EFFECTS OF MOLYBDENUM APPLICATION ON NUTRIENT UPTAKE AND YIELD OF RICE AND NITROGENASE ACTIVITY OF RHIZOBACTERIA

HAMED ZAKIKHANI

FP 2016 47
EFFECTS OF MOLYBDENUM APPLICATION ON NUTRIENT UPTAKE AND YIELD OF RICE AND NITROGENASE ACTIVITY OF RHIZOBACTERIA

By

HAMED ZAKIKHANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

June 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

Every challenging work needs self-efforts as well as guidance of elders especially those who were very close to our heart. This is dedicated to:

My parents
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EFFECTS OF MOLYBDENUM APPLICATION ON NUTRIENT UPTAKE AND YIELD OF RICE AND NITROGENASE ACTIVITY OF RHIZOBACTERIA

By

HAMED ZAKIKHANI

June 2016

Chairman : Professor Mohd Khanif Yusop, PhD
Faculty : Agriculture

In tropical soils, the deficiency of Mo may be seen in the rice plants. Hence, elucidating the optimum levels of Mo in soil and plants will be helpful for understanding the plant growth. The current study was conducted to assess Mo status in soils and plants, and to determine the influences of Mo on in vitro nitrogenase activities of some plant growth promoting rhizobacteria (PGPR). Five rice cultivars (MR219, HASHEMI, MR232, FAJRE and MR253) and 4 levels of Mo (0, 0.01, 0.1, and 1.0 mg L\(^{-1}\)) were used for the first experiment. The highest Mo uptake in shoots (0.70 µg plant\(^{-1}\)) and roots (0.66 µg plant\(^{-1}\)) were seen in the MR232 at the highest level of Mo (1 mg L\(^{-1}\)) in solution culture. Iron rates in shoot decreased with increasing Mo levels in solution culture and reached 39.93 µg plant\(^{-1}\) at the highest level of Mo. Also, phosphorus uptake in all cultivars increased with enhancing Mo in medium culture and reached highest (0.6 %) in cultivar MR232. In other experiment, Mo combination (0, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5 mg L\(^{-1}\)) was applied to the growth medium contained four nitrogen fixation bacteria (UPMB10, UPMB12, Sb16 and R19). Nitrogenase activity enhanced with increasing Mo levels in growth medium of all bacteria strains except Sb16. The strongest correlation (r =0.78**, p<0.01) was found between Mo and ethylene production in UPB10, and the weakest one was seen in R19 (r =0.49*, p<0.05). The highest ethylene productions in UPMB10 (99.6 µmol mol\(^{-1}\) hour\(^{-1}\), UPMB12 (87.2 µmol mol\(^{-1}\) hour\(^{-1}\)) and R19 (80.1 µmol mol\(^{-1}\) hour\(^{-1}\)) were seen in treatments contained 2.5 ppm Mo. We collected eleven soil series from two depths of Kedah and Kelantan paddy fields. Sequential extractions of soil Mo fractions indicated that Kranji series contained highest plant available amount of Mo (0.26 mg kg\(^{-1}\)) in comparison with other seven series of Kedah soils (surface layer), and highest medium plant available Mo (0.24...
mg kg\(^{-1}\)) was seen in Rotan and Sedaka series of Kedah area (surface layer). In upper layers of Kedah soil series, we could not detect any acid soluble Mo (associated with calcium). In surface layers of Kelantan, highest amount of plant available Mo (0.23 mg kg\(^{-1}\)) was found in in Lating series but medium plant available of Mo (0.15 mg kg\(^{-1}\)) was obtained from Cempaka series. In lower depths of Kedah, Guar series contained highest plant available mount of Mo (0.28 mg kg\(^{-1}\)) and medium plant available rate of Mo (0.35 mg kg\(^{-1}\)) was seen in Rotan series. In lower layers of Kelantan, Lating series contained highest amount of plant available Mo (0.34 mg kg\(^{-1}\)) and medium plant available of Mo rate (0.07 mg kg\(^{-1}\)) was only found in Batu Hitam series. We found out that cation exchange capacity was positively correlated with total amount of Mo in upper layers of Kedah soil series (\(r = 0.61; P \leq 0.05\)), and no statistically correlation was found between Mo contents and soil properties in Kelantan soil series.

