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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

 
 

FRICTION-STIR INCREMENTAL SHEET FORMING OF ALUMINUM 
ALLOY AND METAL MATRIX COMPOSITE 

 
 

By 
 
 

QASIM MHALHAL AZPEN 
 
 

April 2018 
 
 

Chairman :   Associate Professor B.T. Hang Tuah Bin Baharudin, PhD  
Faculty :   Engineering  
 
 
Currently, there is a growing market for manufacturing customized, rapid 
prototyping and low-cost sheet parts with small to medium batches 
(particularly in transportation, artificial medical alternatives, and aerospace 
industries). Incremental Sheet Forming (ISF) was born as an advanced sheet 
forming process to perfectly fit previous requirements. ISF is described to 
have inherent flexibility, high formability, and low-cost and forming forces 
compared to traditional sheet metal forming processes. Nevertheless, 
increasing demands to utilize the lightweight materials in various 
applications has placed this developed process in a critical challenge to deal 
with low formability materials at room temperature. Among all heat-assisted 
ISF processes, frictional stir-assisted Single Point Incremental Forming (SPIF) 
was presented in this study. Besides the mentioned advantages of ISF, 
frictional stir-assisted SPIF displays superior benefits as it does not require an 
external heating source and has a better final surface finish than the other 
types. Accordingly, this technique was used to improve the formability of two 
lightweight materials: aluminum alloy AA60601-T6 and metal matrix 
composite AA6061/20%SiCp-T1 sheets. The study focuses on the 
investigation of the process aspects, which include process formability 
indicators, forming forces, and surface roughness. Tool rotation speed, feed 
rate, step size, and tool diameter are proposed as process parameters to 
evaluate their impact on the output responses. In this regard, Taguchi Design 
of Experiment (DoE) technique and the analysis of variance (ANOVA) were 
employed to design the experimental work and statistically evaluate the 
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impact of each parameter. For AA6061-T6 experiments, the rotation spindle 
speed was the most dominant parameter that affects formability and forming 
forces where the percentage contributions of this parameter are 90% and 73%, 
respectively. On the other hand, the tool diameter has a significant impact on 
the internal surface roughness with a percentage contribution of 93%. The 
values of the determination coefficients R2 are 95, and 98% for the formability 
and surface roughness, respectively. From the results comparison of the two 
materials, maximum angles, maximum height, minimum forming force, 
minimum surface roughness are 66.15ᵒand 48ᵒ; 27.46 mm and 11.55 mm; 2.4478 
KN and 2.1273 KN; 0.3 µm and 1.741 µm, for AA606-T6 and 
AA6061/20%SiCp-T1, respectively. 
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Saat ini, ada pasar yang berkembang untuk pembuatan komponen 
prototyping yang disesuaikan, cepat dan murah dengan batch kecil hingga 
menengah (terutama dalam transportasi, alternatif medis buatan, dan industri 
kedirgantaraan). Incremental Sheet Forming (ISF) lahir sebagai proses 
pembentukan lembaran lanjutan untuk memenuhi persyaratan sebelumnya 
dengan sempurna. ISF digambarkan memiliki fleksibilitas yang melekat, 
formabilitas tinggi, dan kekuatan biaya rendah dan membentuk 
dibandingkan dengan proses pembentukan lembaran logam tradisional. 
Namun demikian, meningkatnya tuntutan untuk memanfaatkan bahan 
ringan dalam berbagai aplikasi telah menempatkan proses yang 
dikembangkan ini dalam tantangan kritis untuk menangani bahan 
formability rendah pada suhu kamar. Di antara semua proses ISF panas yang 
dibantu, Frictional Stir-assisted Single Point Incremental Forming (SPIF) 
disajikan dalam penelitian ini. Selain keuntungan ISF yang disebutkan di atas, 
bantuan gesekan gesekan (SPIF) menampilkan manfaat unggul karena tidak 
memerlukan sumber pemanasan eksternal dan memiliki akhir permukaan 
akhir yang lebih baik daripada jenis lainnya. Dengan demikian, teknik ini 
digunakan untuk meningkatkan kemampuan formability dari dua bahan 
ringan: paduan aluminium AA60601-T6 dan matriks logam komposit AA6061 
/ 20% SiCp-T1 lembar. Studi ini berfokus pada penyelidikan aspek proses 
yang meliputi indikator formability proses, kekuatan pembentukan, dan 
kekasaran permukaan. Kecepatan putaran alat, laju umpan, ukuran langkah, 
dan diameter pahat diusulkan sebagai parameter proses untuk mengevaluasi 
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dampaknya terhadap tanggapan output. Dalam hal ini, teknik Taguchi 
Design of Experiment (DoE) dan analisis varians (ANOVA) digunakan untuk 
merancang pekerjaan eksperimental dan secara statistik mengevaluasi 
dampak dari setiap parameter. Untuk eksperimen AA6061-T6, kecepatan 
putaran spindle adalah parameter yang paling dominan yang mempengaruhi 
formability dan kekuatan pembentukan di mana kontribusi persentase dari 
parameter ini adalah 90% dan 73%, masing-masing. Di sisi lain, diameter alat 
memiliki dampak yang signifikan terhadap kekasaran permukaan internal 
dengan persentase kontribusi 93%. Nilai koefisien determinasi R2 adalah 95, 
dan 98% untuk sifat mampu bentuk dan kekasaran permukaan, masing-
masing. Dari hasil perbandingan dua bahan, sudut maksimum, ketinggian 
maksimum, gaya pembentuk minimum, kekasaran permukaan minimum 
adalah 66,15ᵒ dan 48ᵒ; 27.46 mm dan 11.55 mm; 2.4478 KN dan 2.1273 KN; 0.3 
µm dan 1.741 μm, untuk AA606-T6 dan AA6061 / 20% SiCp-T1, masing-
masing. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

