EFFECTS OF ANTIOXIDANT AND DIETARY FIBER CONTENT OF FRESH AND OVEN-DRIED RED PITAYA FRUIT (*Hylocereus polyrhizus*) ON HYPERCHOLESTEROLEMIC AND INSULIN-RESISTANT RATS

ALIREZA OMDIZADEH

FPSK(M) 2009 9
EFFECTS OF ANTIOXIDANT AND DIETARY FIBER CONTENT OF FRESH AND OVEN-DRIED RED PITAYA FRUIT (Hylocereus polyrhizus) ON HYPERCHOLESTEROLEMIC AND INSULIN-RESISTANT RATS

By

ALIREZA OMI DIZADEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

February 2009
DEDICATION

To Sania, Helia and Dina
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EFFECTS OF ANTIOXIDANT AND DIETARY FIBER CONTENT OF FRESH AND OVEN-DRIED RED PITAYA FRUIT (*Hylocereus polyrhizus*) ON HYPERCHOLESTEROLEMIC AND INSULIN-RESISTANT RATS

By

ALI REZA OMIDI ZADEH

February 2009

Chairman: Associate Professor Dr. Rokiah Mohd Yusof

Faculty: Medicine and Health Sciences

This study was designed to investigate the effect of antioxidant content and soluble dietary fiber of red pitaya fruit (*Hylocereus polyrhizus*) on hypercholesterolemic and insulin resistant rats. In the laboratory, red pitaya fruit (*Hylocereus polyrhizus*) was subjected to five different thermal processes: oven drying at 95°C for 30min, oven drying at 95°C for 60min, oven drying at 105°C for 60min, drum drying, and spray drying. Total phenolic contents, radical scavenging activity, antioxidant activity and dietary fiber contents of the fresh and processed red pitaya were subsequently determined. The results of the study revealed that the length of the temperature time was more damaging to total phenolic contents, radical scavenging, and antioxidant activity of this fruit compared to high heating temperatures. The effect of long time (30-60 minutes) oven heating temperatures (95-105°C) on antioxidant parameters of red pitaya were highly significant compared to fresh one (*p < 0.05*). Among all of the heating temperatures, drum drying was the best method for preservation of total
phenolic contents, radical scavenging and antioxidant activity with 7%, 8%, and 13% reduction, respectively; and 95°C for 30 minutes oven drying was the best process for dietary fiber parameters with 8%, 0%, and 2% decreases in soluble, insoluble, and total dietary fibers, respectively. From the laboratory studies, two thermal processed pitaya with distinct proportions of phenolic contents, radical scavenging activity, and soluble dietary fibers were determined. The first thermal processed pitaya was the heated one at 95°C for 30 minutes and contained low phenolic contents and radical scavenging activity with almost intact soluble dietary fiber. The second one was heated pitaya at 105°C for 60 minutes with low in all of the studied biologically active components. These two thermal processed pitayas along with fresh pitaya were tested, as supplements, on high cholesterol (hypercholesterolemic) and high fructose-fed (insulin resistant) rats during 6 weeks treatment in the curative studies. The results showed that fresh red pitaya decreased total cholesterol, LDL-Cholesterol, glucose level, and also increased the serum total antioxidant power in hypercholesterolemic rats, significantly ($p < 0.05$). Moreover, the atherosclerotic changes induced by cholesterol supplement in rats were reversed by fresh pitaya. The hypocholesterolemic and anti-atherogenic effects of both oven-heated pitaya at 95°C for 30 min, and oven-heated pitaya at 105°C for 60 min contained low phenolic contents and radical scavenging activity were not significant. Fresh red pitaya could significantly reduce insulin level, insulin/glucose ratio, triglyceride, total cholesterol, and glucose level ($p < 0.05$) in insulin resistant rats. Besides, it improved glucose intolerance and increased the serum total antioxidant capacity, significantly ($p < 0.05$). The intima-media thickness of the abdominal aorta was significantly lower in fresh pitaya-fed rats than the positive control ($p < 0.05$), and
there were no noticeable changes in their endothelial layer. The anti-atherogenic and
anti-dyslipidemic effects of heated pitaya 95°C for 30 min contained low content of
phenolic contents and radical scavenging activity was not significant, but it decreased
insulin level, insulin/glucose ratio, glucose level and glucose intolerance, significantly
($p < 0.05$). The heated pitaya 105°C for 60 min contained low content of phenolic
contents, radical scavenging activity, and soluble dietary fiber had no effective role in
improving the insulin resistance, dyslipidemia and atherogenesis. The data clearly
showed that fresh red pitaya (that its antioxidants and dietary fibers remained intact)
was capable of attenuating the hypercholesterolemia, insulin resistance and
atherosclerotic changes induced by cholesterol and fructose supplement in rats. The
hypocholesterolemic and anti-atherogenic effects of heated pitaya 95°C for 30 min
contained low content of phenolic contents and radical scavenging activity, but almost
intact soluble dietary fiber were not significant, but it improved insulin resistance
(hyperinsulinemia). The heated pitaya 105°C for 60 min contained low content of
phenolic contents, radical scavenging activity, and soluble dietary fiber had no effective
role in improving the hypercholesterolemia, insulin resistance and atherogenesis. To
conclude, antioxidant content of red pitaya fruit is very important for ameliorating
dyslipidemia in hypercholesterolemic and insulin resistant rats; and red pitaya without
enough antioxidant and soluble dietary fiber content is not able to play an effective role
in the management of hypercholesterolemia and insulin resistance. These results will be
useful for nutritionists and food scientists to use this tropical fruit as a nutritious product
in the food industry to safeguard health and manage the hypercholesterolemia, insulin
resistance and metabolic syndrome.
Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN KANDUNGAN ANTIOKSIDAN DAN FIBER DIET BUAH PITAYA MERAH (Hylocereus polyrhizus) SEGAR DAN KERING KETUHAR KE ATAS TIKUS HIPERKOLESTEROLEMIK DAN RESISTAN INSULIN

