UNIVERSITI PUTRA MALAYSIA

AN EXPERT SYSTEM FOR SELECTING AN APPROPRIATE SOLID WASTE TREATMENT TECHNOLOGY

MOHD ARMI BIN ABU SAMAH

FPAS 2009 1
AN EXPERT SYSTEM FOR SELECTING AN APPROPRIATE SOLID WASTE TREATMENT TECHNOLOGY

MOHD ARMI BIN ABU SAMAH

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2008
AN EXPERT SYSTEM FOR SELECTING AN APPROPRIATE SOLID WASTE TREATMENT TECHNOLOGY

MOHD ARMI BIN ABU SAMAH

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
APRIL 2009
AN EXPERT SYSTEM FOR SELECTING AN APPROPRIATE SOLID WASTE TREATMENT TECHNOLOGY

By

MOHD ARMI BIN ABU SAMAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the Requirement for the Degree of Master of Science APRIL 2009
Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

AN EXPERT SYSTEM FOR SELECTING AN APPROPRIATE SOLID WASTE TREATMENT TECHNOLOGY

By

MOHD ARMI BIN ABU SAMAH

APRIL 2009

Chairman : Associate Professor Latifah Binti Abd Manaf, PhD

Faculty : Environmental Studies

The industrialisation, urban development and increasing population have brought about waste disposal problem that pose a tremendous challenge to the planners and managers of Malaysia. Therefore the advent of industrialisation, new environmental problems have also emerged, in the form of toxic and hazardous waste, demanding immediate attention and containment measures. Thus, it is not surprising that a primary concern in Malaysia is the management and disposal of an increasing amount of waste which contribute to environmental degradation in the all area especially in urban area. Solid Waste Treatment Technology (SWATT) expert system is a computer program for decision making in solid waste management. Solid Waste Treatment Technology (SWATT) expert system using application of Analytical Hierarchy Process (AHP) usually can be ranked according to solid waste management hierarchy as described in “EPA’s Agenda”
for Action. Following the integrated approach in solid waste management, Analytical Hierarchy Process (AHP) is being applied using a multi-level hierarchical structure of objectives, criteria, subcriteria, and alternatives. Based on knowledge acquisition from multiple sources, two forms of hierarchy structure has been developed and it was divided into two sections namely general hierarchy structure and specific hierarchy structure for selection of technologies; [1] for selection of general technology where political support, technical expertise, environmental impact, market potential, community involvement and technology cost become as a criteria while alternative consist of three distinct technologies (recycling, composting and incineration) and four combinations of the respective technologies [2] for selection of specific technology in more detail. Inputs data from the experts are used for the pairwise comparison matrix. Through the matrix of pairwise comparison, solid waste treatment technology will be ranked according to their height value of benefit technology. Based on consistency ratios a value of 10 percent or less will be accepted; otherwise the process must be re-evaluated. These comparisons will be used to obtain the weight of importance of the decision criteria, and the relative performance measures of the alternatives in terms of each individual decision criterion. If the comparisons are not perfectly consistent, then the AHP technique will provides a mechanism for improving consistency. To verify, the effectiveness of SWATT expert system has been evaluated for two case study; Kajang Municipal Council and Sepang Municipal Council. Through consultation session, expert system suggested that the best selection of technology is combination of recycling and incineration technology of which the weight is 0.17 for Kajang while combination of recycling and composting technology of which the weight is 0.13 for Sepang. The effectiveness of SWATT expert system was evaluated by selected experts and system engineer that demonstrated
satisfactory results as well as user will be able to have the benefits of informed decision making.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

Sistem Pintar Untuk Pemilihan Teknologi Sesuai Rawatan Sisa Pepejal

Oleh

MOHD ARMI BIN ABU SAMAH

APRIL 2009

Pengerusi : Profesor Madya Latifah Binti Abd Manaf, PhD

Fakulti : Pengajian Alam Sekitar

Walau bagaimanapun untuk melalui proses pengesahan, sistem pintar SWATT telah diuji keberkesanannya untuk dua kajian kes iaitu di Majlis Perbandaran Kajang (MPKJ) dan Majlis Perbandaran Sepang (MPS). Melalui sesi perundingan tersebut, sistem pintar telah mencadangkan pemilihan teknologi yang terbaik iaitu teknologi kitar semula dan pembakaran yang pemberatnya ialah 0.17 untuk MPKJ manakala teknologi kitar semula dan pengkomposan yang mana pemberatnya ialah 0.13 untuk kawasan MPS. Keberkesanan sistem pintar SWATT telah dinilai oleh pakar-pakar yang terpilih dan pemerhatian daripada jurutera sistem menunjukkan hasil yang memuaskan apabila menggunakan sistem ini bukan sahaja kepada pengguna sistem malahan kepada orang awam yang akan mendapat kelebihan daripada pembuat keputusan.
ACKNOWLEDGEMENTS

In the name of ALLAH the Merciful the Compassionate. To Him do entrust myself, to Him be praise and grace, and with Him is success and immunity. I would also to express my deepest praise to ALLAH S.W.T who has given me strength, faith and determination to complete this thesis very well.

