UNIVERSITI PUTRA MALAYSIA

Channa striatus AQUEOUS EXTRACT IMPROVED COGNITIVE FUNCTION IN RATS

MUHAMAD FARIS BIN AB AZIZ

FPSK(M) 2012 53
Channa striatus AQUEOUS EXTRACT IMPROVED COGNITIVE FUNCTION IN RATS

By

MUHAMAD FARIS BIN AB AZIZ

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

September 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

Channa striatus AQUEOUS EXTRACT IMPROVED COGNITIVE FUNCTION IN RATS

By

MUHAMAD FARIS BIN AB AZIZ

September 2012

Chairman : Professor Abdul Manan Mat Jais, PhD

Faculty : Medicine and Health Sciences

Channa striatus (Haruan) is a snakehead fish that is consumed traditionally in many Southeast Asian regions as a wound healing agent to relieve pain. The experiment was carried out to assess the effects of *C. striatus* aqueous extract on cognitive function in rats. The experiment involved a ten-week study to investigate the effects of *C. striatus* aqueous extract on spatial learning and memory in rats. Forty male Sprague-Dawley rats were randomly allocated into four treatment groups of 10 animals each. All rats were fed 15 g of standard pellet per rat per day. Treatment oil and extract were administered by oral gavages. Rats in the menhaden group (MHD group, positive control, n = 10) were gavaged with 10 ml/kg menhaden oil per rat per day. Similarly 10 ml/kg of the *C. striatus* aqueous extract were given daily as oral gavages to each rat in the Haruan group (HRN group, n = 10). The rats in butter group (BTR group, n = 10) were treated with 10 ml/kg butter and rats in the control group (CTL group, n = 10) were the untreated controls. The individual body weights were recorded weekly to calculate their body weight gain during the trial. The baseline observation for spatial learning and memory were acquired using the Morris Water Maze (MWM) test at week-0 and re-evaluated
after week 10. Blood collections were performed by cardiac puncture to determine the fatty acid composition in the plasma using gas chromatography after week-10. After ten weeks of treatment, there was a significant improvement (P < 0.05) in distance and time to reach the hidden platform in the MWM test of the rats in MHD and HRN group. Rats in the MHD group followed a shorter distance followed with the rats in HRN group, BTR group and lastly the rats in the CTL group. The same pattern of results was also observed for the time to reach the hidden platform. The rats in MHD group were fed a high level of docosahexaenoic acid (DHA, 22:6n-3 polyunsaturated fatty acids) which led to the better performance to reach the hidden platform as well as the rats in HRN group. The plasma of the MHD and HRN animals also had significantly increased (P<0.05) levels of n-3 PUFAs, at the end of the trial compared to both BTR and CTL groups. The results indicated that C. striatus aqueous extract supplementation produced a better performance in the MWM test and tissue fatty acid composition compared to the unsupplemented control.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

EKSTRAK AKUES Channa striatus MEMPERBAIKI FUNGSI KOGNITIF DALAM TIKUS

Oleh

MUHAMAD FARIS BIN AB AZIZ

September 2012

Pengerusi : Profesor Abdul Manan Mat Jais, PhD
Fakulti : Perubatan dan Sains Kesihatan