For the last experiment, we used foliar and soil application methods in order to determine the optimum Mo rate at which highest rice grain is produced. We found out that grain yield of rice was correlated with total shoot dry weight and plant height with \(r\) value of 0.53* and 0.74* in treatments sprayed with Mo. The greatest grain yield (21 g plant\(^{-1}\)) was seen in treatment of 5 mg Mo kg\(^{-1}\) in soil, and treatment of 30 µg Mo L\(^{-1}\) supplied as foliar.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN MOLIBDENUM PERMOHONAN PENGAMBILAN NUTRIEN DAN HASIL NASI DAN NITROGENASE PEMEROLEHAN RHIZOBACTERIA

By

HAMED ZAKIKHANI

Jun 2016

Pengerusi : Profesor Mohd Khanif Yusop, PhD
Fakulti : Pertanian

Dalam tanah tropika, kekurangan Mo boleh dilihat dalam tanaman padi. Oleh itu, menjelaskan atas dasar tahap optimum Mo dalam tanah dan tumbuh-tumbuhan akan menjadi berguna untuk memahami pertumbuhan tumbuhan. Kajian ini telah dijalankan untuk menilai status Mo dalam tanah dan tumbuh-tumbuhan, dan untuk menentukan pengaruh Mo di dalam vitro aktiviti nitrogenase beberapa pertumbuhan tumbuhan menggalakkan rihizobacteria (PGPR). Five kultivar beras (MR219, HASHEMI, MR232, MR253 dan FAJRE) dan 4 tahap Mo (0, 0.01, 0.1, dan 1.0 mg L\(^{-1}\)) telah digunakan untuk percubaan pertama. The Mo pengambilan tertinggi dalam pucuk (0.70 μg kilang\(^{-1}\)) dan akar (0.66 μg tumbuhan \(^{-1}\)) dilihat di MR232 di peringkat tertinggi Mo (1 mg L\(^{-1}\)) dalam budaya penyelesaian. kadar zat besi dalam pucuk menurun dengan peningkatan tahap Mo dalam budaya penyelesaian dan mencapai 39.93 μg tumbuhan \(^{-1}\) pada tahap tertinggi Mo. Juga, pengambilan fosforus di dalam semua kultivar meningkat dengan meningkatkan Mo dalam budaya sederhana dan mencapai tertinggi (0.6%) dalam kultivar MR232. Dalam eksperimen lain, gabungan Mo (0, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5 mg L\(^{-1}\)) telah digunakan untuk medium pertumbuhan yang terkandung empat bakteria nitrogen (UPMB10, UPMB12, Sb16 dan R19). Aktiviti nitrogenase dipertingkatkan dengan meningkatkan tahap Mo dalam medium pertumbuhan semua bakteria strain kecuali Sb16. Korelasi kuat (r = 0.78 **, p<0.01) didapati antara Mo dan pengeluaran etilena dalam UPB10, dan yang paling lemah dilihat dalam R19 (r = 0.49 *, p<0.05). Penghasilan etilena tertinggi di UPMB10 (99.6 μmol mol-1 jam-1), UPMB12 (87.2 μmol mol\(^{-1}\) jam\(^{-1}\)) dan R19 (80.1 μmol mol\(^{-1}\) jam\(^{-1}\)) telah dilihat dalam rawatan terkandung 2.5 mg L\(^{-1}\) Mo. Kami dikumpul sebelas siri tanah dari dua kedalaman sawah padi Kedah dan Kelantan. pengekstrakan berurutan tanah Mo pecahan menunjukkan bahawa siri Kranji terkandung tertinggi tumbuhan jumlah yang ada bagi Mo (0.26 mg kg\(^{-1}\)) berbanding dengan tujuh siri yang lain Kedah tanah (lapisan permukaan), dan paling tinggi kilang sederhana ada Mo (0.24 mg kg\(^{-1}\)) dilihat dalam Rotan dan Sedaka siri kawasan Kedah (lapisan permukaan). Dalam lapisan atas siri tanah Kedah, kami tidak dapat mengesan apa-apa larut Mo asid (yang
berkaitan dengan kalsium). Dalam lapisan permukaan Kelantan, jumlah tertinggi tumbuhan ada Mo (0.23 mg kg\(^{-1}\)) didapati di dalam Lating siri tetapi tumbuhan medium yang ada bagi Mo (0.15 mg kg-1) telah diperolehi dari siri Cempaka. Di kedalaman lebih rendah Kedah, siri Guar terkandung tumbuhan tinggi yang terdapat gunung Mo (0.28 mg kg\(^{-1}\)) dan sederhana kilang Kadar yang ada bagi Mo (0.35 mg kg\(^{-1}\)) telah dilihat dalam siri Rotan. Dalam lapisan bawah Kelantan, Lating siri terkandung jumlah tertinggi tumbuhan ada Mo (0.34 mg kg\(^{-1}\)) dan loji medium yang ada bagi Mo kadar (0.07 mg kg\(^{-1}\)) hanya dijumpai dalam siri Batu Hitam. Kami mendapati bahawa kapasiti pertukaran kation korelasi positif dengan Jumlah Mo di lapisan atas siri tanah Kedah (r = 0.61; P ≤ 0.05), dan tidak ada korelasi statistik yang didapati antara kandungan Mo dan sifat-sifat tanah di Kelantan siri tanah.

