UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF ANTIOXIDANT PACKAGING MATERIAL BASED ON OPTIMIZED POLY(LACTIC ACID) AND CELLULOSE FROM DURIAN RIND BIOCOMPOSITES

PATPEN PENJUMRAS

FK 2018 103
DEVELOPMENT OF ANTIOXIDANT PACKAGING MATERIAL BASED ON OPTIMIZED POLY(LACTIC ACID) AND CELLULOSE FROM DURIAN RIND BIOCOMPOSITES

By

PATPEN PENJUMRAS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

January 2018
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Durian rinds are the plant waste of durian fruit consumption. Only one-third of a durian is edible, whereas the seeds and the shell become waste. With regards to environmental impact, the waste can be converted into value-added products, such as cellulose, to be used as reinforcement material in biocomposites. Cellulose is extracted from ground durian rind using delignification with acidic sodium chlorite, followed by mercerization with sodium hydroxide. The diameter and aspect ratio of cellulose fibers are in the range of 100-150 µm and the aspect ratio is in the range of 20-25, which is higher than the minimum aspect ratio value for good strength transmission for any reinforcement. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 minutes of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.21 MPa and 2.93 kJ/m², respectively. The coupling agent 3-aminopropyltrimethoxysilane (APS) was used to modify the surface of cellulose. The result found that silane-treated, cellulose-reinforced biocomposites offered superior mechanical properties compared with neat PLA and untreated cellulose-reinforced biocomposites. The adhesion of cellulose and the PLA matrix was improved by modifying the cellulose surface, which led to less water absorption into biocomposites. An antioxidant packaging material was developed using silane-treated durian rind cellulose reinforced poly(lactic acid) (PLA) biocomposites. The release of BHT and α-tocopherol with 3 wt.% from neat PLA and biocomposites into two food simulants (50% and 95% ethanol in water) at two temperatures (27°C and 37°C) were monitored. The result found that BHT had a higher release rate
than α-tocopherol. At higher temperatures, the resulting release rate increased. Antioxidant was released from neat PLA faster than biocomposites. BHT released faster into 95% ethanol, while α-tocopherol released faster into 50% ethanol. The faster release of antioxidant from each condition contributed to the inhibition of lipid oxidation, which was indicated by the decrease of peroxide value (PV) and thiobarbituric acid reactive substance (TBARS). It can be summarized that BHT had higher effectiveness as an antioxidant in active packaging application for edible oil. This study concluded that durian rind cellulose can be successfully used as a reinforcing material for poly(lactic acid) biocomposites. Its application, with the addition of antioxidants was seen to be an effective active packaging for the protection of edible oil from oxidation.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN BAHAN PEMBUNGKUSAN ANTIOKSIDA BIOKOMPOSIT BERASASKAN CAMPURAN POLI (ASID LAKTIK) DAN SELULOSA DARIAPDA KULIT DURIAN YANG DIOPTIMUMKAN