Channa striatus (Haruan) ialah ikan berkepala ular yang digunakan secara tradisional oleh penduduk kebanyakannya di kawasan Asia Tenggara sebagai agen pengubat luka untuk menahan sakit. Eksperimen ini telah dijalankan untuk mengkaji kesan ekstrak akues C. striatus terhadap fungsi kognitif pada tikus. Eksperimen ini melibatkan penyelidikan selama sepuluh minggu ini, dijalankan untuk menyiasat kesan ekstrak akues C. striatus dalam perkembangan pembelajaran berasaskan ruang dan memori dalam tikus baka Sprague-Dawley. Empat puluh tikus baka Sprague-Dawley jantan telah diagihkan secara rawak kepada empat kumpulan rawatan yang mengandungi sepuluh ekor tikus dalam setiap rawatan. Semua tikus diberi makan 15 g pellet tikus seekor sehari. Rawatan minyak dan ekstrak diberikan secara pemakanan paksa melalui mulut. Tikus dalam kumpulan menhaden (MHD, kawalan positif, n = 10) telah diberi makan 10 ml/kg minyak ikan setiap seekor tikus sehari. 10ml/kg ekstrak akues C. striatus diberikan setiap hari kepada setiap ekor tikus di dalam kumpulan Haruan (kumpulan HRN, n = 10). Tikus di dalam kumpulan mentega (kumpulan BTR, n = 10) diberi rawatan 10 ml/kg mentega dan tikus di dalam kumpulan kawalan (kumpulan CTL, n =
10) adalah kawalan yang tidak dirawat. Berat badan tikus dicatat secara individu sekali seminggu. Kemampuan pembelajaran berasaskan ruang dan ingatan (kebolehan mental) telah dinilai dengan menggunakan ujian Morris Water Maze (MWM) pada minggu awal dan dinilai sekali lagi pada minggu kesepuluh. Pensampelan darah dilakukan melalui jantung untuk menentukan kandungan asid lemak plasma menggunakan teknik kromatografi gas selepas minggu kesepuluh. Selepas rawatan selama sepuluh minggu, keputusan menunjukkan perbezaan bererti pada jarak laluan dan masa yang diambil untuk sampai ke platform untuk tikus dalam kumpulan MHD dan HRN. Tikus dalam kumpulan MHD menunjukkan jarak laluan yang pendek diikuti dengan tikus dalam kumpulan HRN, BTR dan yang terakhir tikus dalam kumpulan CTL. Keputusan untuk masa yang diambil oleh tikus untuk sampai ke platform juga menunjukkan corak keputusan yang sama. Subjek daripada kumpulan MHD telah diberi makan dengan minyak ikan yang kaya dengan asid dokosaheksanoic (DHA, 22:6n-3 lemak tak tepu) yang mencatatkan jarak laluan dan masa yang lebih baik untuk menuju ke platfom, begitu juga tikus di dalam kumpulan HRN. Plasma dalam haiwan MHD dan HRN juga menunjukkan peningkatan tahap asid lemak politaktepu (P<0.05) di akhir eksperimen, berbanding kumpulan BTR dan CTL. Keputusan ini menunjukkan suplementasi ekstrak akues C. striatus menyumbang kepada prestasi lebih baik tikus dalam ujian MWM dan profil asid lemak tisu berbanding tikus yang tidak disuplementasi.
ACKNOWLEDGEMENTS

In the name of ALLAH, the Most Benevolent and Most Merciful

Alhamdulillah, praise to Almighty Allah for giving me the strength to complete my research and this thesis. This is indeed very timely for me to express my gratitude and appreciation to all who helped me along the way.

I would like to express my appreciation and sincere gratitude to my supervisor, Prof Dr Abdul Manan Mat Jais for his guidance, dedication, encouragement, support, comments and the most important for his moral support to complete this research.

My sincere appreciation also goes to my co-supervisor, Assoc. Prof. Dr. Goh Yong Meng from the Faculty of Veterinary Medicine and Prof. Dr. Loh Teck Chwen from the Faculty of Agriculture for their guidance, support and continued encouragement and providing me a research environment that has plenty of freedom and space for me to discuss and develop my very own ideas.

I would like to thank all the staff from the Department of Pre-Clinical Veterinary Science, Faculty of Veterinary Medicine, for their support, opinion, and readiness to share their experience and expertise in laboratory management especially on animal handling especially Mr Kufli Bin Che Noor, Mrs Zainab Nasri and Mrs Rosmawati Hanipah.
I also owe my thanks to post graduate students, especially Mr Mahdi Ebrahimi, Tan Ai Li, Che Ku Dahlan, and Mohd Hafiz Ab Rahim for their moral encouragement, concern, patience and friendship throughout the duration of my research.