Untuk percubaan terakhir, kami menggunakan kaedah permohonan foliar dan tanah untuk menentukan kadar Mo optimum di mana beras tertinggi dihasilkan. Kami mendapati bahawa hasil bijirin beras telah dikaitkan dengan jumlah berat menembak kering dan ketinggian tumbuhan dengan nilai r dari 0.53 * dan 0.74 * dalam rawatan disembur dengan Mo. The hasil bijirin besar (21 g kilang\(^{-1}\)) dilihat dalam rawatan 5 mg Mo kg\(^{-1}\) di dalam tanah, dan rawatan 30 μg Mo L\(^{-1}\) dibekalkan sebagai foliar.
ACKNOWLEDGEMENTS

First and foremost, I must acknowledge my limitless thanks to God, the Ever-Magnificent; the Ever-Thankful, for His helps and bless. I would never have been able to finish my dissertation without his guidance.

I would like to express the deepest appreciation to my committee chair Professor Doctor Mohd Khanif Yusop, for the patient guidance, encouragement and advice he has provided throughout my time as his student, he continually and persuasively conveyed a spirit of adventure in regard to research and scholarship. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly.

I would like to acknowledge with much appreciation my committee members, Prof. Dr. Mohamed Hanafi Musa and Assoc. Prof. Dr. Radziah Othman for their useful comments, remarks and engagement through the learning process of this thesis.

I would also like to thank my parents and my sister, Parnia, for their endless love and support.

I would like to thank Ms. Umi Kalthum Bt Asmaon as well for her assistance and guidance in the laboratory with this research. Last but not least, I would like to extend grateful thanks to all the members and staff of Land Management Department who helped me during my research.
I certify that a Thesis Examination Committee has met on 3 June 2016 to conduct the final examination of Hamed Zakikhani on his thesis entitled "Effects of Molybdenum Application on Nutrient Uptake and Yield of Rice and Nitrogenase Activity of Rhizobacteria" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd Ridzwan bin Abd Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Ahmad Husni bin Mohd Haniff, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Halimi bin Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Md. Jahiruddin, PhD
Professor
Bangladesh Agricultural University
Bangladesh
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 September 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follow:

Mohd Khanif Yusop
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohamed Hanafi Musa
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Radziah Othman
Associated Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice- Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _____________________ Date: _____________________

Name and Matric No: Hamed Zakikhani, GS32715
Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________ Signature: ________________
Name of Chairman of Supervisory Committee ___________________
Name of Member of Supervisory Committee ___________________

Signature: ____________________
Name of Member of Supervisory Committee ___________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Justification</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.2 Objectives</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1 Rice and Its Importance</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Lowland Rice</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.2 Malaysian Soils</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.3 Plant Growth Promoting Rhizobacteria (PGPR)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.4 Chemical Changes in Rice Soils</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Aerobic and Anaerobic Soil Layers</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Electrochemical Changes</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.5 Physiological Function of Molybdenum</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.6 Deficiency Symptoms of Molybdenum</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.7 Molybdenum cycle in Plant-Soil Systems</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.8 Molybdenum Interaction with Other Nutrients</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.9 Molybdenum and Nitrogenase</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.10 Management Practices to improve Mo use efficiency</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.10.1 Source, Method and Rate</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.10.2 Liming Soils</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.11 Molybdenum Toxicity</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.12 Foliar Fertilization</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.13 Molybdenum effects on yield</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>CHEMICAL FRACTIONATION OF MOLYBDENUM IN MARINE AND RIVERINE ALLUVIAL PADDY SOILS</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3.1 Introduction</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3.2 Materials and Methods</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Site Description</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Determination of Soil Properties</td>
<td>28</td>
</tr>
</tbody>
</table>
3.2.3 Molybdenum Fractionation
3.2.4 Data Analysis

