time of 16.8 ± 0.1, 20.6 ± 0.1, 21.1 ± 0.1, 25.4 ± 0.1 min, respectively. An
average excretion of 3.51 ± 0.62 μmol/h DA and 2.79 ± 0.35 μmol/h GE were detected after consumption of milk. DA (47.06 ± 4.18 μmol/h), GE (33.27 ± 3.71 μmol/h) and EQ (24.35 ± 4.34 μmol/h) were detected in three-8 h urine pool, following tempeh consumption (Day 1). There was a significant correlation (r = 0.453, p = 0.045) between percent calcium absorption and total isoflavone excretion in 9-16 h urine pool. Urinary isoflavone excretions following ingestion of tempeh (Day 1) were significantly higher (p<0.05) compared to that of the milk.

The average amount of total isoflavones consumed in three days of tempeh consumption was 154.83 ± 1.82 mg per day. Total isoflavones excreted in each day one, two and three of tempeh consumption were as follows: 104.68 ± 9.21, 32.64 ± 3.18 and 30.25 ± 3.99 μmol/day, respectively. The average isoflavone excreted from three days of tempeh consumption were 26.16 ± 2.64 μmol/h DA, 16.64 ± 1.98 μmol/h GE and 13.06 ± 1.79 μmol/h EQ. Almost all subjects excreted EQ following three days of tempeh consumption. There was only one subject (5%) that can be classified as equol producer based on ratio of equol produced to daidzein consumed >0.2. Isoflavone intake of the 20 subjects was estimated to be 26 ± 13 mg per day, ranging from 6 - 58 mg. Based on SFFQ for soy products, the frequently consumed local soy products were consisted of tempeh (19.6%), fujook (16.5%), firm tofu (13.4%), fried firm tofu (11.3%), tofufah (10.3%), homemade SB drink (10.3%), boxed SB drink (7.2%), soft tofu (6.2%) and egg tofu (5.2%)
In conclusion, this sample of postmenopausal Malay women has low calcium intake that achieved only 40 - 50% of the Malaysian RNI. Low intake of calcium among these subjects may be due to their predominantly non-milk based diet where 30-40% of them do not take any milk. Calcium bioavailability from tempeh provided similar amounts of absorbed calcium to that obtained from a glass of milk. These findings indicated that tempeh may have the potential to contribute significantly to the calcium needs of these postmenopausal Malay women who were at risk of low bone mass and were insufficient of vitamin D. Increased incorporation of tempeh, the affordable and available plant sources of calcium and isoflavones may contribute significantly to the calcium needs of this high-risk population and also help to reduce the abnormal serum lipid levels in majority of these subjects.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENYERAPAN KALSIUM DAN BIOAVAILABILITI ISOFlavON DARI TEMPEH BERBANDING SUSU DI KALANGAN WANITA MELAYU MENOPAUS

Oleh

HASNAH HARON

September 2009

Pengerusi : Professor Madya Amin Ismail, PhD.

Fakulti : Perubatan dan Sains Kesihatan

Objektif utama kajian ini adalah untuk menentukan penyerapan kalsium dari tempeh berbanding susu dan bioavailabiliti ketara isoflavon melalui urin wanita Melayu menopaus yang memakan tempeh. Terdapat tiga fasa dalam kajian ini. Dalam fasa pertama, analisis makanan ke atas tempeh menunjukkan setiap 100 g tempeh goreng mengandungi 41.8 ± 5.1% air, 18.6 ± 1.2% protein kasar, 18.8 ± 7.2% lemak kasar, 19.9 ± 3.4% karbohidrat total, 0.8 ± 0.2% abu total, 63.3 ± 2.7 mg kalsium, 34.57 ± 11.07 mg daidzein (DA) dan 30.50 ± 11.41 mg genestein (GE), berdasarkan berat basah. Penggorengan tempeh bersalut tepung dalam minyak yang banyak (terendam) selama 30 minit telah mengurangkan kandungan isoflavon sebanyak 45% dalam tempeh goreng (113 ± 41 mg) berbanding tempeh mentah (205 ± 56 mg). Tempeh mentah mengandungi jumlah isoflavon total DA (25.64 ± 5.65 mg) dan GE (28.41 ± 9.15 mg) yang tertinggi berbanding produk kacang soya tempatan lain yang dikaji.
Dalam fasa kedua, penyaringan kesihatan telah dijalankan untuk memilih subjek yang menepati kriteria yang telah ditetapkan untuk percubaan klinikal dalam fasa ketiga. Kelulusan etika telah diperolehi dari jawatankuasa etika dari Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM) sebelum menjalankan kajian. Sejumlah 125 orang wanita Melayu menopaus yang telah disaring dari lima lokasi di pinggir bandar Kuala Lumpur. Terdapat 42 orang dari mereka telah menepati kriteria yang telah ditetapkan dan layak untuk mengambil bahagian dalam kajian klinikal. Subjek yang telah disaring mempunyai purata umur 59 ± 4 tahun ketika mula menopaus dan telah pun menopaus selama 10 ± 7 tahun. Purata berat badan, ketinggian dan jisim tubuh badan (BMI) para subjek adalah 63.7 ± 10.1 kg, 1.5 ± 0.1 m and 28.1 ± 4.2 kg/m². Kebanyakan subjek (46%) mempunyai berat badan berlebihan manakala 31% adalah obes dan dua peratus mempunyai kekurangan berat badan.