Finally, my deepest gratitude goes to my lovely wife, Aini binti Musa, my dear parents, Allahyarham Ab Aziz Bin Mat, Zaiton binti Mahmod, and family for their understanding, financial, and moral support. I also would like to thank all my lecturers, and friends for their help, motivation and understanding throughout the period of studies and completion of my study.
APPROVAL

I certify that an Examination Committee has met on 26th September 2012 to conduct the final examination of Muhamad Faris bin Ab Aziz of his Master of Science thesis entitled “Channa striatus Aqueous Extract Improved Cognitive Function in Rats” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree.

Members of the Examination Committee are as follows:

Mohd. Roslan Sulaiman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Mohamed Ali Rajion, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Zainul Amiruddin Zakaria, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Wan Zahari Mohamed, PhD
Professor
Faculty of Veterinary Medicine
Universiti Malaysia Kelantan
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: ___________________
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Abdul Manan Mat Jais, PhD
Professor
Department of Biomedical Science
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Goh Yong Meng, PhD
Associate Professor
Department of Preclinical Veterinary Science
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Loh Teck Chwen, PhD
Professor
Department of Animal Science
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

MUHAMAD FARIS BIN AB AZIZ

Date: 26 SEPTEMBER 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

- Hypothesis
 3
- Objectives of this study
 4
- Justification of this study
 4

2. LITERATURE REVIEW

- Fish background
 5
 - Haruan *C. striatus*
 5
 - Medicinal Potential of *C. striatus*
 8
 - Biochemical composition of *C. striatus*
 9
- The fatty acid
 14
 - Metabolism of fatty acids
 16
 - The Polyunsaturated Fatty Acid (PUFA)
 18
 - Long Chain Polyunsaturated Fatty Acid (LC-PUFA)
 20
 - The Role of PUFA in Brain Function
 22
- Mental Ability Development in Mammals
 24
- Mental Ability
 24
- Factors that Influence Mental Ability
 25
- Spatial Learning and Memory
 26
- Short term and Long term Memory
 28
- Measurement of Mental Ability
 29
 - Summary
 31

3. MATERIALS AND METHODS

- Experimental Design
 32
- Fish Preparation
 32
- Preparation of the *C. striatus* Aqueous Extract
 33
- Experimental Location and Animal Housing
 34
- Experimental Diets
 34
- Morris Water Maze test
 35
4. RESULTS
 Fatty Acid Profile of the C. striatus Aqueous Extract 44
 Fatty acid profile of the Treatment Oil (Menhaden Oil and Butter) and Extract 47
 Body Weight Changes 49
 Outcome of the Morris Water Maze test 49
 Fatty Acid Profile of the Rats Plasma 50

5. DISCUSSION
 Fatty Acids Profile of the C. striatus Aqueous Extract 53
 Fatty Acids Profile of the Treatment Oils (Menhaden oil and Butter) and Extract 54
 Body Weight Changes 55
 MWM Performance 57
 Plasma Fatty Acid Profiles 58

