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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy

OPTIMIZATION OF TOOL GEOMETRY DESIGN FOR FREE CUTTING STEEL 
(AISI 12L14) IN TURNING OPERATION 

By

ROSDI BIN MOHAMMAD 

December 2017 

Chairman: Professor Mohd Khairol Anuar Mohd Ariffin, PhD   
Faculty: Engineering 

The need for major improvements in the design of cutting tools are due to the 
demands of delivering high dimensional accuracy and low surface roughness 
products in turning operation. An optimization of cemented carbide (WC) tool 
geometry design for AISI 12L14 free cutting steel in turning process was carried 
out with the emphasis on the optimal workpiece through the quality of surface 
roughness. In this work, the performance of cutting inserts in the market and the 
newly developed cutting tools was investigated in terms of cutting forces and 
surface roughness (Ry). In the first phase, the selection of currently available 
cutting tools were done and modeled. Cutting forces simulation using AdvantEdge 
software was performed in determining the cutting tool-workpiece force 
interactions. In the second phase, the cutting tool-force interactions were studied 
and results revealed that tool geometry’s rake angle (γ) and cutting regimes such 
as depth of cut (ap) and feed rate (fr) gave significant impacts to the cutting forces 
(tangential force, radial force, and feed force) and Ry. A negative rake angle led to 
higher cutting forces compared to a positive rake angle. In third phase, a new 
proposed design of cutting tool was fabricated and tested according to rough and 
finish cutting conditions. Results showed that tool geometries of rake angle, 
inclination angle, and major (Kr1) and minor cutting tool’s angle (Kr2) had significant 
influences on cutting forces and Ry. In the fourth phase, the tool’s validation 
experiments were performed and the optimization was done by employing Taguchi 
method. The newly optimized tool cutter geometry was obtained at Kr1 of 60� and 
90�, Kr2 of +3�, rake angle of +10�, and the inclination angle of -3�. It was revealed 
that ap and fr gave a significant impact on surface roughness. As ap and fr
increased, Ry also increased except for setting parameters when ap was below 
than minimum chip thickness (Hmin). In the final phase, the performance of the 
newly developed cutting tool, in terms of Ry indicated that there was a significant 
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difference between travel lengths and the progression of surface roughness 
correspond to tool wear or tool’s performance from 0 mm to 1560 mm (until tool 
breakage). However, none of the surface roughness results showed Ry more than 
6.3. Additionally, cutting forces tend to increase with the increase of depth of cut 
(ap) when ap was higher than 1.15 mm. The feed force magnitude was almost 
similar to radial cutting force. However, the cutting force components started to 
deviate when the depth of cut was more than 1.15 mm whereby radial force slightly 
decreased with the increasing depth of cut. The effect of the combination of two 
cutting edges of the newly developed cutting tool could be the reason for radial 
force reduction. Hence, the newly developed tool was shown capable to produce 
final surface roughness within an acceptable range. The newly developed cutting 
tool demonstrated a great potential for turning operation market. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