Oleh

PATPEN PENJUMRAS

Januari 2018

Pengerusi : Profesor Russly A. Rahman, PhD
Fakulti : Kejuruteraan

Kulit durian merupakan sisa buangan berasaskan tumbuhan. Hanya satu pertiga bahagian daripada buah durian yang boleh dimakan, manakala biji dan kulitnya adalah sisa. Berhubungan kesan terhadap alam sekitar, sisa daripada durian telah diubah kepada produk yang bernilai seperti selulosa yang digunakan sebagai bahan pengukuh dalam biokomposit. Selulosa diekstrak daripada serbuk kulit durian dengan pembuangan lignin menggunakan natrium klorida berasid dan diikuti ‘mercerization’ menggunakan natrium hidroksida. Diameter bagi serat selulosa ialah dalam lingkungan 100–150 μm manakala, nisbah aspek ialah di antara 20 dan 25, yang mana ianya lebih tinggi daripada nisbah aspek minimum bagi bahan pengukuh. ‘Central Composite Design’ (CCD) digunakan bagi menentukan penyediaan yang optimum bagi menghasilkan biokomposit yang berdaya tegangan dan impak yang tinggi. Penyediaan optimum yang dipilih ialah dengan mencampurkan 35% selulosa pada 165 °C selama 15 min, yang meghasilkan 94.6% ‘desirability’. Pada penyediaan yang optimum, daya tegangan dan daya impak biokomposit masing-masing ialah 46.21 MPa dan 2.93 kJ/m². ‘Coupling agent’ yang digunakan adalah 3-aminopropyltriethoxysilane (APS) untuk mengubah suai permukaan selulosa. Keputusan kajian ini menunjukkan, selulosa yang bertindak balas dengan ‘silane’ menghasilkan biokomposit yang daya tegangannya kuku dan kuat, berbanding PLA dan selulosa yang tidak bertindak balas. Keleakatan selulosa dan matriks PLA dipertingkatkan dengan pengubahsuaian permukaan selulosa yang mengurangkan penyerapan air oleh biokomposit. Bahan pembungkusan antioksidan telah dihasilkan menggunakan biokomposit poli (asid laktik) (PLA) yang diperkuatkan dengan selulosa kulit durian yang bertindak balas dengan ‘saline’. Kadar pembebasan 3% BHT dan 3% α-tokoferol dalam PLA dan biokomposit secara berasingan
telah dikaji dalam dua larutan (50% dan 95% etanol dalam air) dan pada dua suhu (27 dan 37 °C) yang berbeza. Keputusan kajian mendapati, BHT mempunyai kadar pembebasan yang lebih tinggi daripada α-tokoferol. Kadar pembebasan telah meningkat pada suhu yang lebih tinggi. Pembebasan bahan antioksida daripada PLA adalah lebih cepat berbanding biokomposit. Pembebasan BHT lebih cepat di dalam 95% etanol, manakala pembebasan α-tokoferol lebih cepat di dalam 50% etanol. Pembebasan bahan antioksida yang cepat dapat meghalang pengoksidaan lemak berlaku yang dapat dilihat daripada penurunan nilai peroksida (PV) dan bahan reaktif asid thiobarbituric (TBARS). Dari kajian ini dapat disimpulkan bahawa, BHT mempunyai keberkesanan yang lebih tinggi untuk menjadi antioksidan dalam aplikasi pembungkusan aktif bagi minyak makanan. Rumusan dari kajian ini mendapati selulos dari kulit durian toleh dapat digunakan dengan jayanya sebagai bahan penguat bagi biokomposit asid polilaktik. Penggunaannya telah terbukti sebagai pembungkus aktif yang efektif bagi perlindungan minyak makan dari oksidasi apabila antioksidan dimasukkan kapada bahan biokomposit.
ACKNOWLEDGEMENTS

I would like to express my profound appreciation to the chairman of my supervisory committee, Prof. Dr. Russly A. Rahman for his guidance, advice and support throughout the study. Sincerely thanks to my supervisory committee members, Assoc. Prof. Dr. Rosnita A. Talib and Assoc. Prof. Dr. Khalina Abdan. I am grateful to Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) and The German Academic Exchange Service (DAAD) for sponsorship. In addition, I am sincerely grateful my home institution Maejo University- Phrae Campus for all opportunity to continue my PhD and also all of my colleagues for their support and encouragement.

I acknowledge Department of Process and Food Engineering, Faculty of Engineering and Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia for laboratory equipment and all technical staff for their support.