In recent decades, most world governments and organizations have been 
pushed to decrease the classical energy consumption, while simultaneously 
restrict using resources that cause environmental pollution. Thus, utilizing 
lightweight materials and innovative production techniques, in many 
industrial sectors, are the key factors to reach these valuable goals (Kleiner et 
al., 2003). 

The Incremental Sheet Forming (ISF) process is an emerged flexible forming 
process (Hussain et al., 2013), whereby, complex three-dimensional shapes can 
be manufactured by simple jig and with the use of simple forming tools that 
move over a controlled tool path. Therefore, the lead-time and production cost 
will be less. The sheet is deformed into the final required shape by a sequence 
of small, localized, and incremental deformations; consequently, avoiding 
necking in sheet metals. As a result, the formability of sheets is extremely high 
compared to the conventional sheet metal forming processes (Cao et al., 2015; 
Ingarao et al., 2011; Zhang et al., 2010). Moreover, the forming forces in this 
process are less than that in conventional ones because of localized 
deformation. This contributes, to a great extent, in reducing the capacity and 
size of the machines employed in this process. All these advantages make ISF 
an alternative to traditional sheet forming processes for producing intricate 
components in small batches like customized and prototype parts; especially 
in aerospace, automotive, and biomedical applications (Cao et al., 2015). 
Figures 1.1-1.3 present the applications of ISF in the transportation and 
medical fields, respectively.  
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Figure 1.1 : Some of the transportation sector parts produced by ISF: a) 
[Amino website], b) and c) (Jeswiet et al., 2005c), d) (Jeswiet et al., 2005b) and 
e)-[Amino website] 

Figure 1.2 : Some of the medical parts manufactured by ISF: a) (Bagudanch 
et al., 2015b) , b) (Ambrogio et al., 2005) and c) 

Figure 1.3 : Some of the medical parts produced by ISF: a) Cobalt-chrome 
alloy (cast) b) EN DCO4 (ISF) and c) EN X6r17(ISF) (Milutinovića et al., 2014) 
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While Figure 1.4 displays the different intricate shapes that can be achieved 
by incremental sheet forming.   

 
 
Figure 1.4 : Some of the intricate parts produced by ISF  
(Jeswiet et al., 2005c) 

In the beginning of the last century, high interest appeared to improve and 
employ lightweight materials in various industrial applications such as 
aerospace, marine, and automobile sectors (Ambrogio et al., 2012a; Bao et al., 
2015). In general, lightweight materials include aluminium, magnesium, 
titanium, and their alloys: plastic, polymer, ceramic, and metal matrix 
composites (Campbell, 2012). These materials are known for their high 
strength-to-weight ratio, and characterized by their low formability at room 
temperature (Ambrogio et al., 2012a; Ambrogio and Gagliardi, 2015; Jeswiet et 
al., 2008). With the growth of lightweight material applications, dealing with 
the challenges in forming these low formability materials have become 
inevitable (Ambrogio et al., 2012a; Ambrogio and Gagliardi, 2015; Hussain et 
al., 2012).  