PENGOPTIMUMAN REKABENTUK MATA ALATAN UNTUK BESI (AISI 
12L14) DALAM OPERASI MESIN LARIK  

Oleh 

ROSDI BIN MOHAMMAD 

Disember 2017 

Pengerusi: Professor Mohd Khairol Anuar Mohd Ariffin, PhD 
Fakulti: Kejuruteraan 

Keperluan dalam menambahbaikan rekabentuk mata alatan adalah disebabkan 
oleh permintaan terhadap produk yang mempunyai ketepatan dimensi yang tinggi 
dan kekasaran permukaan yang rendah dalam operasi larik. Kajian
pengoptimuman geometri mata alat karbida (WC) terhadap bahan campuran besi 
AISI 12L14 semasa proses larik telah dikaji dengan penumpuan kepada 
mekanisma kualiti permukaan larik. Dalam kajian ini, prestasi mata alat dalam 
pasaran dan juga cadangan baru mata alat telah diselidik dari segi daya 
pemotongan dan kualiti permukaan larik (Ry). Pada peringkat pertama, pemilihan 
mata alat sedia ada dipasaran telah dilakukan dan dimodelkan. Simulasi komputer 
menggunakan program pengatucaraan AdvantEdge telah dijalankan untuk 
menentukan interaksi daya pemotongan antara mata alat-bahan kerja. Pada 
peringkat kedua, kajian terhadap kaitan mata alat dan daya dijalankan dan 
keputusannya menunjukkan geometri mata alat sudut condong mata alat (γ) dan 
kondisi pemotongan seperti kedalaman potongan (ap) dan kadar suapan (fr)
mempunyai kaitan yang signifikan dengan daya kekuatan pemotongan (daya 
tangen, daya radial dan daya suapan) dan Ry. Sudut condong negatif akan 
membawa kepada daya kekuatan pemotongan yang lebih tinggi berbanding 
dengan sudut condong positif. Pada peringkat ketiga, cadangan rekabentuk baru 
mata alat telah direka dan diuji mengikut keadaan pemotongan kasar dan 
pemotongan halus. Keputusan menunjukkan geometri mata alat sudut condong 
mata alatan, sudut condong potongan, dan sudut utama (Kr1) dan sudut kedua 
kemasukan pemotongan (Kr2) mempunyai pengaruh yang signifikan terhadap 
daya kekuatan pemotongan dan Ry. Pada peringkat ke empat, eksperimen 
pengesahan mata alat ini telah dijalankan dan pengoptimuman menggunakan
kaedah Taguchi. Rekabentuk baru mata alat yang dioptimumkan telah diperolehi 
untuk Kr1 pada 60� dan 90�, Kr2 pada +3�, sudut mata alatan pada +10�, dan sudut 
condong potongan pada -3�. Kajian menunjukkan ap dan fr memberikan kesan 
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ketara ke atas kekasaran permukaan. Apabila ap dan fr meningkat, Ry juga 
meningkat kecuali bagi tetapan parameter bilamana ap berada dibawah tahap 
kedalaman potongan (Hmin) minima. Pada peringkat akhir, prestasi mata alat baru 
yang dibangunkan, dari segi Ry menunjukkan berlakunya perubahan ketara antara 
jarak pemotongan dan potongan kekasaran permukaan bersesuaian dengan 
kemerosotan mata alat atau prestasi mata alat dari 0 mm kepada 1560 mm 
(sehingga mata alat pecah). Walaubagaimanapun, tiada keputusan bacaan 
permukaan larik yang menunjukkan Ry melebihi 6.3. Di samping itu, kadar daya 
kekuatan pemotongan cenderung untuk meningkat dengan meningkatnya 
kedalaman pemotongan (ap) bila ap melebihi 1.15 mm. Magnitud daya suapan 
hampir sama dengan daya pemotongan radial. Walau bagaimanapun, komponen-
komponen daya pemotongan mula menyimpang apabila kedalaman pemotongan 
adalah lebih daripada 1.15 mm dimana kadar daya potongan radial sedikit 
menurun dengan peningkatan kedalaman pemotongan. Kesan kombinasi dwi-
mata alat pada cadangan baru mata alat berkemungkinan adalah penyebab 
kepada pengurangan kadar daya potongan radial. Justeru, mata alatan cadangan 
baru menunjukkan ianya mampu menghasilkan permukaan larik akhir di dalam 
julat yang boleh diterima. Mata alat yang baru telah membuktikan potensi yang 
besar untuk pasaran operasi larik. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background of the Study 