I would like to express my utmost gratitude to my parents, my beloved uncle and aunty and Penjumras family for their support and encouragement. I would like to express my appreciation to all my friends, Dr. Renny Eka Putri, Mr. Shan Quin Liew, Dr. Tee Yee Bond, Mr. Soheil Shafaei, Ms. Jogeswary Ramamoorthy and Ms. Ili Baqis for their help and support. Special thanks are due to my Thai friends, Dr. Anuthida Phaiphan, Dr. Jatuporn Khongtong, Dr. Taweesak Viyachai, Mrs. Natcha Leevisitpattana, Dr. Arporn Popa, Dr. Pompan Saenpoom, Dr. Kallika Talaka, Ms. Thitima Na Songkhla and Ms. Patchaya Songsiengchai.
I certify that a Thesis Examination Committee has met on 4 January 2018 to conduct the final examination of Patpen Penjumras on her thesis entitled "Development of Antioxidant Packaging Material Based on Optimized Poly(Lactic Acid) and Cellulose from Durian Rind Biocomposites" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Chin Nyuk Ling, PhD
Professor Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Shamsul bin Anuar, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd Noriznan bin Mokhtar, PhD
Associate Professor Ing.
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Rafael A. Auras, PhD
Associate Professor
Michigan State University
United States
(External Examiner)

[Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 April 2018
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Russly A. Rahman, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Rosnita A. Talib, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Khalina Abdan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:____________________ Date:_________________

Name and Matric No: Patpen Penjumras, GS31933
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: __
Name of Chairman of Supervisory Committee: Professor Dr. Russly A. Rahman

Signature: __
Name of Member of Supervisory Committee: Associate Professor Dr. Rosnita A. Talib

Signature: __
Name of Member of Supervisory Committee: Associate Professor Dr. Khalina Abdan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Problem Statement | 1 |
1.2 Research Hypotheses and Assumptions | 2 |
1.3 Research Aim and Objectives | 2 |
1.4 Scope of Study | 3 |
1.5 Thesis Outline | 3 |

2 LITERATURE REVIEW
2.1 Introduction of Durian | 5 |
2.1.1 Application of Durian Seeds | 6 |
2.1.2 Application of Durian Rinds | 6 |
2.1.2.1 Utilization as Novel Adsorbent | 6 |
2.1.2.2 Utilization as Filler in Composites Material | 7 |
2.2 Composites | 7 |
2.3 Biopolymer Poly(lactic acid) (PLA) | 8 |
2.3.1 Structural Composition | 9 |
2.3.2 Thermal Properties | 11 |
2.3.3 Thermal Stability | 12 |
2.4 Cellulose | 12 |
2.5 Plasticizer | 15 |
2.6 Glass Transition Temperature (Tg) | 17 |
2.7 Coupling Agent | 18 |
2.8 Permeability in Packaging System | 19 |
2.9 Water Absorption | 22 |
2.10 Active Packaging | 23 |
2.10.1 Types of Active Packaging | 24 |
2.10.2 Theory of Releasing of Antioxidant of Polymer | 24 |
2.10.3 Kinetic and Thermodynamic Approach| 25 |
2.10.4 Factors Affecting the Rate of Releasing | 27 |
2.10.4.1 Antioxidants’ Physicochemical Properties | 27 |
2.10.4.2 Characteristics of Antioxidant Agents and Foods | 28 |
2.10.4.3 Storage Temperature 28
2.10.4.4 Physical Properties of Packaging Materials 29

2.11 Mechanism of Oxidation 29
 2.11.1 Initiation 29
 2.11.2 Propagation 29
 2.11.3 Termination 30

2.12 Characteristics of Antioxidant 31

3 EXTRACTION AND CHARACTERIZATION OF CELLULOSE FROM DURIAN RIND 33
3.1 Introduction 33
3.2 Materials and Methods 33
 3.2.1 Materials and Chemicals 33
 3.2.2 Extraction of Cellulose from Durian Rind 34
 3.2.3 Density Measurement 36
 3.2.4 Fourier Transform Infrared Spectroscopy (FTIR) 36
 3.2.5 Morphological Analysis 36
 3.2.6 Dimension Measurement 37
3.3 Results and Discussion 37
 3.3.1 Density of Materials 37
 3.3.2 Fourier Transforms Infrared Spectroscopy (FTIR) 38
 3.3.3 Morphological Feature 40
 3.3.4 Dimension of Materials 43
3.4 Summary 444