Oleh

ALI REZA OMIDI ZADEH

Februari 2008

Pengerusi: Profesor Madya Dr Rokiah Mohd Yusof

Fakulti: Perubatan dan Sains Kesihatan

Kajian ini dibentuk untuk mengkaji kesan kandungan antioksidan dan fiber larut diet buah pitaya merah (Hylocereus polyrhizus) ke atas tikus hiperkolesterollemik dan resistan insulin. Daripada kajian makmal, dua produk telah dihasilkan yang mempunyai proporsi sebatian fenolik, kesan penghapusan radikal, dan fiber larut diet yang berbeza. Produk pertama ialah pitaya yang dipanaskan pada suhu 95 oC selama 30 minit mengandungi rendah sebatian fenolik dan aktiviti penghapusan radikal, dan hampir semua fiber larut masih kekal. Produk kedua adalah pitaya yang dipanaskan pada suhu 105 oC selama 60 minit yang mana mengandungi rendah semua komponen bahan aktif biologi. Dua produk ini bersama dengan buah pitaya segar telah diuji sebagai suplemen ke atas tikus tinggi kolesterol (hiperkolesterollemik) dan tinggi diet fruktosa (resistan insulin) selama 6 minggu dalam kajian pemulihan. Data dengan jelas menunjukkan bahawa buah pitaya segar (kesemua antioksidan dan fiber larut diet masih kekal) berupaya menggurangkan hiperkolesterolemia, resistan insulin dan perubahan arterosklerotik yang diaruukan oleh kolesterol dan suplemen fruktosa pada tikus. Kesan hiperkolesterollemik dan anti-arterogenik buah pitaya yang dipanaskan (95 oC-30min) mengandungi rendah sebatian fenolik dan aktiviti penghapusan radikal, tetapi hampir semua fiber larut diet masih kekal) tidak signifikan, tetapi ia memperbaiki resistan
insulin (hiperinsulinemia). Pitaya yang dipanaskan pada 105°C-60min (mengandungi rendah sebatian fenolik, aktiviti penghapusan radikal, dan fiber larut diet) tidak berkesan dalam memperbaiki hiperkolesterolemia, resistan insulin dan arterogenesis. Kesimpulannya, kandungan antioksidan buah pitaya merah adalah penting dalam memperbaiki dislipidemia dalam tikus hiperkolesterolemik dan resistan insulin; dan pitaya merah tanpa kandungan antioksidan dan fiber larut tidak berupaya memain peranan berkesan dalam pengurusan hiperkolesterolemia dan resistan insulin. Keputusan kajian ini amat berguna kepada pakar pemakanan dan saintis makanan dalam menggunakan buah-buahan tropikal sebagai produk berkhasiat dalam industri makanan bagi melindungi kesihatan dan mengurus hiperkolesterolemia, resistan insulin dan sindrom metabolik.
ACKNOWLEDGEMENTS