6. CONCLUSION AND FUTURE RECOMMENDATION 61

REFERENCES 63
APPENDICES 85
BIODATA OF STUDENT 95
LIST OF PUBLICATIONS 96
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Taxonomy characteristic of C. striatus</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Mineral composition (mg/kg) of raw sample of C. striatus</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Proximate composition of C. striatus</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Sources of well-known fatty acids</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Composition of the standard commercial pellets (g/100g)</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Morris Water Maze spatial (hidden platform) start position</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>The fatty acid profiles of C. striatus aqueous extract</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>The fatty acid composition of C. striatus aqueous extract</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>The fatty acid profile of the treatment oils and extract</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>Body weight changes at week-0 and week-10</td>
<td>49</td>
</tr>
<tr>
<td>4.5</td>
<td>The outcome of the Morris Water Maze test</td>
<td>50</td>
</tr>
<tr>
<td>4.6</td>
<td>The fatty acid profile of rat plasma at week-10</td>
<td>52</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Haruan, Channa striatus</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of C. striatus</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Lipid content of 6 different fish species in Malaysia</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The molecular structure of the fatty acids</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Fatty acid metabolism</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>n-3 and n-6 fatty acid metabolism</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Type of mazes for mental ability measurement</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>The schematic diagram of the Morris Water Maze pool</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD</td>
<td>attention deficit hyperactivity disorder</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>ºC</td>
<td>degree celcius</td>
</tr>
<tr>
<td>ºC/min</td>
<td>degree celcius per minute</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CCL</td>
<td>chronic constant light</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DPA</td>
<td>Docosapentaenoic acid</td>
</tr>
<tr>
<td>EFA</td>
<td>essential fatty acid</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicasopentaenoic acid</td>
</tr>
<tr>
<td>FA</td>
<td>Fatty acid</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty Acid Methyl Esters</td>
</tr>
<tr>
<td>FID</td>
<td>Flame Ionization Detector</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>G</td>
<td>gravity force</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HTE</td>
<td>Haruan traditional extracts</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>kcal</td>
<td>kilo calories</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo dalton</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LA</td>
<td>linoleic acid</td>
</tr>
<tr>
<td>LC-PUFA</td>
<td>long-chain polyunsaturated fatty acid</td>
</tr>
<tr>
<td>LTD</td>
<td>long-term depression</td>
</tr>
<tr>
<td>LTP</td>
<td>long-term potentiation</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>µL</td>
<td>microliter</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>mL/min</td>
<td>millimeters per minute</td>
</tr>
<tr>
<td>MPC</td>
<td>membrane phospholipid composition</td>
</tr>
<tr>
<td>MUFA</td>
<td>monounsaturated fatty acids / Monoenoic fatty acids</td>
</tr>
<tr>
<td>MWM</td>
<td>Morris Water Maze</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>n-3:n-6 ratio</td>
<td>Total n-3 PUFA to Total n-6 PUFA</td>
</tr>
<tr>
<td>P:S ratio</td>
<td>Total PUFA to Total SFA ratio</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>RAM</td>
<td>radial arm maze</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>SFA</td>
<td>Saturated fatty acid</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single photon emission computer tomography</td>
</tr>
<tr>
<td>TAG</td>
<td>triacylglycerol</td>
</tr>
<tr>
<td>UFA</td>
<td>unsaturated fatty acids</td>
</tr>
<tr>
<td>U:S ratio</td>
<td>total UFA to total SFA ratio</td>
</tr>
<tr>
<td>v</td>
<td>volume</td>
</tr>
<tr>
<td>w</td>
<td>weight</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

In Malaysia, fresh water and marine fish are very important components of the Malaysian diet, and fish constitute approximately 60–70% of the protein intake in Malaysia (Abd Rahman et al., 1995). Apart from its nutritional values, fish is also recognized for its medicinal properties. The consumption of 300-600 g daily of freshwater fish showed positive effects in lowering blood pressure, lowering plasma lipid concentration and increased plasma concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Dahlan et al., 2010).

Haruan *Channa striatus*, is a common snakehead fish that is found in many tropical and subtropical countries including Malaysia, Thailand, Brunei and Indonesia (Zakaria et al., 2005, Mohsin and Ambak, 1983). The fish is traditionally consumed for wound healing especially for postnatal recovery and for post-circumcision care in the children, to alleviate post-operative pain and discomfort (Mat Jais et al., 1994). Many studies have been carried out to evaluate the fatty acids and amino acids composition in the *C. striatus*. This healing process is also being promoted by the essential amino acids, especially glycine (Zakaria et al., 2007; Mat Jais et al., 1994) which responsible in the formation of collagen. The mucus extract and roe of *C. striatus* were reported to have unsaturated fatty acids (monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA)) particularly oleic acid and linoleic
acid (Mat Jais et al., 1998b), arachidonic acid (AA), which is a precursor for prostaglandins and thromboxanes in the C. striatus (Mat Jais et al., 1994).