4 OPTIMIZATION OF PREPARATION OF BIOCOMPOSITES BASED ON POLY(LACTIC ACID) AND CELLULOSE FROM DURIAN RIND 46
4.1 Introduction 46
4.2 Materials and Methods 46
 4.2.1 Preparation of Biocomposites 46
 4.2.2 Mechanical Testing 48
 4.2.3 Experimental Design and Statistical Analysis 49
 4.2.4 Migration Test 50
 4.2.5 Fourier Transform Infrared Spectroscopy (FTIR) 51
 4.2.6 Water Absorption Behavior 51
4.3 Results and Discussion 52
 4.3.1 Tensile Strength and Impact Strength of Biocomposites 52
 4.3.2 Model Selection and Verification of Tensile Strength and Impact Strength 53
 4.3.3 Analysis of Response Surfaces 57
 4.3.4 Optimization of Experiment 61
 4.3.5 Migration of Chemical from Biocomposites 62
 4.3.6 Spectroscopy Analysis 63
 4.3.7 Water Absorption Behavior 65
4.4 Summary 69
5 EFFECT OF ADDITIVE ON PROPERTIES OF BIOCOMPOSITES 70
5.1 Introduction 70
5.2 Materials and Methods 70
 5.2.1 Materials and Chemicals 70
 5.2.2 Preparation of Silane-Treated Cellulose 70
 5.2.3 Preparation of PLA/Cellulose/PEG Biocomposites 71
 5.2.4 Preparation of Silane-Treated Cellulose Biocomposites 71
 5.2.5 Fourier Transform Infrared Spectroscopy (FTIR) 71
 5.2.6 Mechanical Testing 72
 5.2.7 Differential Scanning Calorimetry (DSC) 72
 5.2.8 Morphological Analysis 72
 5.2.9 Water Absorption Behavior 72
 5.2.10 Soil Burial Test 72
 5.2.11 Statistical Analysis 74
5.3 Results and Discussion 74
 5.3.1 Effect of Plasticizer on Mechanical Properties of Biocomposites 74
 5.3.2 Analysis of Chemical Modification of Cellulose from Durian Rind 75
 5.3.3 Effect of Silane-Treated Cellulose on Properties of Biocomposites 77
 5.3.3.1 Mechanical Properties of Biocomposites 77
 5.3.3.2 Thermal Properties 78
 5.3.3.3 Fracture Morphologies of Biocomposites 80
 5.3.3.4 Water Absorption Behavior 82
5.4 Degradation in Soil 85
5.5 Summary 86

6 DEVELOPMENT OF ANTIOXIDANT PACKAGING MATERIAL 87
6.1 Introduction 87
6.2 Materials and Methods 87
 6.2.1 Materials and Chemicals 87
 6.2.2 Preparation of Biocomposites-Antioxidant Materials 88
 6.2.3 Quantification of Antioxidants in Materials 88
 6.2.4 Characterization of Antioxidant Release Behavior 88
 6.2.4.1 Release Tests 89
 6.2.4.2 Overall Kinetics Analysis 90
 6.2.4.3 Determination of Diffusion Model 90
 6.2.5 Oxidative Status Analysis 91
 6.2.5.1 Peroxide Value Analysis 92
 6.2.5.2 Thiobarbituric Acid Reactive Substances Analysis 92
6.3 Results and Discussion 92
 6.3.1 Amount of Antioxidants in Biocomposites 92
 6.3.2 Release of Antioxidants into Simulants 93
 6.3.3 Stability of Edible Oil Affected by Biocomposites Added with Antioxidant 100
7 CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK

7.1 Conclusions 109
7.2 Recommendation for Future Work 110

REFERENCES 111
APPENDICES 130
BIODATA OF STUDENT 144
LIST OF PUBLICATIONS 145
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Examples of Active Packaging Applications for Use Within the Food Industry</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Density of Untreated Durian Rind, Holocellulose and Cellulose</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Peak Absorption of Samples at Different Stages of Treatment</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Coded Levels of Variables</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>The Arrangement of the Central Composite Design</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>The Responses of the Parameters Used in Central Composite Design</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Analysis of Variance for the Quadratic Model of Tensile Strength</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Analysis of Variance for the Quadratic Model of Impact Strength</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Regression Coefficients and Probability Values of Approximate Polynomials for Response Variables in Experimental Design</td>
<td>55</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of Chemical Migration on pH Value of Simulant During Storage</td>
<td>63</td>
</tr>
<tr>
<td>4.8</td>
<td>Diffusion Curve Fitting Parameter of Biocomposites</td>
<td>68</td>
</tr>
<tr>
<td>4.9</td>
<td>Maximum Absorption Water Diffusion Coefficients of Biocomposites</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>Tensile Properties of PLA and Biocomposites Added with PEG</td>
<td>74</td>
</tr>
<tr>
<td>5.2</td>
<td>Tensile Properties of PLA and Biocomposites Reinforced with Untreated Cellulose and APS-Treated Cellulose</td>
<td>77</td>
</tr>
<tr>
<td>5.3</td>
<td>DSC Results of PLA and Biocomposites Reinforced with Untreated Cellulose and APS-Treated Cellulose</td>
<td>79</td>
</tr>
</tbody>
</table>
5.4 Water Absorption Behavior Parameters of PLA and Biocomposites Reinforced with Untreated Cellulose and APS-Treated Cellulose

6.1 Level of Factor for Antioxidant Release Tests

6.2 Amount of Antioxidants in Biocomposites

6.3 The First-Order Rate Constant \((k \times 10^{-3}, \text{h}^{-1})\) of Antioxidant from Material into Food Simulant at 27 °C and 37 °C

6.4 D Coefficients \((\times 10^{-10}, \text{m}^2\text{h}^{-1})\) of Antioxidant from Material into Food Simulant at 27 °C and 37 °C

6.5 The Maximum Percentage Release of Antioxidant at Equilibrium time (h) from Material into Food Simulant at 27 °C and 37 °C
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Proportion of Fresh Durian Yield in Each Province of Thailand in 2008</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Formation of a Composite Material Using Fibers and Resin</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Continuous Fiber and Short Fiber Composites</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Synthesis of PLA from L- and D-Lactic Acids</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison of Glass Transition and Melting Temperatures of PLA with Other Thermoplastics</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>Plant Structure</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Typical Schematical Structure of Cellulose</td>
