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EEG- AND MRI-BASED EPILEPSY SOURCE LOCALIZATION USING
MULTIVARIATE EMPIRICAL MODE DECOMPOSITION AND INVERSE

SOLUTION METHOD

By

PEGAH KHOSROPANAH

April 2018

Chairman: Associate Professor Abd. Rahman Ramli, PhD
Faculty: Engineering

The only treatment for patients with medical refractory epilepsy is to resect the part of
the cortex that is origin of epilepsy by surgery. An extensive pre-surgical evaluation is
required to define the Epileptogenic Zone (EZ) accurately. There is a large variation
of neuroimaging approaches that are utilized for pre-surgical evaluation depending
on the protocol of each epilepsy surgery center. Although Electroencephalography
(EEG)-based source localization (ESL) estimates the EZ more precisely than other
techniques but, it is used rarely in surgery centers. The reason behind the low usage
of this trustworthy technique is its requirement for technical expertise together with
experts’ supervision and lack of recommended guidelines for this technique. The
accuracy of ESL depends on all the stages of data processing including: head model
reconstruction, signal pre-processing and inverse solution. Therefore, a standardized
algorithm with less supervision is desired to utilize ESL for pre-surgical evalua-
tion. One of the factors that needs to be considered for the purpose of establishing an
automated and standardized algorithm is eye blink artifact removal due to its morpho-
logical resemblance to epileptic discharges. Few studies considered eye blink artifact
removal for purpose of epilepsy source localization studies and most of them used
either visual inspection or computer-based approaches which still need of experts’
supervision. Besides, non-stationary, non-linear and multivariate characteristics of
EEG needs to be considered for choosing a proper processing method for extracting
epileptic spikes’ features. Nevertheless, patient’s realistic head model is essential to
obtain accurate source localization results. Although many inverse solutions exist
but, the ones which do not require specialists’ involvement with minimal error is
desired. Standardized Low Resolution Tomography (sLORETA) and Weighted Min-
imum Norm (WMN) are linear distributed inverse solutions which lead up to zero
localization error using noise-free EEG, state-of-the-art feature extractor and realistic
head model. Therefore, in this study a coupledMultivariate Empirical Mode Decom-
position (MEMD) with embedded automated artifact remover algorithm and inverse
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solution method is proposed. To remove eye blink artifacts, the mother wavelet of
Bior 3.3 was used due to its high morphological resemblance to eye blink and yet dif-
ferentiable characteristic to epileptic spikes. Since MEMD method is a data-driven
method which meets the criteria to be applied for EEG processing, therefore this
method was employed to extract EEG epileptic spike features. In the current study,
clinical dataset of 20 subjects were used to examine sLORETA andWMN fed by raw
EEG signals and MEMD features on each patient’s realistic head model. sLORETA
in combination with MEMD feature after eye blink removal proved to be a reliable
ESL algorithm with 100% accuracy. The results show significantly improved EZ lo-
calization results in comparison with similar works and capability of this algorithm to
not only determine the epilepsy origin lobe, but also the exact focus on the lobe. The
outcomes were validated using MRI references which are verified via post-surgical
results. Therefore proposed algorithm has the advantages to localize EZ using ESL
inexpensively and accurately which promotes usage of this valuable technique for
epilepsy pre-surgical evaluation.
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memenuhi keperluan untuk ijazah Doktor Falsafah