Dua pertiga dari subjek telah melaporkan yang mereka menerima rawatan dan mengambil ubatan untuk penyakit seperti hipertensi (27%), diabetes mellitus (9%), penyakit jantung (1%) dan gabungan dari tiga jenis penyakit kronik ini (19%). Nilai purata lipid serum ketika subjek berpuasa adalah 5.97 ± 1.23 mmol/L kolesterol total (TC), 1.40 ± 0.33 mmol/L kolesterol lipoprotein berketumpatan tinggi (HDLC), 3.84 ± 1.02 mmol/L kolesterol lipoprotein berketumpatan rendah (LDLC) dan 1.77 ± 0.96 mmol/L trigliserida (TG). Hampir 74% dari subjek mengalami hiperkolesterololemik manakala 58% mengalami hipertrigliseridemi. Terdapat 37% dari subjek mengalami osteopenia manakala sebanyak 6% mengalami osteoporosis berdasarkan pengukuran tulang pada bahagian tumit.
Purata pengambilan kalsium bagi subjek adalah 505 ± 263 mg/hari, berdasarkan soal-selidik sejarah pengambilan makanan (DHQ). Sumber utama kalsium untuk kumpulan ini diperolehi dari sayur-sayuran (37%), produk tenusu (32%), daging dan makanan laut (17%), bijirin (7%), buah-buahan (5%) dan minuman (2%). Purata anggaran pengambilan isoflavon para subjek adalah 25 ± 15 mg/hari, berdasarkan soal-selidik (SFFQ) untuk produk kacang soya. Produk soya yang sering diambil oleh populasi ini adalah tempeh (25%), fujook (17.4%), minuman kacang soya yang disediakan di rumah (11.2%), tahu tak digoreng (10.3%), tahu digoreng (8.9%), tofufah (8.4%), tahu lembut (7.4%), minuman kacang soya dalam kotak (7.2%) dan tahu telur (4.3%).