3.3 Results
3.3.1 Soil Properties
3.3.2 Concentrations of Molybdenum Fractions
3.3.3 Principal Component Analysis

3.4 Discussion

3.5 Conclusion

4 EFFECTS OF DIFFERENT LEVELS OF MOLYBDENUM ON UPTAKE OF NUTRIENTS IN RICE CULTIVARS
4.1 Introduction

4.2 Materials and Methods
4.2.1 Experimental Site
4.2.2 Experimental Design and Description
4.2.3 Management of Plots
4.2.4 Sampling and Analysis of plant tissues
4.2.5 Bacteria Isolates and laboratory
4.2.6 Growth Medium Preparation
4.2.7 Nitrogenase Activity Measurement
4.2.8 Statistical Analysis

4.3 Results
4.3.1 Molybdenum Uptake in Shoots and Roots
4.3.2 Iron Uptake in Shoots and Roots
4.3.3 Phosphorus Rate in Shoots and Roots
4.3.4 Copper and Zinc Uptake in Shoots and Roots
4.3.5 Manganese Uptake in Shoots and Roots
4.3.6 Nitrogen and Potassium Rates in Shoots and Roots
4.3.7 Root Volume, Length and Diameter
4.3.8 Shoot and Root Dry Weight, Plant Height and Plant Tiller
4.3.9 Nitrogenase Activity of UPMB10 Strain
4.3.10 Nitrogenase Activity of UPMB12 Strain
4.3.11 Nitrogenase Activity of R19 Strain

4.4 Discussion

4.5 Conclusion

5 EFFECTS OF MOLYBDENUM LEVELS ON GRAIN YIELD AND MOLYBDENUM NUTRITION OF RICE
5.1 Introduction

5.2 Material and Methods
5.2.1 Foliar Mo Treatment
5.2.2 Soil Mo treatment
5.2.3 Plantation and Harvest
5.2.4 Bacteria Isolates and Preparation

xi
5.2.5 Experimental Site 62
5.2.6 Soil Sampling and Analysis 62
5.2.7 Fertilizer Application 63
5.2.8 Irrigation System 63
5.2.9 Data Collection 63
5.2.10 Plant Analysis 64
5.2.11 Statistical Analysis 64

5.3 Results 64
5.3.1 Grain Mo Concentration subjected to foliar-applied Mo sources 64
5.3.2 Leaf Mo Concentration subjected to foliar-applied Mo sources 65
5.3.3 Grain Mo uptake subjected to foliar-applied Mo sources 65
5.3.4 Leaf Mo Uptake subjected to foliar-applied Mo sources 65
5.3.5 Grain Yield Subjected To Foliar-Applied Mo Sources 66
5.3.6 Plant Height and total shoot dry weight Subjected to foliar-Applied Mo Sources 66
5.3.7 Leaf Nitrogen Uptake Subjected to foliar-Applied Mo Sources 66
5.3.8 Grain Mo Concentration subjected to soil-applied Mo sources 67
5.3.9 Leaf Mo Concentration subjected to soil-applied Mo sources 67
5.3.10 Mo Concentration and Uptake in Culm 68
5.3.11 Grain Mo uptake subjected to soil-applied Mo sources 69
5.3.12 Leaf Mo Uptake subjected to Soil-applied Mo sources 69
5.3.13 Grain Yield Subjected to Soil-Applied Mo Sources 70
5.3.14 Plant Height and total shoot dry weight Subjected to soil-Applied Mo Sources 71
5.3.15 Pearson’s Correlation Coefficients among the Mean Grain Mo Concentration, Grain N Mo Uptake, Leaf Mo Uptake, Grain Yield, Plant Height, Total Shoot Dry Weight, Leaf N Uptake and Leaf Mo Concentration 73