I would like to express my deepest and heartiest thanks and indebtedness to my supervisor, Chairman of the Supervisory Committee, Associate Professor Dr. Rokiah Mohd Yusof for her guidance throughout my study in the midst of her heavy responsibilities. I greatly appreciate her strong encouragement which has driven my enthusiasm for further scientific studies.

I am very grateful to Associate Professor Dr. Amin Ismail for his valuable advice and words of encouragement. Appreciation also goes to Associate Professor Dr. Mohd Zuki Abu Bakar for his help in completing this research.
I certify that a Thesis Examination Committee has met on 20 February 2009 to conduct the final examination of Ali Reza Omidi Zadeh on his thesis entitled “Effects of Antioxidant and Dietary Fiber Content of Fresh and Oven-Dried Red Pitaya Fruit (Hylocereus polyrhizus.) on Hypercholesterolemic and Insulin-Resistant rats” in accordance with Universities and University colleges Act 1971 and the Constitution of Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Nasir Mohd Taib, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Fauziah Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Asmah Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Ayub Mohd Yatim, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 April 2009
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rokiah Mohd Yusof, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Amin Ismail, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mohd Zuki Abu Bakar, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 May 2009
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

ALIREZA OMBIDZADEH

Date: 18 March 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ABSTRAK</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>APROVAL</td>
</tr>
<tr>
<td>DECLARATION</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**

 2.1 Cardiovascular diseases
 2.1.1 Definition of cardiovascular disease
 2.1.2 The causes and risk factors of cardiovascular disease
 2.1.3 Diet and cardiovascular disease
 2.1.4 Fruits and vegetables and cardiovascular disease
 2.1.5 Tropical fruits and vegetables and cardiovascular disease

 2.2 Diabetes Mellitus
 2.2.1 Definition of diabetes mellitus
 2.2.2 The causes and risk factors of diabetes mellitus
 2.2.3 Diet and diabetes mellitus
 2.2.4 Fruits and vegetables and diabetes mellitus
 2.2.5 Tropical fruits and vegetables and diabetes mellitus

 2.3 Cardioprotective and antidiabetic compounds of fruits and vegetables
 2.3.1 Antioxidants
 2.3.1.1 Antioxidants as cardioprotective compounds
 2.3.1.2 Antioxidants as antidiabetic compounds
 2.3.2 Dietary fibers
 2.3.2.1 Dietary fibers as cardioprotective compounds
 2.3.2.2 Dietary fibers as antidiabetic compounds

 2.4 Cardioprotective and antidiabetic compounds of fruit and vegetables in food industry

 2.5 Red pitaya fruit (*Hylocereus sp.*)
 2.5.1 Nutritional values of red pitaya fruit (*Hylocereus sp.*)
 2.5.2 Antioxidant contents of red pitaya fruit (*Hylocereus sp.*)
 2.5.3 Total Antioxidant Capacity of Red Pitaya Fruit (*Hylocereus sp.*)
 2.5.4 Red pitaya fruit (*Hylocereus sp.*) and medical sciences

xii
2.5.5 Red pitaya fruit (*Hylocereus sp.*) and cardiovascular disease 47
2.5.6 Red pitaya fruit (*Hylocereus sp.*) and diabetes mellitus 48
2.5.7 Red pitaya fruit (*Hylocereus sp.*) in food industry 49

3 LABORATORY EXPERIMENT: DRYING OF RED PITAYA FRUIT (*HYLOCEREUS POLYRHIZUS*) AND RESULTANT CHANGES TO ITS BIOACTIVE COMPOUNDS