Total Malaysia’s gross domestic product (GDP) growth in third quarter of year 
2017 is at 6.2%. Manufacturing sector contributed the second largest of GDP 
growth after services sector (Department of Statistics, Malaysia, 2017). Thus, 
manufacturing sector is an important economic component to be explored. 
Manufacturing can be defined as the modification of low-value or non-value 
material into items of greater value by the means of appropriate process or 
processes (Groover, 2007). High productivity through the optimization of 
manufacturing processes is one of the elements that should be introduced in the 
manufacturing sector. An increase in productivity requires involvement of all 
technological operations where optimum technological processes, optimum tool 
selection, optimum combination of tool-workpiece material and determination of 
optimum cutting variables and tool geometry must be considered (Saglam, 
Unsacar, Yaldiz, 2006). Moreover, to attain satisfactorily high production rates at 
minimum cost, it is a necessity to optimize cutting tool geometry (Fang and Fang, 
2007). 

Among the most basic manufacturing processes performed by machine tools are 
drilling, milling, grinding and turning (Malagi and Rajesh, 2012). Typically, in 
turning the workpiece is rotated on the spindle and the tool is fed into it radially, 
axially or both ways simultaneously to give the required surface (Schneider, 
2013). Turning offers significant advantages such as it is more flexible 
manufacturing method, capable to fabricate complex geometrical cylindrical 
features, has great ecological advantages as it is often used as a dry cutting 
process, yields good surface finishing that close to final tolerance, etc. Turning 
enables a broad variety of materials from metal and its metal alloys, plastic and 
their composites, and ceramic to be processed but ceramic can pose difficultly 
because of their high hardness and brittleness (Groover, 2007). 

Metal is extensively used in machining process, from ‘hard-to-machine steel’ 
(with hardness 40 to 70HR) i.e. hot work steel, AISI D2 steel, AISI H13 steel, 
Hastelloy C-276, etc., to the ‘easy-to-machine steel’ such as free cutting steel 
(AISI 12L14 or JIS SUM24L) and non-ferrous materials e.g. brass, copper and 
aluminum alloy. A lot of researchers were interested in studying the hard-to-
machine material due to its difficulty-to-machine, however, studies of ‘easy-to-
machine’ material such as AISI 12L14 are scarcely available. According to 
America Iron and Steel Institute (AISI), AISI 12L14 free cutting steel are 
developed to offer good machinability of 160% which is considered easy-to-
machine material (compared to AISI 1212). The AISI 12L14 or free cutting steel 
consists of carbon (C) 0.15 max, Manganese (Mn) 0.85 - 1.15, Phosphorus (P) 
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0.04 - 0.09, Sulphur (S) 0.26 - 0.35 and Lead (Pb) 0.15 - 0.35 (Japan Industrial 
Specification, 1994). The elements of Mn, S and Pb addition assists chip 
formation (reduces chip length, pattern, and size), friction and thus wear on 
cutting tool is reduced, which allowing higher feeds and/or speeds (Hashimura, 
Mizuno, Miyanishi, 2007). This enables AISI 12L14 or free cutting steel to be 
processed at minimum supervision while machining the products. Despite that, 
the presence of sulfide structure (MnS) in bulk grain size in material would lead 
to built-up edges (BUE), which repeatedly form irregular deposits and then fall 
off the tool, which is a factor in degrading the quality of the cutting surface as 
well as dimensional inconsistent. Moreover, Yaguchi (1986) reported that BUE 
which consist high concentration of MnS initiated on tool tip of high speed steel 
(HSS) would either harmful or beneficial depending on the condition. Insignificant 
quantity of BUE served as protecting layer to the tool therefore prolonged the 
tool life and affect adversely if BUE occurred at bulky amount. Chips 
formation/disposal, tool design and wear, and machine’s setting parameters 
during product machining are some of the factors that must be considered while 
using this free cutting steel material. 