Dalam fasa ketiga, terdapat 21 orang wanita menopause Melayu yang sihat yang telah mengambil bahagian secara sukarela untuk kajian klinikal penyerapan kalsium dan bioavailabiliti isoflavon secara ketara. Kajian ini dijalankan di wad percubaan klinikal PPUKM. Di akhir kajian ini, hanya 20 subjek yang dapat menghabiskan kajian ini kerana seorang subjek telah dikeluarkan disebabkan pengumpulan urinnya yang tidak lengkap. Purata umur 20 subjek ini adalah 57 ± 3 tahun dan purata jangkamasa menapaus adalah 9 ± 5 tahun. Purata berat badan, ketinggian dan BMI subjek kajian adalah 63 ± 11 kg, 1.5 ± 0.1 m dan 27 ± 4 kg/m². Sebahagian besar (55%) wanita menapaus ini mengalami berat badan berlebihan manakala 20% adalah obes. Pengukuran ketumpatan tulang (BMD) subjek menggunakan 'dual energy absorptiometry' (DXA) menunjukkan 50% dari subjek mengalami osteopenia manakala 35% adalah normal dan 15% mengalami osteoporosis. Berat badan adalah berkait secara signifikan kepada BMD keseluruhan badan (r = 0.457, p = 0.037) dan bahagian leher (r = 0.507, p = 0.019).
Kesemua 20 wanita Melayu menopaus mempunyai purata pengambilan kalsium yang rendah iaitu 426 ± 122 mg/hari berdasarkan rekod pengambilan makanan tiga hari dan 30% dari subjek ini didapati tidak meminum susu. Nilai purata untuk hormon paratiroid (PTH), serum 25-hidroksivitamin D (25(OH)D), deoksipiridinolin urin (DPD) dan serum alkaline phosphatase (BAP) adalah seperti berikut: 59.5 ± 21.6 pg/ml, 11.1 ± 4.1 ng/ml, 11.1 ± 1.8 nmol/mmol dan 37.1 ± 8.3 U/L. Kebanyakan subjek (95%) mempunyai serum 25(OH)D kurang dari 20 ng/ml dan menunjukkan subjek kekurangan vitamin D. Analisis korelasi menunjukkan perkaitan signifikan yang berlawanan antara serum 25(OH)D dan BMI (r = -0.388, p = 0.045). Hampir 30% dari subjek mengalami ‘secondary hyperparathyroidism’ dengan kepekatan PTH mereka melebihi 65 pg/ml.

Fraksi kalsium yang diserap dari tempeh berbanding susu telah ditentukan melalui pendekatan dwi isotop stabil, menggunakan rekabentuk rawak silang. Subjek mengambil amaun kalsium (130-150 g) yang sama dari tempeh atau susu, di mana jarak masa pengambilan di antara kedua ujian makanan ini adalah selama sebulan. 42Ca (0.036 mg/kg) telah diberikan kepada subjek secara intravena sebelum pengambilan 44Ca (0.272 mg/kg) secara oral. Kesemua urin dari subjek dikumpulkan pada setiap lapan jam, selama 24 jam iaitu selepas pengambilan dos isotop yang terakhir. Purata peratus penyerapan kalsium dari tempeh (36.9 ± 10.4%) adalah tidak berbeza secara signifikan (p>0.05) berbanding susu (34.3 ± 8.4%). Anggaran kalsium imbangan (V_{Bal}) dari pengambilan tempeh (108 ± 63 mg/d) adalah lebih tinggi secara signifikan (p<0.05) berbanding susu (71 ± 64 mg/d).
Penentuan bioavailabiliti isoflavon ketara ditentukan berdasarkan kepekatan isoflavon dalam urin selepas pengambilan 240 g tempeh (160 mg isoflavon) dan susu. Pengambilan tempeh untuk hari pertama telah dijalankan di wad percubaan klinikal yang menggunakan takungan urin tiga-8 h yang sama untuk kajian kalsium. Pengambilan tempeh dan pengumpulan urin 24 jam untuk hari kedua serta ketiga telah dijalankan di rumah para subjek. Piawai DA, GE, equol (EQ) dan flavone (FLA) dikesan pada purata masa retensi masing – masing, iaitu 16.8 ± 0.1, 20.6 ± 0.1, 21.1 ± 0.1 and 25.4 ± 0.1 min. Purata pengeluaran isoflavon dalam urin selepas pengambilan susu adalah sebanyak $3.51 \pm 0.62 \mu\text{mol DA/h}$ dan $2.79 \pm 0.35 \mu\text{mol/h GE}$. Purata pengeluaran isoflavon sebanyak $47.06 \pm 4.18 \mu\text{mol/h DA}$, $33.27 \pm 3.71 \mu\text{mol/h GE}$ dan $24.35 \pm 4.34 \mu\text{mol/h EQ}$ telah dikesan dalam takungan urin tiga-8 h selepas memakan tempeh (Hari pertama). Terdapat perkaitan signifikan ($r = 0.453$, $p = 0.045$) antara peratus penyerapan kalsium dan kepekatan isoflavon total dalam takungan 9-16 jam. Kepekatan isoflavon dalam urin subjek selepas pengambilan tempeh (Hari 1) adalah lebih tinggi secara signifikan ($p<0.05$) berbanding dengan susu.