<td>13</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic Diagram of a DSC Curve Showing Possible Transitions</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>The Chemical Bonding of the Silanol and the Natural Fiber</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>General Mechanism of Gas or Vapour Permeation though a Plastic Material</td>
<td>20</td>
</tr>
<tr>
<td>2.11</td>
<td>Water Absorbed in Polymer Matrix</td>
<td>22</td>
</tr>
<tr>
<td>2.12</td>
<td>Effect of Water on Fiber-Matrix Interface</td>
<td>23</td>
</tr>
<tr>
<td>2.13</td>
<td>Food Packaging Systems and Relative Behavior of Active Substances</td>
<td>25</td>
</tr>
<tr>
<td>2.14</td>
<td>Process of Migration from $t=t_0$ to $t=t_a$</td>
<td>26</td>
</tr>
<tr>
<td>2.15</td>
<td>Lipid Oxidation Pathway</td>
<td>30</td>
</tr>
<tr>
<td>2.16</td>
<td>Lipid Oxidation By-Products</td>
<td>30</td>
</tr>
<tr>
<td>2.17</td>
<td>Example of Antioxidants: Butylated Hydroxyanisole (BHA), Butylated Hydroxytoluene (BHT), Tert-Butylhydroquinone (TBHQ), Propyl Gallate (PG), Ascorbyl Palmitate (AP)</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Durian Rind Cultivar 159 Monthong</td>
<td>34</td>
</tr>
</tbody>
</table>
3.2 Removal of Lignin via Chlorination Method
3.3 Changing of Cellulose Color during Chlorination Method
3.4 FTIR Spectra for (a) Untreated Durian Rind, (b) Holocellulose and (c) Cellulose
3.5 Photographs of (a) Untreated Durian Rind, (b) Holocellulose and (c) Cellulose
3.6 Scanning Electron Micrograph of (a) Untreated Durian Rind, (b) Holocellulose and (c) Cellulose
3.7 Shape of Cellulose from Durian Rind
3.8 Distribution of (a) Diameter and (b) Aspect Ratio for Cellulose Collected between 125 µm and 250 µm Test Sieves
4.1 An Internal Mixer (Brabender Plastograph EC, Brabender, Germany)
4.2 Schematic Representation of the Hot and Cold Press Machine
4.3 Compressing of Biocomposites (a) Pallets Arranged onto the OHP Sheets and (b) Metal Plates Sandwiching the Pellets and the Sheets
4.4 Instron Universal Testing Machine (Model 5566, Instron, USA)
4.5 An Impact Pendulum Tester (Ceast Model 9050, Instron, USA)
4.6 Water Absorption Behavior Testing
4.7 Correlation of Predicted Response versus Experimental Response (a) Tensile Strength and (b) Impact Strength
4.8 Response Surfaces Plots of the Combined Effects of the Independent Variables on Tensile Strength of Biocomposites (a) Effect of Cellulose Loading and Temperature, (b) Effect of Cellulose Loading and Time and (c) Effect of Temperature and Time
4.9 Response Surfaces Plots of the Combined Effects of the Independent Variables on Impact Strength of Biocomposites (a) Effect of Cellulose Loading and Temperature, (b) Effect of Cellulose Loading and Time and (c) Effect of Temperature and Time