Numerous studies showed that tool geometry/parameters deviations, 
inhomogeneity in workpiece material, cutting conditions, machine tool 
parameters such as feed drive instabilities and dynamic behavior of the machine 
tool are the influencing factors in determining cutting forces in turning process 
(Sharma, Dhiman, Sehgal, Sharma., 2008; Nalbant, Altin, Gökkaya, 2007; Özel, 
Hsu, Zeren, 2005; Yang & Tarng, 1997). Subsequently, they influence the 
deformation of the machined workpiece, its dimensional accuracy, chip formation 
and machine system stability as well as their interaction forces (Chiou, Chung, 
Liang, 1995). In term of the importance of the relationship of forces and tool 
geometrical, Astakhov (2010) noted that the understanding of geometry is 
crucial, where a proper understanding in cutting tool geometry enables 
determination of the orientations of cutting edge, rake and flank surfaces with 
respect to the cutting conditions. 

Cutting is a process of extensive stresses and plastic deformations where the 
high compressive and frictional contact stresses on the tool face results in a 
substantial cutting force. Cutting forces generated during cutting operation give 
a direct influence on the generation of heat, and thus tool wear, quality of 
machined surface and accuracy of the workpiece (Malagi and Rajesh, 2012). 
Cutting forces vary with the tool angles, and accurate measurement of forces is 
helpful in optimizing tool design and predicting tool life (Gutakovskis, Bunga, 
Pikurs, Brutans, Ratkus, 2012). An increased friction between cutting tool and 
workpiece consequently leads to a higher push-off force, the excessive heat 
created in cutting process will give a direct impact on the on the workpiece and 
could lead to workpiece damage, as well as deterioration of the tool life 
(Knufermann, 2003 ). 
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1.2  Problem Statement 

Manufacturers presume to have higher and higher productivity in their machining 
processes and predictable tool wear change mechanism of their cutting tools. 
These call for major improvements in the design of cutting tools. Apart from 
considering the tool life, strict control on the quality of surface finishing during 
turning is extremely important too. The biggest challenge is to maintain the 
product within the specification throughout the mass production circumstances 
and the ability to foresee tool wear progression which would support them in 
predicting or change the tool before it would affect the final product (Zhang & 
Gou 2016; Waydande, Ambhore, Chinchanikar, 2016; Karim, Azuan, Yasir, 
2013; Yanda, Jaharah, Haron, 2010; Dogra, Sharma, Dureja, 2011; Astakhov 
2010; Storch and Zawada-Tomkiewics, 2012; Malekian, Mostofa, Park, 2012; 
Yuan, Zhou, Dong, 1996). To overcome those problems, one of the important 
keys to be considered is tool geometry optimization. 

From previous report (Kandananond 2010; Xu, An, Chen, 2012; Wei, Liu, An, 
Chen, 2012), it is clear that turning of AISI 12L14 free cutting steel has not 
received extensive attention. Free-cutting steel refers to a specific kind of steel 
by adding some individual or composite elements (e.g. sulfur, phosphorus, lead, 
selenium, etc.) to improve its cutting performance and to satisfy the development 
demands of automatic processing (Tanaka, Yamane, Sekiya, Narutaki, Shiraga, 
1977; Yaguchi, 1988). AISI 12L14 is a typical sulfured free-cutting steel which 
supposed to have excellent cutting performance owning to the embitter function 
on ferrite substrate from phosphorus and the sulfide internal notch effect (Xu et 
al. 2012). Using cemented carbide as a tool, the optimization of tool geometry 
using this free cutting steel material capable of delivering high dimensional 
accuracy and low surface roughness would be a significant improvement in 
turning operation. In order to achieve that, a better understanding on cutting 
forces are generated has to be gained. This also needs to take into account the 
various relevant factors and cutting parameters. Due to the complex tool 
configurations/cutting conditions of metal cutting operations and some unknown 
factors and stresses, an experimental measurement of interaction of cutting 
forces is unavoidable. Further, software helps in creating the database for 
manufacturing, to increase the productivity of the designer, and to improve the 
quality of the design. Hence, a computer aided simulation of cutting forces 
estimating of predicting achievable tool geometry/cutter rake angles for turning 
is then necessary. Finally the purpose of this research is to optimize cutting tool 
geometry for free cutting steel AISI 12L14 in turning operation. 