Purata amaun isoflavon total yang diambil semasa pengambilan tempeh selama tiga hari adalah 154.83 ± 1.82 mg/hari. Isoflavon total yang didapat dalam urin selepas pengambilan tempeh pada hari pertama, kedua dan ketiga adalah seperti berikut : 104.68 ± 9.21, 32.64 ± 3.18 and 30.25 ± 3.99 µmo/hari. Purata isoflavon dikeluarkan melalui urin selepas pengambilan tempeh selama tiga hari adalah seperti berikut : $26.16 \pm 2.64 \mu\text{mol/h DA}$, $16.64 \pm 1.98 \mu\text{mol/h GE}$ dan $13.06 \pm 1.79 \mu\text{mol/h EQ}$. Hampir kesemua subjek boleh menghasilkan EQ selepas pengambilan tempeh selama tiga hari. Terdapat
seorang subjek (5%) yang boleh dikelaskan sebagai pengeluar EQ berdasarkan ratio equol terhasil kepada DA yang diambil >0.2. Pengambilan isoflavon oleh 20 subjek telah dianggarkan sebagai 26 ± 13 mg/hari, dengan julat pengambilan sebanyak 6 - 58 mg isoflavon setiap hari. Produk kacang soya yang sering diambil adalah tempeh (19.6%), fujook (16.5%), tahu tak digoreng (13.4%), tahu digoreng (11.3%), tofufah (10.3%), minuman kacang soya yang dijual di pasar malam (10.3%), minuman kacang soya dalam kotak (7.2%), tahu lembut (6.2%) dan tahu telur (5.2%).

Kesimpulannya, sampel wanita Melayu menopaus ini mempunyai pengambilan kalsium yang rendah iaitu hanya mencapai 40-50% dari RNI Malaysia. Kesemua subjek mempunyai pengambilan kalsium yang rendah kerana pengambilan diet mereka yang sejumlah besarnya tidak berasaskan susu. Sebanyak 30-40% dari subjek tidak mengambil susu langsung. Bioavailabiliti kalsium dari tempeh telah memberikan penyerapan amaun kalsium yang setanding dari segelas susu. Hasil kajian ini menunjukkan tempeh berpotensi untuk menyumbang kepada keperluan kalsium wanita Melayu menopaus yang kebanyakannya mempunyai ketumpatan tulang yang rendah dan kekurangan vitamin D. Penambahan pengambilan tempeh yang merupakan sumber kalsium serta isoflavon, murah dan mudah didapati akan menyumbang secara signifikan kepada keperluan kalsium populasi ini. Ia juga mungkin akan mengurangkan kandungan lipid yang tidaknormal dalam serum kebanyakan subjek ini.

ACKNOWLEDGEMENTS

First and foremost, all thanks to ALLAH the AL Mighty, for giving me the strength to complete this study. I would like to express my deepest gratitude to my main supervisor,
Associate Professor Dr. Amin Ismail for his great support, assistance and motivation throughout this study and to my co-supervisor, Associate Professor Dr. Suzana Shahar, who has given me the opportunity to be involved in this study of stable isotope. My appreciation also goes to Dr. Loh Su Peng and Dr. Azrina Azlan for their supervision in completing this study. I would like to thank the other members of the research team, Professor Dr. Suriah Abdul Rahman and Professor Dr. NorAzmi Kamaruddin for their assistance during the clinical trial at UKMMC.

My appreciation goes to Associate Professor Dr. Kimberly O. O’Brien for her guidance throughout the stable isotope study and especially during calcium absorption analysis at Human Metabolic Research Unit of Cornell University. Thank you to the International Atomic Energy Agency (IAEA) for awarding me the fellowship and trainings through the RAS/6/041 project. I would like to express my gratitude to the Universiti Kebangsaan Malaysia for granting me the study leave to pursue my postgraduate degree. My special thank you also goes to Professor Dr. Aminah Abdullah, for her kind advice and motivation. Last but not least, I would like to dedicate this thesis to my beloved parents, Haji Haron Haji Arshad and Hajjah Mariam Abdullah, for their continuous love and for being the pillars of my strength.