According to the excellent ability of ISF, this technique can be utilized for 
manufacturing intricate parts; and simultaneously, is an appropriate process 
to enhance the formability of lightweight materials (Bambach et al., 2007; 
Fratini et al., 2004; Silva et al., 2009b). 
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1.2 Problem Statement 

In the past few decades, high interest has focused on utilizing lightweight 
materials in various industrial applications such as aerospace, marine, and 
automobile sectors due to their superior properties (Ambrogio et al., 2012a). 
For instance, aerospace ingredients and aircraft bodies are manufactured from 
aluminum, magnesium, and titanium alloys (Bao et al., 2015). These materials 
are known for their high strength-to-weight ratio and characterized by low 
formability at room temperature (Jeswiet et al., 2008). Moreover, research and 
development has shifted from plain to composite materials. Among the 
numerous types of MMCs, aluminum matrix composites (AMCs) are gaining 
importance; particularly in applications where strength-to-weight ratio is of 
major interest (Swamy et al., 2010). The main benefits of AMCs comprise of 
enhanced stiffness, controlled thermal expansion coefficient, improved 
damping capability, enhanced high-temperature properties, and 
thermal/heat management (Christy et al., 2010). Consequently, these 
composites are widely employed in many industrial applications such as 
aerospace, marine, automotive, sports, electronics, and welding electrodes 
(Anandakrishnan and Mahamani, 2011; Yuan et al., 2012). With the growth in 
the applications of lightweight materials, including AMCs, dealing with the 
challenges in forming these low formability materials have become inevitable 
(Ambrogio et al., 2012a; Ambrogio and Gagliardi, 2015; Hussain et al., 2012). 
Conventional manufacturing processes such as deep drawing and stamping  
require expensive equipment and long lead-time (Ambrogio et al., 2012a; 
Neugebauer et al., 2011). 

ISF is a promising sheet forming process and becomes a worthy alternative to 
the traditional sheet forming processes. ISF has been used in manufacturing 
small batch or customized sheet components in various sectors. These sectors 
comprise transportation (automobile hood, automotive heat-vibration shield, 
reflector surface for headlights, silencer housing for tracks and a nose of bullet 
train), biomedical (cranial plate, ankle support, knee implant and dental—
custom-made dental crowns), aerospace (Housings and fairings) and 
architectural (custom-made formwork, panels). 

Heat-assisted ISF processes have been suggested to improve the formability 
at warm or hot conditions. These methods include electric-assisted ISF, laser-
assisted ISF, and frictional stir-assisted ISF Among all heat-assisted ISF 
processes, frictional stir-assisted Single Point Incremental Forming (SPIF) was 
presented in this study. This process depends on the frictional heating 
generated by increasing the tool rotation speed, which causes a significant rise 
in sheet metal temperature, thereby, increasing the material’s formability. 
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 Besides the advantages of heat-assisted ISF, frictional stir-assisted SPIF 
displays superior benefits as it does not require an external heating source and 
has a better final surface finish compared to other heat-assisted SPIF 
approaches. One of the limitations of this process is the probability for getting 
an adequate combination of the main process parameters values to attain a 
high formability, low forming forces and high quality of the surface finish of 
the part formed. Accordingly, this technique was used to improve the 
formability of lightweight materials AA60601-T6 and AA6061/20%SiCp-T1 
sheets. These two materials are widely used in aerospace and transportation 
industries. For example- the percentage weight of the composites materials 
and aluminum alloys in Boeing 787 are 50% and 20%, respectively. 

From the above discussion, the following advantages of frictional stir-assisted 
SPIF implemented on AA60601-T6 and AA6061/20%SiCp sheets are presented 
as follows:  

1. These two materials are attractive to use in many industrial sectors, but their 
employment is limited by material and production costs. 
2. There is an increasing demand to customize components and rapid 
prototyping techniques in the forming of sheet parts. 
3. According to the requests mentioned, SPIF can be proposed as a promising 
process that can achieve the above-mentioned demands. 

1.3 Thesis Objectives 

Based on the problem statement, the main study objectives can be expounded 
as follows: 

1. To investigate experimentally the formability of two lightweight materials, 
which are aluminium alloy and aluminum matrix composite sheets, by using 
frictional stir incremental forming. The formability is evaluated in regard to 
the maximum wall angle, maximum height, and thinning limit.   
2. To analyse the impact of the parameters (tool rotational speed, feed rate, 
step size, and tool diameter) on forming forces via the forming process. 
3. To determine the effect of studied parameters on the surface roughness of 
the samples produced. 