5.4 Discussion 78
5.5 Conclusion 80

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 81
6.1 Summary and Conclusion 81
6.2 Recommendations 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIBLIOGRAPHY</td>
<td>83</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>104</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>110</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>111</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1:</td>
<td>Total amounts of molybdenum in numerous types of soils in different locations (Aubert and Pinta, 1980)</td>
<td>14</td>
</tr>
<tr>
<td>3.1:</td>
<td>Morphological classification and location of sampled profiles on Kedah and Kelantan, Malaysia (Chesworth, 2007).</td>
<td>31</td>
</tr>
<tr>
<td>3.2:</td>
<td>Properties of eight soils series of lowland rice paddy fields on Kedah</td>
<td>32</td>
</tr>
<tr>
<td>3.3:</td>
<td>Properties of three soils series of lowland rice paddy fields on Kelantan</td>
<td>33</td>
</tr>
<tr>
<td>3.4:</td>
<td>Mean of Mo concentrations in the fractions of the sequential extraction in Kedah area.</td>
<td>37</td>
</tr>
<tr>
<td>3.5:</td>
<td>Mean of Mo concentrations in the fractions of the sequential extraction in Kelantan area.</td>
<td>38</td>
</tr>
<tr>
<td>3.6:</td>
<td>Varimax rotated matrix for soil properties and fractions</td>
<td>39</td>
</tr>
<tr>
<td>5.1:</td>
<td>The characteristics of top soil (Selangor series) used in the experiment.</td>
<td>63</td>
</tr>
<tr>
<td>5.2:</td>
<td>Means comparisons of different levels of foliar-applied Mo on leaf and grain Mo concentration, leaf and grain Mo uptake, grain yield, total shoot dry weight and lean N uptake.</td>
<td>74</td>
</tr>
<tr>
<td>5.3:</td>
<td>Means comparisons of different levels of soil-applied Mo on grain Mo concentration, grain Mo uptake, grain yield and total shoot dry weight.</td>
<td>75</td>
</tr>
<tr>
<td>5.4:</td>
<td>Pearson’s correlation coefficients among the mean grain Mo concentration, grain Mo uptake, leaf Mo uptake, grain yield, plant height, total shoot dry weight, leaf N uptake and leaf Mo concentration subjected to foliar-applied Mo (0, 1, 15, 30, 45, 70 µg L⁻¹).</td>
<td>76</td>
</tr>
<tr>
<td>5.5:</td>
<td>Pearson’s correlation coefficients among the mean grain Mo concentration, grain Mo uptake, leaf Mo uptake, grain yield, plant height, total shoot dry weight and leaf Mo concentration subjected to soil-applied Mo (0, 0.1, 1, 5, 10, 20 mg kg⁻¹).</td>
<td>77</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic representation of chemical processes</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Structures of nitrogenase MoFe and Fe proteins (Seefeldt et al., 2009)</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Location of Soil Sample Collected</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart of sequential extraction (Lilienfein, et al., 2000)</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Average portions of molybdenum of the total concentrations in Kedah soil series (0-15cm)</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Average portions of molybdenum of the total concentrations in Kedah soil series (15-30 cm)</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Average portions of molybdenum of the total concentrations in Kelantan soil series (0-15 cm)</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Average portions of molybdenum of the total concentrations in Kelantan soil series (15-30 cm)</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>Plants at the harvest day in greenhouse 2 and Department of Land Management, University Putra Malaysia (Image a: Each tray illustrates the main plot (molybdenum) and series of closely-spaced holes as subplots (varieties); Image b: the expansion of roots at the harvest day)</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Materials and structure (insertion of hose joints into foam)</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Interaction of Mo and varieties on root Mo uptake</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Interaction of Mo and varieties on shoot Mo uptake</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Simple effects of Mo levels on Fe uptake in shoots</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Interaction of Mo and varieties on shoot P uptake</td>
<td>55</td>
</tr>
<tr>
<td>4.7</td>
<td>Interaction of Mo and varieties on root volume</td>
<td>55</td>
</tr>
<tr>
<td>4.8</td>
<td>Nitrogenase Activity of UPMB10, UPMB12 and R19 Strains</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Interaction of soil-applied Mo rates and bacteria on concentration of Mo in leaf</td>
<td>68</td>
</tr>
<tr>
<td>5.2</td>
<td>Interaction of soil-applied Mo rates and bacteria on uptake of Mo in leaf</td>
<td>70</td>
</tr>
<tr>
<td>5.3</td>
<td>The pot on the left side received 70 µg Mo L⁻¹ and the pot on the right side of the image represents the control treatment with no Mo application, Greenhouse 2, Universiti Putra Malaysia (UPM)</td>
<td>71</td>
</tr>
<tr>
<td>5.4</td>
<td>Changes in leaf colour of rice being sprayed by 70 µg Mo L⁻¹</td>
<td>72</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>Analysis of variance for the effects of Molybdenum applications and varieties on shoot and root Mo uptake</td>
<td>104</td>
</tr>
<tr>
<td>A 2</td>
<td>Analysis of variance for the effects of Molybdenum applications and varieties on the uptake of copper, zinc, iron and manganese in Shoots</td>
<td>104</td>
</tr>
<tr>
<td>A 3</td>
<td>Analysis of variance for the effects of Molybdenum applications and varieties on the uptake of copper, zinc, iron and manganese in Roots</td>
<td>104</td>
</tr>
<tr>
<td>A 4</td>
<td>Analysis of variance for the effects of Molybdenum applications and varieties on the rates of nitrogen, phosphorus and potassium in Shoots</td>