PENEMPATAN SUMBER EPILEPSI BERASASKAN EEG- DAN MRI-
MENGGUNAKAN KAEDAHMULIPERBEZAAN MOD EMPIRIKAL DAN

PENYELESAIAN SONGSANG

Oleh

PEGAH KHOSROPANAH

April 2018

Pengerusi: Profesor Madya Abd. Rahman Ramli, PhD
Fakulti: Kejuruteraan

Satu-satunya rawatan untuk pesakit sawan yang sembuh selepas dirawat adalah den-
gan cara membuang bahagian korteks yang merupakan punca sawan melalui kaedah
pembedahan. Penilaian pra-pembedahan secara menyeluruh adalah diperlukan untuk
mengenalpasti zon Epileptogenik (EZ) dengan tepat. Terdapat banyak pendekatan
pengimejan neuro yang digunakan semasa pra-pembedahan bergantung kepada pro-
tokol yang digunapakai pada pusat pembedahan sawan berkenaan. Walaupun penen-
tuan Electroencephalografi (EEG) berasaskan tempat punca (ESL) dapat mengang-
garkan EZ lebih tepat berbanding teknik lain tetapi ianya jarang digunakan di pusat
pembedahan. Punca kaedah yang tepat ini kurang digunakan kerana ia memerlukan
pakar teknikal serta penyeliaan pakar dan kurang garis panduan untuk kaedah ini.
Ketepatan ESL bergantung kepada semua peringkat pemprosesan data termasuk pem-
bentukan semula model kepala, prapemprosesan isyarat dan penyelesaian songsang.
Oleh itu,algoritma piawai yang kurang penyeliaan adalah diperlukan untuk penilaian
pra-pembedahan menggunakan kaedah ESL. Salah satu faktor yang perlu dipertim-
bangkan untuk tujuan membangunkan algoritma tanpa penyeliaan dan piawai adalah
penyingkiran isyarat artifak kelipan mata yang disebabkan oleh persamaan morfologi
dengan isyarat pelepasan sawan. Beberapa kajian mempertimbangkan penyingkiran
isyarat kelipan mata untuk tujuan penentuan tempat punca sawan dan kebanyakannya
menggunakan pemeriksaan secara visual atau pendekatan menggunakan komputer
di mana penyeliaan pakar masih diperlukan. Selain itu, EEG yang tidak pegun, tidak
linear dan berpelbagai pembolehubah perlu dipertimbangkan untuk memilih kaedah
pemprosesan yang sesuai untuk mencari ciri denyutan sawan. Walau bagaimanapun,
model realistik kepala pesakit adalah diperlukan untuk menentukan punca penyetem-
patan yang tepat. Walaupun terdapat banyak teknik songsang tetapi kaedah yang
tidak memerlukan penyeliaan pakar lebih diperlukan. Kaedah Tomografi Beresolusi
Rendah Piawai (sLORETA) dan Norma Berpemberat Minima (WMN) adalah kaedah
songsang linear di mana ralat penyetempatan hampir sifar denganmenggunakan EEG
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tanpa hingar. pencari ciri terkini dan model kepala realistik. Oleh itu, dalam kajian
ini beberapa Mod Penguraian Muliperbezaan Empirikal (MEMD) dengan algoritma
penyingkiran artifak tanpa pengawasan dan kaedah penyelesaian songsang dicadan-
gkan. Untuk menyahkan isyarat artifak kelipan mata, gelombang induk Bior 3.3
digunakan kerana ia mempunyai persamaan morfologi yang tinggi dengan isyarat ke-
lipan mata namun berbeza dengan isyarat denyutan sawan. Memandangkan kaedah
MEMD adalah dipacu oleh data yang sama kriteria untuk pemprosesan EEG, oleh
itu kaedah ini digunapakai untuk mencari ciri denyutan sawan EEG. Dalam kajian
ini, 20 data klinikal digunakan untuk menguji sLORETA dan WMN menggunakan
isyarat EEG tulen dan ciri MEMD pada ciri setiap model kepala pesakit. Gabun-
gan kaedah sLORETA dengan ciri MEMD selepas isyarat kelipan mata disingkirkan
membuktikan algoritma ESL boleh dipercayai dengan ketepatan 100%. Hasil kajian
menunjukkan penyetempatan EZ yang lebih baik berbanding kaedah yang sama dan
kemampuan algoritma ini bukan hanya menentukan lobus punca sawan, tetapi men-
mfokus pada lobus dengan tepat. Hasil kajian disahkan menggunakan rujukan MRI
yang disahkan dengan keputusan pasca pembedahan. Oleh itu, algoritma yang di-
cadangkan mempunyai kelebihan untuk menentukan tempat EZ mengggunakan ESL
dengan lebih murah dan tepat di mana menggalakkan penggunaan kaedah ini untuk
penilaian pra-pembedahan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Epilepsy is the fourth common chronic brain disorder in humans and is the result of
an excessive discharge of the group of neurons in the unprovoked brain. Patients with
epilepsy often experience seizures throughout their lives, with different occurrence
frequencies. The occurrences of seizures have a serious negative impact on the quality
of a patient’s life. During the seizures, the patients may hurt themselves, cause many
types of accidents, or suffer brain damage. About 60% of these patients are stricken
by focal epilepsy and 15% of focal epileptic patients can neither be treated nor
controlled by medication. Usually in such a situation epilepsy surgery is prescribed
to remove the part of the brain that is the origin of seizures. Therefore, accuracy of
pre-surgical evaluation toward epilepsy source localization has a significant influence
on post-surgical result. There are different neuroimaging (brain imaging) methods to
directly or indirectly image the structure, function or pharmacology of the brain.