I certify that a Thesis Examination Committee has met on 3 September 2009 to conduct the final examination of Hasnah binti Haron on her thesis entitled “Calcium Absorption and Bioavailability of Isoflavones from Tempeh Compared to Milk Among Postmenopausal Malay Women” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15
March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Asmah Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Zaitun Yassin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
/Internal Examiner

Zalilah Mohd Shariff, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
/Internal Examiner

Johanna W. Lampe, PhD
Lecturer
Fred Hutchinson Cancer Research Centre
Fairview Ave N, Washington State
University of Washington
/External Examiner

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 24 November 2009

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:
Amin Ismail, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Suzana Shahar, PhD
Associate Professor
Faculty of Allied Health Sciences
Universiti Kebangsaan Malaysia
(Member)

Loh Su Peng, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Azrina Azlan, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date : 10 December 2009

DECLARATION
I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

HASNAH BT. HARON

Date:

TABLE OF CONTENTS

ABSTRACT

Page
ii

xvii
CHAPTER

1 INTRODUCTION

1.1 Study background .. 1
1.2 Statement of the problem ... 3
1.3 Significance of the study ... 4
1.4 Study in general ... 5
1.5 Objectives of the study .. 6

2 LITERATURE REVIEWS

2.1 Bone health in Asia .. 7
2.1.1 Calcium requirement .. 8
2.1.2 Calcium intake among adults in Malaysia compared to other countries 10
2.1.3 Calcium intake among elderly in Malaysia compared to other countries 11
2.2 Bioavailability of calcium ... 13
2.2.1 Calcium homeostasis .. 15
2.2.2 Measurement of calcium bioavailability ... 16
2.2.3 Factors affecting the bioavailability of calcium ... 19
2.3 Stable isotopes as metabolic tracers in human nutrition .. 20
2.3.1 Major considerations in stable isotope studies ... 23
2.3.2 Double label stable isotope technique .. 27
2.4 Parameters of calcium metabolism .. 29
2.4.1 Apparent absorption .. 30
2.4.2 Fractional absorption .. 31
2.5 Soy isoflavones ... 33
2.5.1 Types and distribution of isoflavones ... 34
2.5.2 Tempeh .. 36
2.6 Soy isoflavones and health of postmenopausal women ... 39
2.7 Bioavailability of isoflavones ... 45
2.7.1 Factors affecting the bioavailability of isoflavones .. 47
2.7.2 Isoflavone intake .. 51
2.8 Urinary isoflavone excretion as dietary biomarkers .. 52
3 ANALYSES OF PROXIMATE, CALCIUM AND ISOFLAVONE CONTENTS IN TEMPEH AND SELECTED LOCAL SOY PRODUCTS

3.1 Introduction
3.2 Materials and methods
 3.2.1 Sample locations for tempeh
 3.2.2 Food sampling of selected soy products
 3.2.3 Preparation of fried tempeh in batter
 3.2.4 Calcium analysis in raw and fried tempeh
 3.2.5 Proximate analyses of raw and fried tempeh
 3.2.6 Determination of isoflavone contents in soy products
 3.2.7 Statistical analysis
3.3 Results and discussion
 3.3.1 Proximate and calcium contents in raw and fried tempeh
 3.3.2 Isoflavone contents in raw and fried tempeh
 3.3.3 Isoflavone contents in selected soy products of Malaysia
3.4 Conclusions

4 HEALTH SCREENING AMONG POSTMENOPAUSAL MALAY WOMEN

4.1 Introduction
4.2 Materials and methods
 4.2.1 Ethical approval, study location and sample size for bone health assessment in subjects
 4.2.2 Screening
 4.2.3 Dietary intake assessment
 4.2.4 Statistical analysis
4.3 Results
 4.3.1 Socio-demographic, menstrual and reproductive history
 4.3.2 Health status of the subjects
 4.3.3 Nutrient intake
 4.3.4 Calcium intake
 4.3.5 Isoflavone intake
4.4 Discussion
 4.4.1 Health status of the subjects
 4.4.2 Nutrient and isoflavone intakes of the subjects
 4.4.3 Calcium intake and bone health assessment of
5