3.1 Introduction 51
3.2 Materials 53
 3.2.1 Chemicals 53
 3.2.2 Equipments 53
3.3 Methods 54
 3.3.1 Sample preparation 54
 3.3.1.1 Thermal processing of red pitaya 54
 3.3.1.1.1 Oven drying 55
 3.3.1.1.2 Drum drying 55
 3.3.1.1.3 Spray drying 55
 3.3.2 Preparation of extract 56
 3.3.3 Moisture content determination 57
 3.3.4 Antioxidant analysis 57
 3.3.4.1 Determination of total phenolic compounds 57
 3.3.4.2 Determination of DPPH radical scavenging activity of red pitaya 58
 3.3.4.3 Determination of total antioxidant activity 59
 3.3.5 Total, insoluble, and soluble dietary fiber analysis 60
 3.3.6 Statistical analysis 61
3.4 Results and discussion 61
 3.4.1 Moisture content of red pitaya 61
 3.4.2 Antioxidant evaluation 62
 3.4.2.1 Total phenolic contents of red pitaya 62
 3.4.2.2 DPPH radical scavenging activity of red pitaya 65
 3.4.2.3 Total antioxidant activity of red pitaya 69
 3.4.2.4 Correlation between TPC and radical scavenging activity 71
 3.4.2.5 Correlation between TPC and total antioxidant activity 72
 3.4.3 Dietary fiber studies 74
 3.4.3.1 Total, insoluble, and soluble dietary fiber 74
 3.4.3.2 Conclusion of dietary fiber studies 78
3.5 Conclusion of laboratory experiment 79
ANIMAL EXPERIMENT 1: EFFECT OF FRESH AND OVEN-DRIED RED PITAYA FRUIT (*Hylocereus polyrhizus*) ON HYPERCHOLESTEROLEMIC RATS

4.1 Introduction

4.2 Materials and methods
 4.2.1 Animals
 4.2.2 Diets
 4.2.3 Chemicals
 4.2.4 Preparation of red pitaya fruit supplements
 4.2.5 Experimental design
 4.2.6 Biochemical parameters
 4.2.7 Serum total antioxidant activity determination
 4.2.8 Histological evaluation
 4.2.9 Statistical analysis

4.3 Results
 4.3.1 Body composition, food, water, and energy intake
 4.3.2 Biochemical parameters
 4.3.3 Total antioxidant capacity of serum
 4.3.4 Correlation between radical scavenging activities of pitaya supplementations and antioxidant power of sera
 4.3.5 Histopathologic changes
 4.3.5.1 Intima-media thickness
 4.3.5.2 Endothelial changes

4.4 Discussion

ANIMAL EXPERIMENT 2: EFFECT OF FRESH AND OVEN-DRIED RED PITAYA FRUIT (*Hylocereus polyrhizus*) ON INSULIN RESISTANT RATS

5.1 Introduction

5.2 Materials and methods
 5.2.1 Animals
 5.2.2 Diet
 5.2.3 Chemicals
 5.2.4 Preparation of red pitaya fruit supplements
 5.2.5 Experimental design
 5.2.6 Biochemical parameters
 5.2.7 Insulin enzyme immunoassay (ELISA)
 5.2.8 Glucose tolerance test (GTT)
 5.2.9 Serum total antioxidant activity determination
 5.2.10 Histological evaluation
 5.2.11 Statistical analysis

5.3 Results
 5.3.1 Body composition, food, water, and energy intake
 5.3.2 Biochemical parameters and ELISA
 5.3.3 Glucose tolerance test (GTT)
 5.3.4 Total antioxidant capacity of serum
5.3.5 Correlation between radical scavenging activities of pitaya supplementations and antioxidant power of sera
5.3.6 Histopathologic changes
 5.3.6.1 Intima-media thickness
 5.3.6.2 Endothelial changes
5.4 Discussion