<td>105</td>
</tr>
<tr>
<td>A 5</td>
<td>Analysis of variance for the effects of Molybdenum applications and varieties on the rates of nitrogen, phosphorus and potassium in Roots</td>
<td>105</td>
</tr>
<tr>
<td>A 6</td>
<td>Analysis of variance for the effects of Molybdenum applications and varieties on root length, root volume and root average diameter</td>
<td>105</td>
</tr>
<tr>
<td>A 7</td>
<td>Analysis of variance for the effects of Molybdenum applications and varieties on shoot dry weight, root dry weight, plant height and tiller numbers</td>
<td>106</td>
</tr>
<tr>
<td>B 1</td>
<td>Analysis of variance for the effects of Molybdenum applications and bacteria Isolates on production of Ethylene</td>
<td>107</td>
</tr>
<tr>
<td>B 2</td>
<td>Anova of Molybdenum rates on bacteria Isolates</td>
<td>107</td>
</tr>
<tr>
<td>C 1</td>
<td>Analysis of variance for the effects of foliar-applied Mo and bacteria application on the measured traits</td>
<td>108</td>
</tr>
<tr>
<td>C 2</td>
<td>Analysis of variance for the effects of soil-applied Mo and bacteria application on the measured traits.</td>
<td>109</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>MoO$_2^-$</td>
<td>Molybdate</td>
</tr>
<tr>
<td>H$_2$MoO$_4$</td>
<td>Molybdcic Acid</td>
</tr>
<tr>
<td>HMoO$_4$</td>
<td>Hydroxy dioxymolybdenum</td>
</tr>
<tr>
<td>MoS$_2$</td>
<td>Molibdenite</td>
</tr>
<tr>
<td>MoO$_2$</td>
<td>Molybdenum dioxide</td>
</tr>
<tr>
<td>MoO$_3$</td>
<td>Molydenum trioxide</td>
</tr>
<tr>
<td>CuMoO$_4$</td>
<td>Copper Molybdenum tetraoxide</td>
</tr>
<tr>
<td>ZnMoO$_4$</td>
<td>Zinc Molybdenum tetraoxide</td>
</tr>
<tr>
<td>PbH$_2$MoO$_4$</td>
<td>Lead Molybdate</td>
</tr>
<tr>
<td>CaH$_2$MoO$_4$</td>
<td>Calcium Molybdate</td>
</tr>
<tr>
<td>Fe(oH)$_3$</td>
<td>Iron(III) oxide-hydroxide</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>Iron(III) oxide</td>
</tr>
<tr>
<td>CaSO$_4$.2H$_2$O</td>
<td>Gypsum</td>
</tr>
<tr>
<td>PO$_4^{3-}$</td>
<td>Phosphate</td>
</tr>
<tr>
<td>NaHCO$_3$</td>
<td>Sodium Hydrogen Carbonate</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrochloric Acid</td>
</tr>
<tr>
<td>HClO$_4$</td>
<td>Perchloric Acid</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan Multiple Range Test</td>
</tr>
<tr>
<td>MOP</td>
<td>Muriate of potash</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>Potassium oxide</td>
</tr>
<tr>
<td>HF</td>
<td>Hydrogen fluoride</td>
</tr>
<tr>
<td>HClO$_4$</td>
<td>Perchloric acid</td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>Nitric acid</td>
</tr>
<tr>
<td>NH$_4$OAC</td>
<td>Ammonium Acetate</td>
</tr>
<tr>
<td>ICP-EOS</td>
<td>Inductively coupled plasma optical emission spectroscopy</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively coupled plasma mass spectrometry</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>µg g$^{-1}$</td>
<td>micro gram per gram</td>
</tr>
<tr>
<td>mg g$^{-1}$</td>
<td>milligram per gram</td>
</tr>
<tr>
<td>kg ha$^{-1}$</td>
<td>Kilogram per hectare</td>
</tr>
<tr>
<td>µmol mol$^{-1}$ hour$^{-1}$</td>
<td>Micromol per Mol per hour</td>
</tr>
<tr>
<td>H</td>
<td>hours</td>
</tr>
<tr>
<td>µM</td>
<td>Micro Molar</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>mM</td>
<td>Milli molar</td>
</tr>
<tr>
<td>µg Mo L⁻¹</td>
<td>Microgram Molybdenum per liter</td>
</tr>
<tr>
<td>g Plant⁻¹</td>
<td>gram per plant</td>
</tr>
<tr>
<td>µg L⁻¹</td>
<td>microgram per kilogram</td>
</tr>
<tr>
<td>mg kg⁻¹</td>
<td>megagram per kilogram</td>
</tr>
<tr>
<td>W:v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized complete block design</td>
</tr>
<tr>
<td>FD</td>
<td>Factorial Design</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>OM</td>
<td>Organic matter</td>
</tr>
<tr>
<td>°C</td>
<td>Centigrade</td>
</tr>
<tr>
<td>S.O.V</td>
<td>Source of Variation</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Molybdenum (Mo) is important in ecosystems as a micronutrient for plants, animals and some microorganisms. The average concentration of Mo in the earth's crust varies from 1.0 to 2.3 mg kg\(^{-1}\) ranking it 53\(^{th}\) in crustal abundance (Krauskopf and Bird, 1979). Molybdenum has five possible oxidation states (II, III, IV, V, and VI). In nature, the oxidation states of IV and VI predominate but the VI state is the most stable form. It also has industrial use and is an important fertilizer element in some farming systems. Gupta (1997) mentioned that Mo could be found in four main fractions in soils as follows; 1) water-soluble (plant available), 2) adsorbed and fixed on oxides and hydroxides such as iron and aluminium, 3) solid phases of Mo, and 4) associated Mo with organic compounds. Molybdenum occurs combined with other elements in nature so that most common mineral of Mo, which is molybdenite (MoS\(_2\)), is found in granites, and the next most common mineral of Mo (PbMoO\(_4\)) is found in oxidized zones of mineral deposits (Gupta, 1997; Adriano, 2001). The main Mo supply (nearly 95%) is mined from porphyry deposits associated with intrusive igneous rocks but marine black shales, lignite and lignitic sandstone, coal and phosphorite deposits are also recognized to contain large amounts of Mo (King et al., 1973). Plant available and predominant aqueous species of Mo in natural systems is molybdate (MoO\(_4^{2-}\)). In soil at pH above 4, molybdate is the dominant aqueous species but at the pH below 4, hydrogen molybdate (HMoO\(_4^{2-}\)), Mo (OH)\(_4^{0}\) and HMO\(_2\)O\(_7^{-}\) are the prevailing forms(Cruywagen and De Wet, 1988). Mo ions are components of several enzymes, including nitrogenase, nitrate reductase, xanthine oxidoreductase, aldehyde oxidase and sulfite oxidase (Hille et al., 2011).