4.10 Optimum Condition of the Independent Variables and the Responses of the Biocomposites

4.11 Compounding of PLA and cellulose with above 35 wt.%

4.12 FTIR Spectra for (a) Poly(lactic acid), (b) Cellulose and (c) Biocomposites

4.13 Effect of Cellulose Content and Mixing Temperature on Water Absorption of Biocomposites

4.14 Diffusion Curve Fitting for Biocomposites

5.1 Preparation of Samples for Soil Burial Testing

5.2 Effect of Plasticizer on Biocomposites

5.3 FTIR Spectra of (a) Untreated Cellulose and (b) APS-Treated Cellulose

5.4 DSC Curves of PLA and Biocomposites Reinforced with Untreated Cellulose and APS-Treated Cellulose

5.5 SEM of Cellulose- PLA Biocomposites (a) Untreated Cellulose and (b) APS-Treated Cellulose

5.6 Water Absorption Curves of PLA and Biocomposites Reinforced with Untreated Cellulose and APS-Treated Cellulose

5.7 Diffusion Curves Fitting of PLA and Biocomposites Reinforced with Untreated Cellulose and APS-Treated Cellulose

5.8 Progressive Water Sorption by Samples During the Degradation Process

5.9 Progressive Weight Loss of Samples during the Degradation Process

6.1 The Example of Bleaching of DPPH by Antioxidants at 3 days
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Antioxidant Release Rate (M_t/M_{i0}) into Ethanol at $27 , ^\circ C$ with Initial Concentration of 3% (a) Neat PLA and (b) PLA/Cellulose</td>
<td>94</td>
</tr>
<tr>
<td>6.3</td>
<td>Antioxidant Release Rate (M_t/M_{i0}) into Ethanol at $37 , ^\circ C$ with Initial Concentration of 3% (a) Neat PLA and (b) PLA/Cellulose</td>
<td>95</td>
</tr>
<tr>
<td>6.4</td>
<td>Change in Peroxide Value in Palm Oil in Contact with 3% Antioxidant Active Material Stored at $27 , ^\circ C$ (a) Neat PLA and (b) PLA/Cellulose</td>
<td>101</td>
</tr>
<tr>
<td>6.5</td>
<td>Change in Peroxide Value in Palm Oil in Contact with 3% Antioxidant Active Material Stored at $37 , ^\circ C$ (a) Neat PLA and (b) PLA/Cellulose</td>
<td>102</td>
</tr>
<tr>
<td>6.6</td>
<td>Change in TBARS in Palm Oil in Contact with 3% Antioxidant Active Material Stored at $27 , ^\circ C$ (a) Neat PLA and (b) PLA/Cellulose</td>
<td>105</td>
</tr>
<tr>
<td>6.7</td>
<td>Change in TBARS in Palm Oil in Contact with 3% Antioxidant Active Material Stored at $37 , ^\circ C$ (a) Neat PLA and (b) PLA/Cellulose</td>
<td>106</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>Wt.%</td>
<td>Percentage by weight</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celsius</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>cm²</td>
<td>Square centimeter</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>et al.</td>
<td>And friends</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>psig</td>
<td>Pound (force) per square inch guage</td>
</tr>
<tr>
<td>kV</td>
<td>Kilovoltage</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>GPa</td>
<td>Giga Pascal</td>
</tr>
<tr>
<td>kJ/m²</td>
<td>Kilojules per square meter</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>mL</td>
<td>Milli liter</td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysian Agricultural Research and Development Institue</td>
</tr>
<tr>
<td>m²</td>
<td>Square meter</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>T_c</td>
<td>Crytallization temperature</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly(lactic acid)</td>
</tr>
<tr>
<td>TPS</td>
<td>Thermoplastic starch</td>
</tr>
</tbody>
</table>
p Probability

C_p Specific heat capacity

APS 3-aminopropylriethoxysilane

BHT Butylated hydroxytoluene

pH Measurement of Acidity/Alkalinity

rpm Revolutions per minute

$ASTM$ American Society of Testing Method

nm Nanometer

AT α-tocopherol

$Std.Dev$ Standard deviation

USA United States of America

N Normality

J/g Jule per gram

Eth Ethanol

PET Polyethylene terephthalate

PV Peroxide value

$TBARS$ Thiobarbituric acid reactive substances analysis
CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Durian (*Durio zibethinus* Murray) is one of the most popular fruits in Southeast Asia, particularly Thailand, Malaysia, Indonesia, and the Philippines (Booncherm and Siriphanich, 1991). It is well known as the “king of fruits” and its uses have been vigorously widened and entrenched into multidisciplinary food processing industries. Only one-third of a durian is edible, whereas the seeds and rinds become waste (Amid and Mirhosseini, 2012). Normally, durian wastes are sent to landfills without good management, affecting the surrounding environment. To avoid pollution that results from dumping or filling landfills, these wastes can be applied as non-wood raw material. Durian rinds have been found to be a good source of cellulose (Rachtanapun *et al*., 2012).

In recent years, there has been increasing interest in cellulose-based materials due to increasing interest in renewable resources and growing environmental awareness (Mohanty *et al*., 2005). Therefore, natural fibers have been studied to reinforce biodegradable polymers to produce biocomposite materials. Generally, commodity plastics are widely used for many applications, such as packaging material. However, plastic takes a very long time for environmental decomposition, creating a serious problem with the disposal of plastic waste. Substituting non-biodegradable polymers with biodegradable ones leads to fully renewable and degradable composites (Frone *et al*., 2011). Among the many biodegradable polymers, poly(lactic acid) (PLA) is considered to be one of the most promising renewable resource-based biopolymer matrices due to its high mechanical properties and easy processability compared with other biopolymers (Suryanegara *et al*., 2009). Although natural fiber provides many advantages in composites – low density, harmlessness, high toughness, renewable and biodegradable (Santiagoo *et al*., 2011) – a major limitation of natural fiber is the difference in the surface between the fiber and the matrix. Therefore, improvement of interfacial between cellulose and the polymer matrix is needed.