I wish to take this opportunity to extend my greatest appreciation and sincere gratitude to my supervisor committee chairman, Dr. Latifah Binti Abd. Manaf, for her persistent inspiration, encouragement, and patient in guidance, wise counsel, kindness and various logistic supports throughout the stages of my study.

My deep appreciation and sincere gratitude extend to Associate Professor Dr. Wan Nor Azmin Sulaiman a member of the supervisory committee, for his kindly co-operation, motivation and thoughtful suggestion to improve my study.

I am equally indebted to Professor Ir. Dr. Mohamed Daud for conscientiously serving as member of my supervisory committee; for reviewing this thesis with constructive criticism, providing assistance in all aspects and encouragement.

I am wish to thank all my friends Abg Yunus, Zaki, Anas, Zam, Latif, Hafiz, Shah, Abu, Kuhan, Mazri, Adam, Yana, Atiqah, Bavani, Tham, Sze, Akak Bad, Razali, and also my colleagues and classmate for their help and support during my study.
I am wish to extend his thanks to the staffs and academics of the Faculty of the Environmental Studies, UPM for all kinds of the amenities offered during the study period. Special thanks due to Professor Dr. Rafikul Islam from International Islamic University Malaysia (IIUM), Assoc. Prof. Dr. Mohammad Ismail Yaziz, Assoc. Prof. Dr. Mohd Nasir Hassan, Assoc. Prof. Dr. Mohamad Pauzi Zakaria, Y.M. Tengku Hanidza Tengku Ismail, Assoc. Prof. Dr. Mohd Kamil Yusoff, Dr. Roslan, Mr. Hafizan Juahir and also to Mr. Abd. Gafar Talip, Mr. Mohd Zaman, Mr. Mohd Sulkifly, Mr. Mansoruddin, lastly Mr. Abdul Rahman. I fully realize and appreciate their kind understanding and support to me, which I shall remember forever.

Finally, I am truly indebted and special thank to my father (Hj. Abu Samah Bin Hj. Rashid) and mother (Hjh. Rojana Binti Sudin) without their worthless sacrifices, I am would not be able to reach the present position. I am is also grateful to my brother Dak Bang, Dak Yan, Dak Lokman , Abg Zali and also my sister Dak Dik, Dak Comel and Dak Noni for their moral encouragements. For their unfailing love, relentless encouragement, support and prayer that have contributed towards the accomplishment of this thesis. Now, I am looking forwards to share our joys for great achievements. Thank you very much for all.
I certify that an Examination Committee met on date of Viva Voce to conduct the final examination of Mohd Armi Bin Abu Samah on his degree thesis entitled “An Expert System for Selecting an Appropriate Solid Waste Treatment Technology” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the student be awarded the relevant degree. Member of the Examination Committee were as follows:

Mohammad Firuz Ramli, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chairman)

Ahmad Makmom Abdullah, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Internal Examiner)

Bakri Mohd Ishak, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Internal Examiner)

Mohd Razman Salim, PhD
Professor
Faculty of Civil Engineering
Universiti Teknologi Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master Science. The members of the Supervisory Committee were as follows:

Latifah Binti Abd. Manaf, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chairman)

Mohamed Daud, Ir., PhD, MBA, P.Eng
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Wan Nor Azmin Sulaiman, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia.
Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Mohd Armi Bin Abu Samah

Date: 06 JUN 2009
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Solid Waste Generation
1.2 Problem Statements
1.3 Rapid Economy Growth in Malaysia
1.4 Expert System as a Solution
1.5 Objectives of Study
1.6 Scope of the Study
1.7 Thesis Organisation

2 LITERATURE REVIEW

Municipal Solid Waste (MSW)

2.1.1 Solid Waste Generation in Malaysia

Integrated Solid Waste Management in Sustainable Development and Waste Management Option
3. METHODOLOGY