1.3  Project Goals and Objectıves

The overall aim of the study is to optimize the tool geometry design for free 
cutting AISI 12L14 steel using a cemented carbide (WC) tool for the optimal 
workpiece through the quality of surface roughness for turning operation, and to
develop a cutting force simulation based on tool geometry designs. Therefore, 
this study will be commenced with the following objectives: 

1) To develop a cutting forces simulation based on the commercial tool 
geometry cutting tool using AdvantEdge 7.1 software. 
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2) To verify the selected tool design (tool geometry) by tool’s manufacturer 
versus their recommended setting parameters of cutting speed, feed 
rate, and depth of cut, using free cutting steel material (AISI 12L14) via 
numerical control (NC) lathe. 

3) To design and fabricate several types of improved design tool geometry 
(at varied cutter geometry angles) using brazed cutting tool insert and to 
determine the tool-forces interactions with the workpiece according to 
objective number 2. 

4) To validate and verify the newly developed cutting tool design (tool 
geometry) versus machine setting at controlled parameters of cutting 
speed, feed rate, and depth of cut on AISI 12L14 material, and to 
develop a cutting forces simulation based on the newly developed 
cutting tool using AdvantEdge 7.1 software.  

5) To conduct a preliminary test for tool performance. 

1.4  Significance of This Study 
  
The study outcomes significantly contribute towards improvement in productivity 
and reduction in cost of manufacturing processes through the optimization of tool 
life. Hence, the results of the study will help the manufacturers to obtain their 
manufacturing productivity cost at an optimum level and at the same time 
maintain the part’s quality at the best level. Moreover, it will benefit the 
manufacturers to be competitive in both national and global markets which 
indirectly will contribute to our national economic growth. Additionally, the 
development of a cutting simulation and the validation of the simulation based 
on the attained tool geometry designs and cutting forces data would help the 
manufacturer to improve their ability to expedite their selection process for 
appropriate tool. 
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1.5  Scope of Work 

The scope of work is limited to experimental evaluations on the turning operation. 
The material used is limited to AISI 12L14 (or SUM24L). The project will be 
accomplished in the following five phases: 

Phase Content Tasks

1
Cutting Simulation 
Development and 
Execution.

� Selection of tools geometry design.
� Determine the recommendations 

of setting cutting regimes for 
cutting simulation.

� Development of cutting simulation 
using AdvantEdge 7.1.

2
Commercial Tool 
Geometrical Design 
Verifications

� Tool purchase and material 
preparation.

� Conduct Test Cut 1.

3 Design and 
Optimization

� Design and fabrication of new 
design tool geometry.

� Conduct Test Cut 2.

4 Validation 
Experiments

� Test cut of develop tool geometry 
for process and cutting simulation 
validation.

� Conduct Test Cut 3.

5 Tool Performance 
Study � Conduct Test Cut 4

1.6 Thesis Organisation 
  
This study has been divided into 5 phases; - Phase 1: cutting simulation, 
development and execution, Phase 2: commercial tool verification, Phase 3: 
design and optimization of cutting tool, Phase 4: the newly developed cutting 
tool’s verification and cutting simulation and Phase 5: the performance (in term 
of tool life) of newly developed design tool. Phase 1 is for cutting simulation, the 
development and execution of simulation, the analysis of cutting forces and the 
comparisons of generated outcomes throughout the simulation. Phase 2, Phase 
3, Phase 4 and Phase 5 is for analysis of cutting forces. 

Chapter 1 provides with overviews of this study and the objectives derived from 
the problem statements. Chapter 2 presents a comprehensive literature reviews 
from the relevant areas associated with this topic in this research. Chapter 3 
provides the overall research methodology applied in this research. Chapter 4 
presents the comprehensive results and discussion from the experiments. And 
finally chapter 5 consists of the summary of this research. In this chapter, general 
conclusions are presented for each phase. Lastly, a recommended future 
research is presented. 
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