In recent years, consumers have increasingly demanded minimally-processed foods with better, fresh-like qualities. Therefore, the innovative concept of active packaging has gained attention. Its interaction with the package, the food and the environment can extend shelf life of foods by providing higher protection of flavors. It can preserve food by lowering the use of additives and preservatives in food formulations while maintaining the quality of the product. The culmination of this recent work is antioxidant packaging material based on optimized poly(lactic acid) and cellulose from durian rind biocomposites.
1.2 Research Hypotheses and Assumptions

To develop the antioxidant packaging material, the hypotheses of project are;

1. The cellulose extracted from durian rind can achieve a minimum value of aspect ratio for use as reinforcement material in composites.
2. Preparation of biocomposite materials at different levels of cellulose loading, mixing temperature and mixing time has an effect on the mechanical properties of biocomposites based on poly(lactic acid) and cellulose from durian rind.
3. The addition of polyethylene glycol as a plasticizer at different levels affect the mechanical properties of biocomposites.
4. Treating cellulose surfaces with a silane coupling agent can improve adhesion between the surface of the poly(lactic acid) and cellulose.
5. The type of packaging material, type of antioxidant, type of simulant and storage temperature affects the release rate of antioxidants.
6. Active packaging incorporated with antioxidants can delay an oxidation reaction, which is the cause of deterioration of lipid foods.

To simplify the problem, assumptions consist of the following:

1. There is no effect of non-uniform diameter and length of cellulose.
2. For release test of antioxidants:
 1) Initial concentration of antioxidants in food simulant is zero; and,
 2) Interaction between food simulants and packaging materials are not considered.
3. For lipid oxidation testing:
 1) Light has no effect during storage.

1.3 Research Aim and Objectives

The aim of his study is to develop biodegradable antioxidant packaging material based on poly(lactic acid) and cellulose extracted from durian rinds. This can then be used as antioxidant active packaging in lipid food products to prolong its shelf life. To achieve this aim, the objectives of this study are as follows:
1. To characterize the chemical and physical properties of cellulose extracted from durian rinds for use as reinforcement material in biocomposites.
2. To optimize the conditions for the preparation of biocomposites based on poly(lactic acid) and cellulose from durian rinds using a central composite design.
3. To determine the effects of additives, including plasticizer and coupling agents, on the property of biocomposites based on poly(lactic acid) and cellulose from durian rinds.
4. To evaluate the development of antioxidant packaging material based on optimized poly(lactic acid) and cellulose biocomposites and its application.

1.4 Scope of Study

Durian rind D159 Monthong was collected from Phatthalung province. The two-step process of extraction consisting of chlorination and mercerization was used for cellulose extraction. Poly(lactic acid) (PLA2003D food packaging-grade) was used as a matrix in this study. Preparation of biocomposites was optimized. Three independent variables including cellulose loading, mixing temperature and mixing time were employed. Polyethylene glycol was used as a compatibilizer and 3-aminopropyltriethoxysilane (APS) were used as a compatibilizer and coupling agent. For a soil burial test, polyethylene terephthalate (PET) was used as a representative of synthetic polymer, and soil in Rongkwang district, Phrae province, Thailand, was used for this study. Antioxidant release was conducted using α-tocopherol as a representative of natural antioxidants and butylated hydroxyanisole (BHT) as a representative of synthetic antioxidants.

1.5 Thesis Outline

The thesis consists of seven chapters. Chapter 1 introduces a basic understanding related to the study, which includes the problem statement, research hypotheses, research aim and objectives, and scope of study.

Chapter 2 provides the literature review on durian, composites, poly(lactic acid), plasticizer, coupling agent, water absorption and antioxidant active packaging, and mechanism of oxidation. The previous findings related to biocomposites in terms of chemical, physical, thermal and morphological properties and its area are elaborated on and reviewed. In addition, previous research on the release of antioxidants and their efficiency at preventing oxidation is also included here.

Chapters 3 to 6 are experimental chapters in which methodologies, results and discussions are conveyed according to the objectives as reported in Section 1.3.
Finally, Chapter 7 presents the overall conclusion of the research and recommendations for future work.
REFERENCES