Nitrogenase enzyme is responsible for all biological nitrogen fixation activities. Since Mo is an essential element for nitrogen fixation, its absence can disrupt the biological fixation of nitrogen. Interaction between Mo and other nutrients is of great importance in plant nutrition and yield. In an experiment, application of Mo enhanced shoot phosphorus (P) uptake and root P concentration, and P increased shoot Mo concentration and uptake in rapeseed (Liu et al., 2010). They also concluded that co-application of Mo and P was necessary to improve plant growth. In soil solution, higher concentrations of nitrate are presented to increase the Mo requirement by plants (Gupta and Lipsett, 1982) but higher concentrations of ammonium may reduce uptake of Mo. The nitrate positive influence on uptake of Mo can be due to pH enhancement and release of OH\(^{-}\) ions. Also, greater uptake of ammonium may release more H\(^{+}\) ions in the rhizosphere and reduce pH, consequently declining Mo uptake by the plants. In a pot experiment,
application of calcium (Ca) fertilizer increased the uptake of Mo in tobacco (Eivazi et al., 1983). They also added that the effect of Ca fertilizer was greater when higher levels of sodium molybdate fertilizer were applied. Iron accumulation in plants seems to be inversely proportional with application of Mo. Hanger (1965) reported that Mo-induced apical chlorosis and stunting in red clover were eliminated once chelated iron was added to growth medium.