Non-invasive brain imaging techniques are utilized to better understand the electro-
physiological, hemodynamic, metabolic, and neurochemical process of both normal
and pathological brain functionality. These techniques are categorized into a mul-
tidisciplinary research field called functional brain imaging which includes Single
Photon Emission Computer tomography (SPECT), Positron Emission Tomography
(PET), functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography
(MEG) and electroencephalography (EEG).

Due to the fast propagation of the epileptic activities, the neuroimaging techniques
with image-based output would display several hyper regions’ activity; thus, a neu-
roimaging technique with high temporal resolution is needed to overcome this prob-
lem. EEG is the most utilized neuroimaging technique with high temporal resolution
(about milliseconds) to record a subject’s brain activities without being invasive,
through the use of electrodes placed on the scalp. The origin of recorded EEG is
the brain electromagnetic sources inside the brain, therefore EEG holds useful data
of these electromagnetic sources’ activities. This data is treasured to understand
functionality of the brain, diagnosis and treatment of some brain disorders such as
epilepsy. Using EEG to determine the source of epilepsy in the brain is called
EEG-based source localization (ESL).

However, EEG signal contains not only signal of interest, but also background activity
and artifacts. Eye blink artifact is one of the most important internal artifacts that may
hugely deteriorate accuracy of EEG-based epilepsy source localization. Although
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there are a vast number of studies to remove eye blink artifact from healthy EEG,
but few of them consider removing this artifact from epileptic EEG. Eye blink arti-
fact removal is more complicated in epilepsy studies because of the morphological
similarity between eye blink artifact and epileptic spikes. Therefore, the trustwor-
thy method would be the one with high sensitivity of detecting eye blink artifact
without distorting the EEG signal. For instance, an inaccurate method may falsely
detect and remove epileptic spikes which is the signal of interest instead of the eye
blink. Unfortunately, only few epileptic spike detection studies considered eye blink
artifact removal from EEG and most of them implemented either visual inspection
or computer-based methods which needs experts’ supervision. These studies only
evaluate eye blink artifact removal without evaluating epileptic EEG misrepresen-
tation. Moreover, eye blink artifact removal in context of epileptic spike detection
mostly was accomplished on frontal channels which is efficient for ultimate purpose
of epilepsy type diagnosis but not for epilepsy source localization. However, eye
blink activity can affect temporal lobe as well which would influence the results of
source localization. Although eye blink artifact can drastically decrease the accuracy
of epilepsy source localization results, but most relevant studies either did not take it
into account or relied on experts’ supervision which is prone to possible human error.

For recording EEG of an epileptic patient there are two periods known as ictal
and inter-ictal. Ictal EEG refers to the brain activity signals recorded in the time
of epileptic seizure and inter-ictal EEG is the one recorded between two seizures.
Some studies used ictal EEGs for epilepsy source localization due to distinguishable
epileptic activity with high amplitudes in that period. However, recording ictal
EEG has some limitation such as timing and noisy recording. The frequency of
the seizures among patients varies from once in a month to many times in a day.
Additionally, inter-ictal epileptiform discharges (IEDs) are as informative as ictal
recordings in scalp EEG for diagnosis and localization of epilepsy. Therefore, most
studies including this study try to find more accurate epilepsy source localization
algorithms using inter-ictal EEG which is recorded much easier.