Fatty acids are one of the most important components that are necessary for human health. They are essential components of the diet, sources of food energy and cognitive performance (Hafandi, 2007; Whalley et al., 2004; Rudin and Felix, 1996). Fatty acids are also involved in early life development of the central nervous system, growth development and learning ability (Yamamoto et al., 1987). The clinical signs related to essential fatty acid deficiency include cardiovascular disease, immune system and neurologic as well as brain development (Uauy and Dangour, 2006). These findings showed that the fatty acids are important for the development of the cognitive performance in mammals.

Two fatty acid families namely the n-3 and n-6 family, are essential in human, because they cannot be synthesized by the body. They are necessary as constituents of membrane phospholipids. Therefore the parent fatty acids of these families, alpha-linolenic acid and linoleic acid, respectively, have to be supplied by nutrition. Two of their long chain, highly unsaturated derivatives are docosahexaenoic acid (DHA) from n-3 family and arachidonic acid (AA) from n-6 family (Bakker et al., 2003). The abundance sources of DHA found in fish oil from menhaden, salmon and sardines affects the cognitive function of the brain (Chen et al., 2006; Fewtrell et al., 2004; Suzuki et al., 1998; Yonekubo et al., 1993). The supplementation of n-3 PUFA in the diets can contribute to good health, especially on the cardiovascular system including for a healthy heart and eyes, and the brain function including the functioning of the cerebral membrane (McCann and Ames, 2005; Bakker et al.,
The n-3 and 6 polyunsaturated fatty acids (PUFA) are essential for the growth and functional development of the infant in early life and showed positive effects on cardiovascular diseases and cancer (Horrocks and Yeo, 1999; Conner, 1997). In infants, the breastfeeding, which leads to higher DHA concentration in the brain, or supplementation of DHA, is related to a better cognitive performance at later ages (Agostoni et al., 1995; Makrides et al., 1994; Lauting et al., 1994). A study by O’Brien et al (1964) demonstrated that DHA and AA account up to 50% of the total fatty acids in the grey matter of the brain.

Many studies have been done on the medicinal properties of C. striatus, including antinociceptive (Mat Jais et al., 1997), anti-inflammatory (Somchit et al., 2004, Zakaria et al., 2004) and antioxidant properties (Dahlan et al., 2010). However no investigation has been carried on the cognitive or neuro-enhancing potential of the C. striatus in human population.

Hypothesis

It was hypothesized that C. striatus aqueous extract will improve spatial learning and memory (cognitive function) in rats. The fatty acid composition particularly the docosahexaenoic acid (DHA) and the n-6: n-3 ratio in C. striatus aqueous extract will lead to a better cognitive performance in rats.
Objectives of this study

1) To determine the fatty acid composition in the *C. striatus* aqueous extract
2) To investigate the effects of the *C. striatus* aqueous extract on the Morris (MWM) test for spatial learning and memory in rats
2) To determine the effects of the *C. striatus* aqueous extract supplementation on the plasma fatty acid composition in rats

Justification of this study

The outcome of the study enabled an objective for evaluation of the neurotherapeutic properties of the *C. striatus* aqueous extract for the production and commercialization of the antidote for neuro-enhancing therapy (development of *C. striatus*-based drug).
REFERENCES

Cain, D.P., Boon, F., and Corcoran, M.E. 2006. Thalamic and hippocampal mechanisms in spatial navigation: A dissociation between brain mechanisms

Kumar, V. 1995. Haplotypic differences and genetic variability revealed by mitochondrial DNA in Haruan (*Channa striatus*) Bloch, A thesis submitted to Faculty of Fisheries and Marine Sciences, Universiti Putra Malaysia, 43400