ABSORPTION OF CALCIUM FROM TEMPEH COMPARED TO MILK USING DUAL STABLE ISOTOPE TECHNIQUE AMONG POSTMENOPAUSAL MALAY WOMEN

5.1 Introduction

5.2 Materials and methods

5.2.1 Sample size calculation

5.2.2 Recruitment of subjects

5.2.3 Measurements of bone mineral density and 3-day food records

5.2.4 Stable isotopes

5.2.5 Test meals

5.2.6 Study protocols

5.2.7 Measurement of biochemical tests

5.2.8 Calcium extraction from urine pool

5.2.9 Determination of fractional calcium absorption and estimated calcium balance

5.2.10 Statistical analysis

5.3 Results

5.3.1 Socio-demographic, menstrual and reproductive history

5.3.2 Bone mineral density

5.3.3 Nutrient intake

5.3.4 Biochemical analyses

5.3.5 Percent calcium absorption and estimated calcium balance

5.4 Discussion

5.4.1 Calcium intake, calcium absorption and estimated calcium balance

5.4.2 Bone mineral density measurement using dual energy absorptiometry

5.4.3 Biochemical analyses

5.4.4 Nutrient intake

5.5 Conclusions

6

APPARENT BIOAVAILABILITY OF ISOFLAVONE IN URINE EXCRETIONS OF POSTMENOPAUSAL MALAY WOMEN CONSUMING TEMPEH

6.1 Introduction

6.2 Materials and methods
6.2.1 Tempeh
6.2.2 Study protocol
6.2.3 24 h urine collection at subjects’ home
6.2.4 Extraction of isoflavones from urinary excretions
6.2.5 Enzymatic hydrolysis of urinary isoflavones
6.2.6 Chromatographic conditions
6.2.7 Definition of equol producer
6.2.8 Statistical analysis

6.3 Results
6.3.1 Detection of daidzein, genistein and equol in urine excretion
6.3.2 Urinary daidzein and genistein excretions in three 8-h pool of urine following milk consumption.
6.3.3 Urinary daidzein, genistein and equol excretions in three-8 h urine pool following tempeh consumption (Day 1)
6.3.4 Comparison of urinary daidzein, genistein and equol excretions following tempeh consumption from Day 1 to Day 3
6.3.5 Defining the equol producer
6.3.6 Estimated isoflavone intake among subjects

6.4 Discussion
6.4.1 Urinary daidzein and genistein excretions following milk and tempeh consumption (Day one)
6.4.2 Urinary daidzein and genistein excretions following three consecutive days of tempeh consumption
6.4.3 Urinary equol excretions following three days of tempeh consumption

6.5 Conclusions

7 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH
7.1 Summary
7.2 General conclusion
7.3 Limitations of the study
7.4 Recommendations for future research
7.5 Recommendations for public health programme and policy

REFERENCES
APPENDICES
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xxii
2.1 Stable isotopes of several elements, natural abundances and enrichment of stable isotopes

3.1 Descriptions and ingredients of selected local soy products.

3.2 Proximate and calcium contents in raw and fried tempeh (based on wet weight) compared to the one in other food composition tables

4.1 Number of subject screened at five locations

4.2 Sociodemographic of subjects

4.3 Menstrual and reproductive history of the subjects

4.4 Health status of the subjects during screening

4.5 Pearson correlation (r) between age, weight, BMI, fasting blood glucose, systolic and diastolic blood pressure

4.5 Average nutrient intake of the subjects

5.1 Sociodemographic of the subjects

5.2 Menstrual and reproductive history of the subjects

5.3 Measurement of bone mineral density at various skeletal sites, bone mineral content, fat and lean mass of the subjects

5.4 Average nutrient intake based on 3-day food records

5.5 Biochemical analysis

5.6 Percent calcium absorption from milk and tempeh among the subjects

5.7 Urinary calcium excretion, true calcium absorption and estimated calcium balance of the subjects

6.1 Urinary daidzein, genistein and equol excretions of the subjects following milk consumption

6.2 Urinary daidzein, genistein and equol excretions in three-8h urine pool following tempeh consumption (Day 1)

6.3 Pearson correlation (r) between percent calcium absorption

xxiii
total with urinary isoflavone excretions in three-8 h urine pool following tempeh consumption (Day 1)

6.4 Ratio of EQ produced to DA consumed among subjects following three days of tempeh consumption

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>158</td>
</tr>
</tbody>
</table>