Availability of Mo to the plants are influenced by some factors, including soil pH, organic compounds, iron and alumiun oxides, soil texture and type and drainage. When pH increases in soils, availability of essential micronutrients declines but molybdenum’s availability increases hence, in alkaline soils, availability of Mo increases and becomes more available to the plants. In acid soils, mobility of Mo reduces as its adsorption to sorbent sites increases (Reddy et al., 1997). Molybdenum acts like an anion in soil and illustration of its adsorption mechanism(s) on organic matter is difficult. However, some workers reported that a close relationship between levels of adsorbed Mo and organic matter was seen (Karimian and Cox, 1978). Also, Kaiser et al (2005) mentioned that poorly drained soils (peat marshes) tend to accumulate high concentrations of molybdate, but, by contrast, well-drained sandy soils leach significant levels of applied Mo. Penetration of molybdate into microspores and iron oxide interdomains can be resulted in immobilisation of molybdate. Lang and Kaupenjohann (2003) demonstrated that the rate of molybdate immobilisation by iron oxides surfaces is dependent on pore system geometry and crystallinity of iron oxides (Lang and Kaupenjohann, 2003). Also, there are some soil factors affecting the thresholds of Mo toxicity. McGrath et al (2010) concluded that ammonium oxalate-extractable iron and organic carbon were the best predictors of toxicity threshold values for Mo.

Diazotrophic bacteria, such as Bacillus genera, belong to plant growth promoting rhizobateria. These bacteria are able to convert dinitrogen into ammonia which is used by the plants. Molybdenum is known as an essential micronutrient for the biological nitrogen fixers and its deficiency limit their biological nitrogen-fixing activities (Campo et al., 2000). In a field experiment, inoculation Mo-rich seeds produced crops with enhanced Mo and nitrogen rates in seeds and higher seed yield. They also mentioned that foliar applications of Mo increased concentrations of Mo in soybean seed by 3000% in comparison with regular grains produced without any supply of Mo (Campo et al., 2009).
1.1 Justification

Molybdenum deficiency is common in acid soils and it has crucial roles in plants and microorganisms via molybdoenzymes. Research data on rice responses to Mo are not as extensive as those of other micronutrients like zinc, copper, boron, iron, and manganese. Symptoms of Mo deficiency are more common than toxicity in crops under certain soils. If high concentrations of Mo are present, depressing effect of Mo on physiological availability of copper will cause molybdenosis in ruminants (Majak et al., 2006). Nevertheless toxicity of Mo is uncommon and is seen only when large concentrations of Mo are present. Antagonistic impacts of Mo on absorption of other nutrients by the plants can be considered as nutrient-suppression effect and also synergistic influences of Mo can produce a catalysing effect on uptake of nutrients by the plants in environments. Availability of Mo in acid soils is very low. Since Malaysian soils are predominantly acidic, evaluation of Mo in both soils and plants could be vitally important. In line with the national agriculture policy, Malaysia wishes to increase rice self-sufficiency (Liew et al., 2010). There has been no report on Mo deficiency in crop plants productions in Malaysia, and this may account for the lack of specific information on soil and plant Mo status in data resources. Hence, understanding the Mo status in rice plants and paddy fields, and study of its influences on other nutrients uptake, are of importance. We hypothesized that molybdenum application increase the yield of rice. A particular focus was on quantifying the concentrations of Mo within the rice cultivars. We also hypothesized that Mo availability in irrigated paddy soils are dependent on chemical and physical characteristics of soils. Another hypothesis was that Mo application improves nitrogenase activity of some soil rhizobacteria.

1.2 Objectives

1. To evaluate Mo status of selected rice soils of Malaysia
2. To determine the effects of rice varieties on Mo nutrition of rice
3. To determine the effects of Mo on nitrogenase activities of selected PGPR
4. To determine the optimum Mo rate at which highest rice grain yield is produced

Barrow, N., Cartes, P., Mora, M., 2005. Modifications to the Freundlich equation to describe anion sorption over a large range and to describe competition between pairs of ions. European Journal of Soil Science 56, 601-606.

Deo, C., Kothari, M., 2002. Effect of modes and levels of molybdenum application on grain yield protein content and nodulation of chickpea grown on loamy sand soil. Communications in soil science and plant analysis 33, 2905-2915.

Lindsay, W.L., 1979. Chemical equilibria in soils. John Wiley and Sons Ltd.

95

Williams, I.H., 1971b. Molybdenum Deficiency. UK Ministry of Agriculture, Fisheries and Food, United Kingdom.