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The effects of tropical fruits on human lipid profile</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>The effects of tropical fruits on human glucose profile</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Nutritional value of red pitaya per 100 grams (analyzed in Taiwan Food Industry Development and Research Authorities)</td>
<td>41</td>
</tr>
<tr>
<td>2.4</td>
<td>Nutritional value of red pitaya fruit (Hylocereus) per 100 grams</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>Antioxidant content of Thai red pitaya, H. polyrhizus</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Antioxidant content of Costa Rica red pitaya (Hylocereus sp.)</td>
<td>44</td>
</tr>
<tr>
<td>2.7</td>
<td>Flavonoids of Malaysian red pitaya fruit (Hylocereus) per 100 grams (analyzed in Universiti Putra Malaysia (UPM))</td>
<td>45</td>
</tr>
<tr>
<td>2.8</td>
<td>Total Antioxidant Activity (TAA) of Thai red pitaya, H. Polyrhizus</td>
<td>45</td>
</tr>
<tr>
<td>2.9</td>
<td>Total Antioxidant Activity (TAA) of Florida-grown red pitaya</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Moisture content of fresh and heated pitayas</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>Total phenolic content of fresh pitaya and heated pitayas</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Ratio of TPC of heated pitayas to fresh pitaya</td>
<td>65</td>
</tr>
<tr>
<td>3.4</td>
<td>Inhibition (%) of DPPH absorbance (antioxidant activity) of fresh pitaya and heated pitayas</td>
<td>66</td>
</tr>
<tr>
<td>3.5</td>
<td>Radical scavenging activity of fresh pitaya and heated pitayas</td>
<td>67</td>
</tr>
<tr>
<td>3.6</td>
<td>Ratio of radical scavenging activity of heated pitayas to fresh pitaya</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>Total antioxidant activity of fresh pitaya and heated pitayas</td>
<td>70</td>
</tr>
<tr>
<td>3.8</td>
<td>Ratio of Total antioxidant activity of heated pitayas to fresh pitaya</td>
<td>71</td>
</tr>
<tr>
<td>3.9</td>
<td>Soluble, insoluble, and total dietary fiber of fresh and heated pitayas</td>
<td>75</td>
</tr>
<tr>
<td>3.10</td>
<td>Soluble, insoluble, and total dietary fiber of fresh and heated pitayas</td>
<td>75</td>
</tr>
</tbody>
</table>
3.11 Ratio of soluble, insoluble, and total dietary fiber of heated pitayas to fresh pitaya

3.12 Contents and criteria of three supplementations of red pitaya fruit for animal studies

4.1 Composition of the experimental diets

4.2 Experimental design in the animal experiment 1: Hypercholesterolemic Rats

4.3 Food consumption, water consumption, and energy intake of the rats in the CON group, and hypercholesterolemic models (HCMs) at the end of induction of hypercholesterolemia

4.4 Food consumption, water consumption, and energy intake of the rats in the CON, HC, HC+Pit, HC+Pit95, HC+Pit105, and HC+Ator groups at the end of the treatment

4.5 Comparison of the food consumption, water consumption, and energy intake of the rats in the CON, HC, HC+Pit, HC+Pit95, HC+Pit105, and HC+Ator groups at the end of induction, and treatment of hypercholesterolemia

4.6 The thickness of intima-media of the abdominal aorta of rats

5.1 Experimental design in the animal experiment 2: Insulin resistant rats

5.2 Food consumption, water consumption, and energy intake of the rats in the CON group, and insulin resistant models (IRMs) at the end of induction of insulin resistance

5.3 Food consumption, water consumption, and energy intake of the rats in the CON, FRU, FRU+Pit, FRU+Pit95, FRU+Pit105, and FRU+Met groups at the end of the treatment

5.4 Comparison of the food consumption, water consumption, and energy intake of the rats in the CON, FRU, FRU+Pit, FRU+Pit95, FRU+Pit105, and FRU+ Met groups at the end of induction and treatment