EEG-based Source Localization (ESL) is accomplished in two main steps:

Firstly, a model which describes the relation between the sources inside the brain
and scalp EEG is needed. The process of obtaining such a model in ESL is called
solving the forward problem. Like any other modeling problems in science and
engineering, this model needs to be as realistic as possible. Many studies have
modeled the head as a concentric sphere to localize brain activities (Durka, 2003;
Kybic et al., 2005; Liu et al., 2004), but in reality, the human head is not a layered
sphere. To achieve a more accurate source localization result, a realistic head model
with different compartments and related electrical conductivity is required to be
constructed using techniques such as Magnetic Resonance Imaging (MRI). After
modeling the head geometry, as a part of the forward solution, it is important to
model the sources within the brain. Normally, active neurons are modeled as current

2
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dipoles. With head geometry, related compartment’s conductivity, source model and
electrode positions on the scalp, forward problem can be solved in order to obtain
the lead field matrix. This matrix represents the relation between the sources and the
scalp EEGs of each subject.

Secondly, finding the source of activity of interest based on forward solution which is
called inverse solution. Unfortunately, in the case of using EEG, the inverse solution
is ill-posed, meaning that there is no unique solution for source localization (number
of sources are more than number of sensors). There are many inverse solutions
which are assigned to two major categories: parametric and non-parametric, which
will be explained in further detail in section 2.11. The accuracy of source localization
using parametric methods highly depends on a prior assumption about location and
number of sources, therefore implementing parametric methods needs neurological
knowledge background. In contrary, since non-parametric methods consider all
possible sources in the head model volume, thus utilizing these methods in order
to find origin of activities do not require a prior knowledge of sources and reduce
complexity of the process.

Furthermore, signal of interest needs to be expressed as its corresponding charac-
teristics or features which may be time-domain features, frequency characteristics or
time-frequency specs of a signal. The methods used to extract these specific char-
acteristics of the signal of interest is called the feature extraction methods. Feature
extracted noise-free EEG signal is needed for source localization studies. To achieve
this, features of the epileptic signal needs to be separated from the background ac-
tivities. Because if noise-free EEG without separation of the epileptic signal is fed
to inverse solution, the localization results would be a wrong source which is the
superposition of background and desired source activities. Since EEG is a signal
with non-stationary, multivariate and non-linear characteristics, therefore the feature
extraction method needs to be suitable for the nature of EEG signal. There are
different approaches to extract features of the epileptic EEG such as time-domain,
frequency-domain and time-frequency analysis and each of them has its own merits
and disadvantages.

Although the accuracy of ESL is higher than conventional methods that are used for
pre-surgical evaluation such as MEG, fMRI, Magnetic Resonance Imaging (MRI),
PET and invasive EEG (iEEG), only few epilepsy surgery centers use this method to
determine Epileptogenic Zone (EZ). Technical expertise along with specialist super-
vision requirement and lack of guidelines are among the reasons which reduce the
usage of this method for pre-surgical evaluation. Furthermore, the accuracy of ESL
can be influenced by many factors such as head model and electrode placements used
in forward model, EEG signal noise and inverse solution itself. Therefore, recent
studies tend to develop standardized algorithms of ESL which adopt proper meth-
ods on each step with less supervision for epilepsy pre-surgical evaluation process
(Kaiboriboon et al., 2012).
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1.2 Problem statement

ESL is one of the new and computer-based approaches to determine the origin of
brain’s activity. Although this method has the highest accuracy to localize EZ among
other pre-surgical evaluation approaches, but only 38% of epilepsy surgery centers
use this method due to lack of recommended guidelines and technical expertise and
experts’ supervision requirements (vanMierlo et al., 2017). Moreover, ESL accuracy
highly depends on each step namely: forwardmodeling, signal processing and inverse
solution (Zwoliński et al., 2010). Therefore, a small error in each stage of source
localization would lead to mis-localization. Consequently, recent studies tend to
develop standardized approaches which consider realistic methods with less experts’
involvement in each step.