Introduction 53

Development of Hierarchy Structure Using AHP 54

Step 1: Decompose of the Problem into Hierarchy Structure 55

General Hierarchy Structure Model 55

Specific Hierarchy Structure Model 64
3.2.2 Step 2: Pairwise Comparison Matrix (PCM) 67
3.2.3 Step 3: Synthesis of Priority 68
3.2.4 Example Calculation of Pairwise Comparison Matrix (PCM) 69
3.2.5 Consistency Ratio Test 77
3.3 Development of Prototype Expert System 80
 3.3.1 Task Analysis 81
3.3.2 Sources of Expertise 88
 3.3.2.1 Manual and Textbooks 88
 3.3.2.2 Research Publication 90
 3.3.2.3 Domain Expert 91
3.4 Knowledge Acquisition Process 93
 3.4.1 Text Analysis 94
 3.4.2 Interview with the Experts 95
 3.4.3 Field Observation 95
3.5 Expert System Development Tools 96

4. ARCHITECTURE OF EXPERT SYSTEM

 4.1 Introduction 103
 4.2 Mechanism of SWATT Respond 104
 4.3 Architecture of SWATT 106
 4.4 Model in SWATT Expert System 108
 4.4.1 AHP module and Saaty Ratio Scale 111
 4.5 Consultation Process 117
5. RESULT AND DISCUSSION

5.1 Introduction 124

5.1.1 Consultation Process in SWATT Expert System 125

5.2 Case Study 1 – Kajang Municipal Council (MPKJ) 126

5.2.1 AHP Analysis for General Hierarchy Structure 127

5.2.2 AHP Analysis for Specific Hierarchy Structure 140

5.2.2.1 Analytical Hierarchy Process (AHP) for Recycling Hierarchy Structure model 140

5.2.2.2 Analytical Hierarchy Process (AHP) for Incineration Hierarchy Structure 144

5.3 Case Study 2 – Sepang Municipal Council (MPS) 148

5.3.1 AHP Analysis for General Hierarchy Structure 151

5.3.2 AHP Analysis for Specific Technology 163

5.3.2.1 AHP for Recycling Hierarchy Structure Model 164

5.3.2.2 AHP for Composting Hierarchy Structure Model 167

5.4 Comparison Analysis Between Kajang Municipal Council and Sepang Municipal Council 171
6. CONCLUSION AND RECOMMENDATION

6.1 Conclusion

6.11 Expert System Technology

6.12 Knowledge Acquisition

6.13 Expert System Development

6.14 Analytical Hierarchy Process (AHP)

6.15 Prototype Development Tool

6.16 Internet Application

6.2 Recommendation

REFERENCES

APPENDICES

A: Survey Questionnaire for Treatment Technology Selection to Manage Solid Waste in Malaysia

B: Example Codes for the Pairwise Comparison Matrix in SWATT Expert System

C: Example of Database An Expert System for selecting An Appropriate Solid Waste Treatment Technology

BIODATA OF THE STUDENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sources and types of Municipal Solid Waste</td>
</tr>
<tr>
<td>2.2</td>
<td>Data of MSW at Kuala Lumpur</td>
</tr>
<tr>
<td>2.3</td>
<td>Waste Generation in Peninsular Malaysia</td>
</tr>
<tr>
<td>2.4</td>
<td>Municipal Solid Waste Generation in ASEAN (1995-2025)</td>
</tr>
<tr>
<td>2.5</td>
<td>Criteria for Assessment of Appropriate Technologies for Solid Waste Treatment and Disposal</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of a Human Expert and an Expert System</td>
</tr>
<tr>
<td>3.1</td>
<td>Data Analysis for Selection of Criteria in Solid Waste Management</td>
</tr>
<tr>
<td>3.2</td>
<td>Value for Pairwise Comparison Matrix: Criteria to Goal</td>
</tr>
<tr>
<td>3.3</td>
<td>Criteria Column for Normalizing Process</td>
</tr>
<tr>
<td>3.4</td>
<td>Pairwise Comparison Matrix Subcriteria for Political Support</td>
</tr>
<tr>
<td>3.5</td>
<td>Normalize Process Result from Subcriteria for Political Support</td>
</tr>
<tr>
<td>3.6</td>
<td>Total Weight for Subcriteria</td>
</tr>
<tr>
<td>3.7</td>
<td>Pairwise Comparison Matrix Alternative for Location</td>
</tr>
<tr>
<td>3.8</td>
<td>Normalize Process Result from All Alternative for Location</td>
</tr>
<tr>
<td>3.9</td>
<td>Total Weight for Alternative to Subcriteria</td>
</tr>
<tr>
<td>3.10</td>
<td>Calculation for Consistency Ratio Test</td>
</tr>
<tr>
<td>3.11</td>
<td>Random Index Value</td>
</tr>
</tbody>
</table>
3.12 List of Task for general Hierarchy Model 83
3.13 List of task for Recycling Model 85
3.14 List of Task for Composting Model 86
3.15 List of Task for Incineration Model 87
3.16 List of Expertise from Textual and Sources 89
3.17 List of Human Expert 92
4.1 Example Rule for Composting 105
5.1 First Level Pairwise Comparison Matrix - Criteria to Goal 127
5.2 Second level Pairwise Comparison Matrix: Subcriteri to 128
Criteria - Political Support
5.3 Second Level Pairwise Comparison Matrix : Subcriteria to 128
Criteria - Technical Expertice
5.4 Second Level Pairwise Comparison Matrix : Subcriteria to 129
Criteria - Environmental Impact
5.5 Second Level Pairwise Comparison Matrix: Subcriteri to 129
Criteria - Market Potential
5.6 Second Level Pairwise Comparison Matrix: Subcriteria to 130
Criteria - Community Involve
5.7 Second Level Pairwise Comparison Matrix: Subcriteria to 130
Criteria - Cost
5.8 Third Level Pairwise Comparison Matrix : Alternative to 131
Subcriteri - Location (L)
5.9 Third Level Pairwise Comparison Matrix : Alternative 132
- Subcriteri: Public Acceptance (P.A)
5.10 Third Level Pairwise Comparison Matrix : Alternative to Subcriteria - Feasibility (F)