Design of the experiment (Taguchi method) and analysis of variance 
(ANOVA) approaches were employed to determine the qualitative correlation 
that characterizes the relationship between the main single point incremental 
parameters and the different process responses.  
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The novelty of this work comes from that two lightweight materials were first 
successfully formed with friction-stir assisted SPIF process. While the 
significant difference with the previous studies is building empirical models 
for formability indicators and surface roughness for the AA6061-T6 with an 
optimization of the final surface roughness. In addition, the present study 
develops an effective mathematical equation to estimate the maximum flash 
temperature at the tool-sheet interface. Estimation of the interface temperature 
is quite important to know the range at which the materials reach their 
maximum elongations. This can be achieved by a proper combination of the 
process parameters values during incremental sheet forming process. 

1.4 Significant of Study 

In the last decade, there has been an increasing demand for using lightweight 
materials in different industrial applications; they include magnesium, 
titanium, aluminum alloys, and compound materials. These materials are 
preferred due to their low weight and extraordinary strength-to-weight ratio. 
On the other hand, metal matrix composites (MMCs) are compound materials 
that provide the means for ultra-lightweight components. Currently, MMCs 
are employed in a wide range of applications pertaining to aircrafts, the 
automobile industry, in cutting tools, and sporting products. The application 
of MMCs is limited by its low formability at room temperature, low machining 
efficiency, and poor machinability which is the result of their highly abrasive-
nature. These factors cause excessive tool wear in cutting processes. 

Besides the advantages of incremental sheet forming, the use of frictional stir 
incremental forming presents superior advantages because it does not require 
additional heating equipment compared to other heat-assisted SPIF. In this 
work, this technique was used to improve the formability of two important 
lightweight materials (AA60601-T6 and AA6061/SiCp sheets) that can be 
employed in the automotive, aerospace, and space structural sections. 
Furthermore, this study encourages the continuation of this research to 
develop incremental sheet forming that deals with hard-to-form materials. 
Thus, it will contribute to the increasing probability of applying this technique 
with such materials to manufacture components in vital applications in future. 
Moreover, no previous study had focused on ISF to produce components 
made from AA6061-T6 or AA6061/SiCp metal matrix composites by frictional 
stir-assisted Single Point Incremental Forming (SPIF). 
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1.5 Scope and Limitations of the Study 

1.5.1 Scope  

The scope of this work is limited to studying of process demands of SPIF at 
room temperature within three parts: 

1- Obtaining the mechanical properties and chemical composition of the two 
studied materials (AA6061-T6 and AA6061/SiCp composites) using tensile 
test and chemical composition test, respectively. 
2- Utilizing the single point incremental forming to investigate the formability 
for both materials using varying wall angle conical frustum (VWACF) test. 
3- Studying the effect of different parameters (tool rotational speed, feed rate, 
step size, tool diameter, and material type) on: 

 Formability indicators (wall angle, height, and thinning limit) 

 Forming forces 

 Surface roughness 

 Tool-sheet interface temperature 

1.5.2 Limitations 

As known, the recognized limitations in SPIF are wall angle, surface quality, 
geometric accuracy, and material thinning. Moreover, hard-to-form materials, 
such as lightweight materials, are characterized with high yield stress, spring 
back, and surface properties which increase the friction between the forming 
tool and the sheet surface. Usually, to deal with these hard materials, it will 
require high forming forces that result in high friction, dimensional deviation, 
and tool degradation. Consequently, utilizing one of the heating resources is 
essential to solving this issue. 

1.6 Thesis outline 

The present thesis consists of five chapters. Chapter 1 is the introductory 
chapter that offers the basic information and applications of incremental sheet 
forming in various industrial sectors. Chapter 2 is the literature review of the 
single point incremental forming process. It includes an enumeration of 
previous works, which deal with the forming of hard-to-form materials 
according to the heating resource. It extensively provides the influence of 
important parameters on the performance of the frictional stir incremental 
forming process. Chapter 3 discusses the main methodologies applied in this 
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work. It includes the testing of the materials used, and the design of the 
experiments. The experimental equipment employed in the single point 
incremental forming experiments include CNC milling machine, jig and 
forming tools, dynamometer, as well as measuring devices and instruments. 
Moreover, CAD/CAM software was applied to design and generate the tool 
path of the final product shape. Chapter 4 provides the obtained results of the 
frictional stir incremental forming experiments. Some of the important 
relationships between the results of both studied materials were specified. 
Chapter 5 presents the overall conclusions of this project and the directions 
for future work. 
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