Nevertheless, eye blink is one of the most important artifacts that can influence
epilepsy source localization results due to its similarity to epileptic spikes (Singh
and Wagatsuma, 2017; Zeng et al., 2013). Most of the epilepsy source localization
researches either did not consider removing eye blink artifacts or relied on experts’
supervision which is time consuming, labor intensive and prone to human error.

Finally, based on the result of epilepsy source localization in intractable epilepsy, part
of the brain that has no essential functionality is removed. Therefore, the accuracy of
epilepsy localization is very important since it also affects the results after epilepsy
surgery (van Mierlo et al., 2017). Thus, an automated and non-invasive system with
high accuracy of localization is desirable.

1.3 Objectives

Based on literature review and observing the remaining gaps in neuroimaging research
studies; in context of epilepsy source localization; these objectives have been defined
to develop a standardized algorithm:

1. To evaluate patients’ realistic head model reconstruction in forward solution

2. To implement automated eye blink artifact removal on all EEG channels

3. To investigate the performance of sLORETA andWMN in proposed algorithm

4. To examine the extracted features of epileptic activities using Multivariate

4



© C
OPYRIG

HT U
PM

Empirical Mode Decomposition (MEMD) from EEG in proposed pipeline

5. To evaluate the estimated origin of epilepsy on MRIs using MRI references in
which epileptogenic zones are marked by a neurologist.

1.4 Scope of work

The objectives of this study are accomplished by considering the following work
scopes:

1. Epilepsy origin is localized with focus on using scalp and inter-ictal EEG.

2. A clinical dataset of 20 patients which suits the process and aims of this study
is used for analysis and validation.

3. Forwardmodel is reconstructed usingBoundary ElementMethod (BEM) based
on realistic head model of each patient using MRI.

4. Each individual’s MRI is fed into FreeSurfer suite software to segment the
inhomogeneous head compartments.

5. Eye blink artifacts are removed from EEG signal using wavelet method in the
preprocessing stage.

6. Multivariate Empirical Mode Decomposition (MEMD) method is utilized for
extracting epileptic features from EEG.

7. Two inverse solution algorithms including weighted Minimum Norm (WMN)
and standardized Low-Resolution Tomography (sLORETA) are applied to the
signal of interest using Brainstorm software in order to localize the epilepsy
origin.

8. Performance of the proposed algorithm is verified by comparing the localiza-
tion results with the MRI reference of each subject marked by a specialist and
verified with post-surgical results.

5



© C
OPYRIG

HT U
PM

1.5 Contributions

Based on objectives and results of this study, contributions of current work are as
follows:

• Promote the usage of ESI method as pre-surgical evaluation toward epilepsy
source localization in clinics and epilepsy surgery centres

• Minimize the experts involvement to save time and ease of implementation
even with minimum neurological knowledge

• Utilizing realistic head model for each patient

• Automated eye blink removal from all epileptic EEG channels

• Utilizing MEMD method to extract epileptic features

• Using sLORETA andWMN along with noise-free, extracted epileptic features
to minimize the source localization error

This pipeline can be used to develop an application or a web-based platform which
produce a comprehensive report for surgeons to decide on each case. The proposed
method not only is capable of determining EZ with high accuracy, but also it helps
to save time and avoid human error with less need of neurologist supervision and
technical expertise.

1.6 Thesis organization

Chapter one covers a brief background of epilepsy source localization, the scope of
work, problem statement, objectives and finally thesis organization.

Chapter two delivers an outline of the methods applied to localize origin of focal
epilepsy in the literature over the past two decades. Two major relevant steps to
determine epileptogenic zone using non-invasive tools like EEG are: first, forward
modeling that calculates estimated potential on the scalp from known sources includ-
ing head and source modeling, and second, inverse solution that estimates the source
of signal of interest including signal preprocessing/feature extraction step. Both are
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challenging problems, and significant research efforts have been directed towards
accurate result.

Chapter three comprises the material and methods used in this study, comprising
wavelet analysis, boundary element method (BEM), Multivariate Empirical Mode
Decomposition (MEMD) and standardizedLow-Resolution tomography (sLORETA).

Chapter four presents the results which are obtained by using the proposed method
for epilepsy source localization.

Chapter five concludes the work.
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