5.5 The thickness of intima-media of the abdominal aorta of rats
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Correlation between radical scavenging activity and TPC of fresh and heated pitayas</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>Correlation between total antioxidant activity and TPC of fresh and heated pitayas</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>The weight gain by the 6 groups</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Serum total cholesterol (TC) level in the 6 groups</td>
<td>94</td>
</tr>
<tr>
<td>4.3</td>
<td>Serum LDL-Cholesterol (LDL) level in the 6 groups</td>
<td>95</td>
</tr>
<tr>
<td>4.4</td>
<td>Serum HDL-Cholesterol (HDL) level in the 6 groups</td>
<td>96</td>
</tr>
<tr>
<td>4.5</td>
<td>Serum triglyceride level in the 6 groups</td>
<td>97</td>
</tr>
<tr>
<td>4.6</td>
<td>Serum glucose level in the 6 groups</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>Serum antioxidant capacity by FRAP method in the 6 groups</td>
<td>100</td>
</tr>
<tr>
<td>4.8</td>
<td>Correlation between radical scavenging activities of pitaya supplementations and antioxidant power of sera</td>
<td>101</td>
</tr>
<tr>
<td>4.9</td>
<td>Histological section of abdominal aortic segments in CON group</td>
<td>104</td>
</tr>
<tr>
<td>4.10</td>
<td>Histological section of abdominal aortic segments in HC group</td>
<td>104</td>
</tr>
<tr>
<td>4.11</td>
<td>Histological section of abdominal aortic segments in HC+Pit group</td>
<td>105</td>
</tr>
<tr>
<td>4.12</td>
<td>Histological section of abdominal aortic segments in HC+Pit95 group</td>
<td>105</td>
</tr>
<tr>
<td>4.13</td>
<td>Histological section of abdominal aortic segments in HC+Pit105 group</td>
<td>106</td>
</tr>
<tr>
<td>4.14</td>
<td>Histological section of abdominal aortic segments in HC+Ator group</td>
<td>106</td>
</tr>
</tbody>
</table>
4.15 Histological section of abdominal aortic segments in CON group 107
4.16 Histological section of abdominal aortic segments in HC group 107
4.17 Histological section of abdominal aortic segments in HC+Pit group 108
4.18 Histological section of abdominal aortic segments in HC+Pit95 group 108
4.19 Histological section of abdominal aortic segments in HC+Pit105 group 109
4.20 Histological section of abdominal aortic segments in HC+Ator group 109

5.1 The weight gain by the 6 groups 122
5.2 Serum insulin level in the 6 groups 129
5.3 Insulin/glucose ratio in the 6 groups 130
5.4 Serum triglyceride level in the 6 groups 131
5.5 Serum glucose level in the 6 groups 132
5.6 Serum total cholesterol (TC) level in the 6 groups 133
5.7 Serum LDL-Cholesterol (LDL) level in the 6 groups 134
5.8 Serum HDL-Cholesterol (HDL) level in the 6 groups 135
5.9 Serum glucose responses to oral glucose load in the 6 groups, at the end of insulin resistance induction 136
5.10 Serum glucose responses to oral glucose load in the 6 groups, at the end of the treatment 137
5.11 Area under the serum glucose concentration time curves in the 6 groups 139
5.12 Serum antioxidant capacity by FRAP method in the 6 groups 140
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13</td>
<td>Correlation between radical scavenging activities of pitaya supplementation and antioxidant power of sera</td>
<td>141</td>
</tr>
<tr>
<td>5.14</td>
<td>Histological section of abdominal aortic segments in CON group</td>
<td>144</td>
</tr>
<tr>
<td>5.15</td>
<td>Histological section of abdominal aortic segments in FRU group</td>
<td>144</td>
</tr>
<tr>
<td>5.16</td>
<td>Histological section of abdominal aortic segments in FRU+Pit group</td>
<td>145</td>
</tr>
<tr>
<td>5.17</td>
<td>Histological section of abdominal aortic segments in FRU+Pit95 group</td>
<td>145</td>
</tr>
<tr>
<td>5.18</td>
<td>Histological section of abdominal aortic segments in FRU+Pit105 group</td>
<td>146</td>
</tr>
<tr>
<td>5.19</td>
<td>Histological section of abdominal aortic segments in FRU+Met group</td>
<td>146</td>
</tr>
<tr>
<td>5.20</td>
<td>Histological section of abdominal aortic segments in CON group</td>
<td>147</td>
</tr>
<tr>
<td>5.21</td>
<td>Histological section of abdominal aortic segments in FRU group</td>
<td>147</td>
</tr>
<tr>
<td>5.22</td>
<td>Histological section of abdominal aortic segments in FRU+Pit group</td>
<td>148</td>
</tr>
<tr>
<td>5.23</td>
<td>Histological section of abdominal aortic segments in FRU+Pit95 group</td>
<td>148</td>
</tr>
<tr>
<td>5.24</td>
<td>Histological section of abdominal aortic segments in FRU+Pit105 group</td>
<td>149</td>
</tr>
<tr>
<td>5.25</td>
<td>Histological section of abdominal aortic segments in FRU+Met group</td>
<td>149</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Method of extract preparation</td>
<td>179</td>
</tr>
<tr>
<td>B</td>
<td>Method of determination of total phenolic compounds of red pitaya</td>
<td>180</td>
</tr>
<tr>
<td>C</td>
<td>Method of determination of DPPH radical scavenging activity of red pitaya</td>
<td>181</td>
</tr>
<tr>
<td>D</td>
<td>Method of total, insoluble and soluble dietary fiber analysis of red pitaya</td>
<td>182</td>
</tr>
<tr>
<td>E</td>
<td>Gallic acid standards and curve</td>
<td>187</td>
</tr>
<tr>
<td>F</td>
<td>Absorbance of total phenolic compounds of fresh pitaya and heated pitayas</td>
<td>188</td>
</tr>
<tr>
<td>G</td>
<td>Ascorbic acid standards and curves</td>
<td>189</td>
</tr>
<tr>
<td>H</td>
<td>Absorbencies of radical scavenging activity of fresh pitaya and heated pitayas</td>
<td>191</td>
</tr>
<tr>
<td>I</td>
<td>Ferrous sulfate standards and curves</td>
<td>192</td>
</tr>
<tr>
<td>J</td>
<td>Absorbance of FRAP of fresh pitaya and heated pitayas</td>
<td>194</td>
</tr>
<tr>
<td>K</td>
<td>Total, insoluble, and soluble dietary fiber of red pitaya</td>
<td>195</td>
</tr>
<tr>
<td>L</td>
<td>Hematoxylin–eosin staining</td>
<td>203</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