5.11 Third Level Pairwise Comparison Matrix : Alternative to Subcriteria – Experience (E)

5.12 Third Level Pairwise Comparison Matrix: Alternative to Subcriteria Group – Water Pollution (W.P)

5.13 Third Level Pairwise Comparison Matrix : Alternative to Subcriteria Group – Public Health (P.H)

5.14 Third Level Pairwise Comparison Matrix: Alternative to Subcriteria – Estimates Cost (E.C)

5.15 Third Level Pairwise Comparison Matrix : Alternative to Subcriteria - Financial Management (F.M)

5.16 Third Level Pairwise Comparison Matrix Alternative to Subcriteria - Cooperation (Co)

5.17 Third level Pairwise Comparison Matrix : Alternative to Subcriteria – Interest Message (I.M)

5.18 Third Level Pairwise Comparison Matrix : Alternative to Subcriteria – Operation Cost (O.C)

5.19 Third Level Pairwise Comparison Matrix : Alternative to Subcriteria – Capital Cost (C.C)

5.20 Ranking of Solid Waste Treatment technology

5.21 First level pairwise Comparison Matrix : Criteria to Goal

5.22 Second Level Pairwise Comparison Matrix: Alternative to Criteria – Location
5.23 Second Level Pairwise Comparison : Matrix Alternative to Criteria – Collection Effective

5.24 Second Level Pairwise Comparison Matrix : Alternative to Criteria – Participation

5.25 Second Level Pairwise Comparison Matrix Alternative to Criteria - Value of Material

5.26 The Overall results for the Specific Selecting of Recycling Technology

5.27 First Level Pairwise Comparison Matrix: Criteria to Goal

5.28 Second Level Pairwise Comparison Matrix : Alternative to Criteria – Man Power

5.29 Second Level Pairwise Comparison Matrix: Alternative to Criteria – Cost

5.30 Second Level Pairwise Comparison Matrix: Alternative to Criteria – Availability

5.31 Second Level Pairwise Comparison Matrix Alternative to Criteria – Air Emission

5.32 Second Level Pairwise Comparison Matrix: Alternative to Criteria – Energy

5.33 The Overall Results for the Specific Selecting of Incineration Technology

5.34 Sepang Municipal Council of District and Area

5.35 Solid Waste Generated in Sepang District
to Subcriteria - Public Health (P.H)

5.49 Third Level Pairwise Comparison Matrix: Alternative 159
to Subcriteria - Estimates Cost (E.C)

5.50 Third Level Pairwise Comparison Matrix: Alternative 159
to Subcriteria – Financial Management (F.M)

5.51 Third Level Pairwise Comparison Matrix: Alternative 160
to Subcriteria - Cooperation (Co)

5.52 Third Level Pairwise Comparison Matrix: Alternative 161
to Subcriteria - Interest Message (I.M)

5.53 Third Level Pairwise Comparison Matrix: Alternative 161
to Subcriteria - Capital Cost (C.C)

5.54 Third Level Pairwise Comparison Matrix: Alternative 162
to Subcriteria - Operation Cost (O.C)

5.55 The Ranking of Solid Waste Treatment Technology 163

5.56 First Level Pairwise Comparison Matrix: Criteria to Goal 164

5.57 Second Level Pairwise Comparison Matrix: Alternative 165
to Criteria - Location

5.58 Second Level Pairwise Comparison Matrix: Alternative 165
to Criteria - Collection Effective

5.59 Second Level Pairwise Comparison Matrix: Alternative 166
to Criteria - Participation

5.60 Second Level Pairwise Comparison Matrix: Alternative 166
to Criteria - Value of Material.