CHD Coronary heart disease
CVD Cardiovascular diseases
CI confidence interval
DASH Dietary Approach to Stop Hypertension
DPPH 2,2-Diphenyl-1-picryl-hydrazyl
FRAP Ferric reducing ability of plasma
GAE Gallic acid equivalent
GDM gestational diabetes mellitus
HDL High density lipoprotein
HDL-PH HDL phospholipids
IDF Insoluble dietary fiber
IFG Impaired Fasting Glycemia
IGT Impaired Glucose Tolerance
LDL Low density lipoprotein
MDF Malondialdehyde
RR relative risk
SDF Soluble dietary fiber
TAA Total antioxidant activity
TC Total cholesterol
TDF Total dietary fiber
TG Triglyceride
TGRLP-C Triglyceride rich lipoprotein
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>Total phenolic compounds</td>
</tr>
<tr>
<td>TPH</td>
<td>Total phospholipids</td>
</tr>
<tr>
<td>WHO</td>
<td>World health organization</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

It is completely certain that the nutritional sciences and food industry play a prominent role in the prevention and treatment of common chronic diseases. They always endeavour to present healthy diet and nutritious products to promote good health and prevent illnesses, especially two important killer and disabling disorders, cardiovascular diseases (CVD) and diabetes. Healthy diet consists of daily eating at least 5 servings of fruits and vegetables, limiting the salt intake (WHO, 2007), and less sugar and saturated fat consumption (WHO, 2006). Research studies show that diets rich in fruits and vegetables protect us against important risk factors of CVD (WHO, 2007; Ignarro et al., 2007), coronary heart disease (CHD), stroke (Bazzano et al., 2002; Joshipura et al., 2001; Liu et al., 2001; Sasazuki, 2001; Zhao and Chen, 2001; Liu et al., 2000a; Menotti et al., 1999), and type 2 diabetes (WHO, 2006). They are capable to improve the lipid profile (Gorinstein et al., 2004; Leontowicz et al., 2001; Aprikian et al., 2001), insulin resistance (Xi et al., 2007; Dimo et al., 2002), and glucose levels (Virdi et al., 2003). Also, to maintain the quality and value of food, including the maintenance of micronutrients and fortification of processed foods with the desired nutrients are the attempts of food industry to reduce the burden of CVD and diabetes.

Cardiovascular disease (CVD) is the number one cause of death. An estimated 17.5 million people died from CVD in 2005, representing 30% of all global deaths. CVD is not only a problem of the developed countries: around 80% of all CVD deaths worldwide take place in developing countries (WHO, 2007). According to the facts of 2002, the main cause of death at all ages in Malaysia was ischemic heart disease, with 13,000 cases. Moreover, we can add 5,000 deaths for hypertensive heart